KIT | KIT-Bibliothek | Impressum | Datenschutz

Imitation learning with artificial neural networks for demand response with a heuristic control approach for heat pumps

Dengiz, Thomas 1; Kleinebrahm, Max ORCID iD icon 1
1 Institut für Industriebetriebslehre und Industrielle Produktion (IIP), Karlsruher Institut für Technologie (KIT)

Abstract:

The flexibility of electrical heating devices can help address the issues arising from the growing presence of unpredictable renewable energy sources in the energy system. In particular, heat pumps offer an effective solution by employing smart control methods that adjust the heat pump’s power output in reaction to demand response signals. This paper combines imitation learning based on an artificial neural network with an intelligent control approach for heat pumps. We train the model using the output data of an optimization problem to determine the optimal operation schedule of a heat pump. The objective is to minimize the electricity cost with a time-variable electricity tariff while keeping the building temperature within acceptable boundaries. We evaluate our developed novel method, PSC-ANN, on various multi-family buildings with differing insulation levels that utilize an underfloor heating system as thermal storage. The results show that PSC-ANN outperforms a positively evaluated intelligent control approach from the literature and a conventional control approach. Further, our experiments reveal that a trained imitation learning model for a specific building is also applicable to other similar buildings without the need to train it again with new data. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000183321
Veröffentlicht am 23.07.2025
Originalveröffentlichung
DOI: 10.1016/j.egyai.2024.100441
Scopus
Zitationen: 4
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Industriebetriebslehre und Industrielle Produktion (IIP)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2024
Sprache Englisch
Identifikator ISSN: 2666-5468
KITopen-ID: 1000183321
Erschienen in Energy and AI
Verlag Elsevier ScienceDirect
Band 18
Seiten Art.-Nr.: 100441
Vorab online veröffentlicht am 13.11.2024
Nachgewiesen in Scopus
Dimensions
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page