KIT | KIT-Bibliothek | Impressum | Datenschutz

Revealing Structure-Property Linkages using Explainable AI

Griem, Lars Christoph ORCID iD icon 1,2; Koeppe, Arnd Hendrik ORCID iD icon 1,2; Feser, Thomas; Selzer, Michael ORCID iD icon 2; Beeh, Elmar; Nestler, Britta 1,2
1 Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The development of a new vehicle concept at the DLR (German Aerospace Centre) involves the use of high-performance sandwich composites that combine low weight with high energy dissipation. Among these materials, sandwich composites with a polyurethane foam core and a metallic face material show outstanding performance. However, the design of these composites requires knowledge of the mechanical properties of the constituent materials. For solid metallic materials the mechanical quantities are generaly known. But for composite and open-cell porous foams, the properties are unknown as they depend on the composition and structural characteristics. Experimental determination requires time-consuming and cost-intensive measurements for plastically deformable foams.
Within the Helmholtz AI project FoAIm, we propose a method for predicting the mechanical properties of polyurethane foam using machine learning ultimately aiming to identify structure-property linkages. The method is based on a data set of experimentally validated simulations of reconstructed and algorithmically generated digital twins of polyurethane foam structures, which resolve microstructures in the micrometre range. ... mehr


Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS)
Publikationstyp Vortrag
Publikationsmonat/-jahr 06.2023
Sprache Englisch
Identifikator KITopen-ID: 1000183219
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Veranstaltung Helmholtz Artificial Intelligence Conference (Helmholtz AI 2023), Hamburg, Deutschland, 12.06.2023 – 14.06.2023
Schlagwörter Explainable AI, Structure-Property Linkage
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page