KIT | KIT-Bibliothek | Impressum | Datenschutz

Identifying structure-property linkages in polyurethane foams to characterise their mechanical properties using machine learning

Griem, Lars Christoph ORCID iD icon 1; Greß, Alexander; Altschuh, Patrick 1; Feser, Thomas; Koeppe, Arnd Hendrik ORCID iD icon 1; Selzer, Michael ORCID iD icon 1; Nestler, Britta 1
1 Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The design of sandwich composites with a polyurethane foam core and a metallic face material, requires the knowledge of the mechanical properties of the constituent materials. Theses are generally known for metallic materials, but have to be determined for plastic foams, usually via experiments as they are greatly dependent on the foam‘s microstructure. In order to substitute these time-consuming and cost-intensive experiments, this work presents a procedure for characterising the mechanical properties of plastic foams by identifying structure-property linkages using machine learning. The basis for this are experimentally validated simulations of reconstructed and algorithm-based generated digital-twins of polyurethane foam structures. The microstructures of these generated foam structures are varied systematically to create an information-rich data-basis thereby obtaining an accurate and robust machine-learning tool.


Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS)
Publikationstyp Vortrag
Publikationsdatum 28.09.2022
Sprache Englisch
Identifikator KITopen-ID: 1000183218
Veranstaltung Materials Science and Engineering Congress (MSE 2022), Darmstadt, Deutschland, 27.09.2022 – 29.09.2022
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page