KIT | KIT-Bibliothek | Impressum | Datenschutz

LiDAR-Based Tree Detection and Parameterization for SLAM in Autonomous Forestry Machinery

Wang, Zezhou ORCID iD icon 1; Heilmann, Frederik 2; Kazenwadel, Benjamin ORCID iD icon 1; Michiels, Lukas ORCID iD icon 1; Geimer, Marcus ORCID iD icon 1
1 Institut für Fahrzeugsystemtechnik (FAST), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The demand for autonomous functions in forestry operations is growing due to labor shortages, safety risks, and the need for precision in unstructured forest environments. However, dense vegetation, occlusions, and unreliable GNSS signals make autonomous navigation challenging for forest machinery. To address these issues, this paper proposes a LiDAR-based tree detection and parameterization method to support Simultaneous Localization and Mapping (SLAM), which is essential for reliable long-term autonomy. The proposed approach consists of three components. First, density-based spatial clustering segments tree-like structures from raw LiDAR point clouds. Then, parametric modeling fits cylindrical representations to trunks using RANSAC and numerically stable circle fitting. Finally, validation constraints, including a radius consistency check for maintaining stable trunk geometry and a probabilistic visibility filter for excluding occluded or back-facing points, enhance robustness against noise and occlusion-induced outliers. The method is evaluated in controlled 2D LiDAR simulations with realistic noise and branch interference. It achieves an RMSE of 0.077 m for trunk radius and 0.062 m for center localization compared to the simulated tree radius of 0.27 m. ... mehr


Originalveröffentlichung
DOI: 10.1109/ICCCR65461.2025.11072654
Zugehörige Institution(en) am KIT Institut für Fahrzeugsystemtechnik (FAST)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 16.05.2025
Sprache Englisch
Identifikator ISBN: 979-83-315-4354-9
KITopen-ID: 1000183166
Erschienen in 2025 5th International Conference on Computer, Control and Robotics (ICCCR), 16-18 May 2025, Hangzhou, China
Veranstaltung 5th International Conference on Computer, Control and Robotics (2025), Hangzhou, China, 16.05.2025 – 18.05.2025
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 1–7
Nachgewiesen in Scopus
Dimensions
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page