KIT | KIT-Bibliothek | Impressum | Datenschutz

Predicting mechanical properties of porous microstructures through the identification of structure property linkages using machine learning algorithms

Griem, Lars Christoph ORCID iD icon 1; Greß, Alexander; Altschuh, Patrick 1; Feser, Thomas; Selzer, Michael ORCID iD icon 1; Beeh, Elmar; Nestler, Britta 1
1 Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The use of composite materials such as a polyurethane aluminium sandwich structure is a promising method for weight reduction in novel vehicle concepts. Dimensioning such composite components, however, requires knowledge of the mechanical properties of the foam used. These properties are usually determined with the help of different mechanical testing methods. In order to replace these time- and cost-intensive experiments, the project presented here aims to develop a machine learning (ML) approach that identifies structure-property linkages in foams and can thus predict their mechanical properties based on the microstructure.
To generate a suitable database for the training of an ML-algorithm, both experimental investigations of different foam structures are carried out and computational methods are applied. Via the experiments the mechanical properties of the foam structures are determined by means of tensile and compression tests while computer tomographic (CT) measurements are used to obtain high resolution images of the used foam samples. The resulting CT-scans are converted into digital representations of the microstructures and mechanical simulations as well as image analysis algorithms are applied using the PACE3D [1] simulation framework. ... mehr


Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS)
Publikationstyp Poster
Publikationsmonat/-jahr 06.2022
Sprache Englisch
Identifikator KITopen-ID: 1000183217
Veranstaltung Helmholtz Artificial Intelligence Conference (Helmholtz AI 2022), Dresden, Deutschland, 02.06.2022 – 03.06.2022
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page