KIT | KIT-Bibliothek | Impressum | Datenschutz

Weighted Embeddings for Low-Dimensional Graph Representation

Bläsius, Thomas ORCID iD icon 1; von der Heydt, Jean-Pierre 1; Katzmann, Maximilian 2; Maas, Nikolai ORCID iD icon 1
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract:

Learning low-dimensional numerical representations from symbolic data, e.g., embedding the nodes of a graph into a geometric space, is an important concept in machine learning. While embedding into Euclidean space is common, recent observations indicate that hyperbolic geometry is better suited to represent hierarchical information and heterogeneous data (e.g., graphs with a scale-free degree distribution). Despite their potential for more accurate representations, hyperbolic embeddings also have downsides like being more difficult to compute and harder to use in downstream tasks.
We propose embedding into a weighted space, which is closely related to hyperbolic geometry but mathematically simpler. We provide the embedding algorithm WEmbed and demonstrate, based on generated as well as over 2000 real-world graphs, that our weighted embeddings heavily outperform state-of-the-art Euclidean embeddings for heterogeneous graphs while using fewer dimensions. The running time of WEmbed and embedding quality for the remaining instances is on par with state-of-the-art Euclidean embedders.


Volltext §
DOI: 10.5445/IR/1000183069
Veröffentlicht am 10.07.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2024
Sprache Englisch
Identifikator KITopen-ID: 1000183069
Vorab online veröffentlicht am 08.10.2024
Nachgewiesen in arXiv
OpenAlex
Dimensions
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page