KIT | KIT-Bibliothek | Impressum | Datenschutz

Membrane Characterisation using Machine Learning

Griem, Lars Christoph ORCID iD icon 1; Koeppe, Arnd Hendrik ORCID iD icon 1; Altschuh, Patrick 1; Schoof, Ephraim 1; Brandt, Nico ORCID iD icon 1; Zschumme, Philipp 1; Selzer, Michael ORCID iD icon 1; Nestler, Britta 1
1 Institut für Angewandte Materialien – Computational Materials Science (IAM-CMS), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The synthesis and evaluataion of synthesized membrane structures as virtual parts of digital twins provide a data basis for training machine learning algorithms and for enabling them to predict structure-property correlations when applied to real structures. The research data infrastructure Kadi4Mat [1] developed at KIT offers a platform for combining both, data management and data processing as a prerequisite for structured data storage as a database for machine learning.
The present work introduces a workflow that models the development process of a machine learning algorithm for the determination of the geometric anisotropy in porous polymer membranes and is implemented in Kadi4Mat in an automatable way. In the current use case, the structures to be investigated are diagnostic membranes used in lateral flow tests.
As a basis for the machine learning approach, more than 12,500 structures with a specifically configured microstructure are generated algorithmically. These synthesized microstructures are designed to mimic the macroscopic properties of the real diagnostic membranes and are additionally imprinted with different geometric anisotropies.
... mehr


Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Computational Materials Science (IAM-CMS)
Institut für Nanotechnologie (INT)
Publikationstyp Poster
Publikationsdatum 30.11.2021
Sprache Englisch
Identifikator KITopen-ID: 1000183216
Veranstaltung Euromembrane (2021), Kopenhagen, Dänemark, 28.11.2021 – 02.12.2021
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page