KIT | KIT-Bibliothek | Impressum | Datenschutz

Synthetic training data for CT image segmentation of microstructures

Griem, Lars ORCID iD icon 1; Koeppe, Arnd ORCID iD icon 1; Greß, Alexander; Feser, Thomas; Nestler, Britta 1
1 Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The segmentation of images obtained through techniques such as computed tomography is a key step in generating digital twins of porous microstructures. A common approach to segmentation is the use of supervised machine learning algorithms, such as U-Net. The training data required for such algorithms are usually obtained by manual labelling, which is extremely time consuming and often inaccurate. We present a method for synthesising realistic training data for segmentation algorithms. This method generates the data in a two-step process that iteratively improves the quality of the synthesised training data. Finally, we validate the similarity between synthetic and real data using quantitative and qualitative metrics and further demonstrate the effectiveness of the synthetic data by experimentally validating segmentation results against measured material properties.


Verlagsausgabe §
DOI: 10.5445/IR/1000183214
Veröffentlicht am 17.07.2025
Originalveröffentlichung
DOI: 10.1016/j.actamat.2025.121220
Scopus
Zitationen: 1
Web of Science
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 09.2025
Sprache Englisch
Identifikator ISSN: 1359-6454
KITopen-ID: 1000183214
HGF-Programm 43.35.01 (POF IV, LK 01) Platform for Correlative, In Situ & Operando Charakterizat.
Weitere HGF-Programme 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Acta Materialia
Verlag Elsevier
Band 296
Seiten 121220
Schlagwörter Segmentation, Synthetic training data, Generative adversarial networks
Nachgewiesen in Web of Science
Scopus
OpenAlex
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 9 – Industrie, Innovation und Infrastruktur
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page