KIT | KIT-Bibliothek | Impressum | Datenschutz

A comparison of latent space modeling techniques in a plain-vanilla autoencoder setting

Kächele, Fabian ORCID iD icon 1; Coblenz, Maximilian; Grothe, Oliver ORCID iD icon 1
1 Institut für Operations Research (IOR), Karlsruher Institut für Technologie (KIT)

Abstract:

By sampling from the latent space of an autoencoder and decoding the latent space samples to the original data space, any autoencoder can be turned into a generative model. For this to work, it is necessary to model the latent space with a distribution from which samples can be obtained. Several simple possibilities such as kernel density estimates or a Gaussian distribution and more sophisticated ones such as Gaussian mixture models, copula models, and normalization flows can be thought of and have been tried recently. In a plain-vanilla autoencoder setting, this study aims to discuss, assess, and compare various techniques that can be used to capture the latent space so that an autoencoder can become a generative model. Furthermore, we provide insights into further aspects of these methods, such as targeted sampling or synthesizing new data with specific features.


Verlagsausgabe §
DOI: 10.5445/IR/1000183131
Veröffentlicht am 14.07.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Operations Research (IOR)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 07.2025
Sprache Englisch
Identifikator ISSN: 0885-6125, 1573-0565
KITopen-ID: 1000183131
Erschienen in Machine Learning
Verlag Springer-Verlag
Band 114
Heft 7
Seiten Article no: 151
Vorab online veröffentlicht am 23.05.2025
Schlagwörter Autoencoder, Latent space, Copula, Generative methods
Nachgewiesen in Dimensions
Web of Science
OpenAlex
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page