KIT | KIT-Bibliothek | Impressum | Datenschutz

Multimodal Lotus Effect Algorithm for Engineering Optimization Problems

Dalirinia, Elham; Yaghoobi, Mahdi; Tabatabaee, Hamid; Chandna, Swati; Jalali, Mehrdad ORCID iD icon 1
1 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)

Abstract:

Multimodal optimization problems (MMOPs) are critical in fields like game theory and robotics, where identifying multiple optimal solutions simultaneously is essential, yet challenging due to the need for effective global exploration and precise localization of optima. This study introduces the multimodal lotus effect algorithm (M-LEA), a novel extension of our previously published lotus effect optimization algorithm (LEA), which was designed for single-modal optimization and thus struggled to maintain multiple optima in complex multimodal spaces. M-LEA addresses this limitation by incorporating a roaming technique with independently evolving subpopulations, enabling it to navigate multimodal spaces without requiring parameters such as radius or prior information about the number or distribution of optima. Its robustness is demonstrated through comparisons with five algorithms on the IEEE CEC2013-2015 challenge, where M-LEA consistently outperformed competitors. The algorithm's practical utility is further validated in two applications: identifying Nash equilibrium points in game theory and localizing resources via robotic systems. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000183314
Veröffentlicht am 22.07.2025
Originalveröffentlichung
DOI: 10.1002/eng2.70137
Scopus
Zitationen: 2
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Funktionelle Grenzflächen (IFG)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 04.2025
Sprache Englisch
Identifikator ISSN: 2577-8196
KITopen-ID: 1000183314
HGF-Programm 43.33.11 (POF IV, LK 01) Adaptive and Bioinstructive Materials Systems
Erschienen in Engineering Reports
Verlag John Wiley and Sons
Band 7
Heft 4
Seiten Art.-Nr.: e70137
Vorab online veröffentlicht am 24.04.2025
Nachgewiesen in Scopus
OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page