KIT | KIT-Bibliothek | Impressum | Datenschutz

End-to-End Multi-track Reconstruction Using Graph Neural Networks at Belle II

Reuter, L. 1; De Pietro, G. ORCID iD icon 2; Stefkova, S.; Ferber, T. 2; Bertacchi, V.; Casarosa, G.; Corona, L.; Ecker, P. 1; Glazov, A.; Han, Y.; Laurenza, M.; Lueck, T.; Massaccesi, L.; Mondal, S.; Scavino, B.; Spataro, S.; Wessel, C.; Zani, L.
1 Institut für Theoretische Teilchenphysik (TTP), Karlsruher Institut für Technologie (KIT)
2 Institut für Experimentelle Teilchenphysik (ETP), Karlsruher Institut für Technologie (KIT)

Abstract:

We present the study of an end-to-end multi-track reconstruction algorithm for the central drift chamber of the Belle II experiment at the SuperKEKB collider using Graph Neural Networks for an unknown number of particles. The algorithm uses detector hits as inputs without pre-filtering to simultaneously predict the number of track candidates in an event and their kinematic properties. In a second step, we cluster detector hits for each track candidate to pass to a track fitting algorithm. Using a realistic full detector simulation including beam-induced backgrounds and detector noise taken from actual collision data, we find significant improvements in track finding efficiencies for tracks in a variety of different event topologies compared to the existing baseline algorithm used in Belle II. For events involving a hypothetical long-lived massive particle with a mass in the GeV-range, decaying uniformly along its flight direction into two charged particles, the GNN achieves a combined track finding and fitting charge efficiency of 85.4% per track, with a fake rate of 2.5%, averaged over the full detector acceptance. In comparison, the baseline algorithm achieves 52.2% efficiency and a fake rate of 4.1%. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000183348
Veröffentlicht am 23.07.2025
Originalveröffentlichung
DOI: 10.1007/s41781-025-00135-6
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Experimentelle Teilchenphysik (ETP)
Institut für Theoretische Teilchenphysik (TTP)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2025
Sprache Englisch
Identifikator ISSN: 2510-2036, 2510-2044
KITopen-ID: 1000183348
Erschienen in Computing and Software for Big Science
Verlag Springer
Band 9
Heft 1
Seiten Article no: 6
Vorab online veröffentlicht am 03.05.2025
Schlagwörter Track finding; Tracking; Object condensation; Machine learning; Graph neural networks; Deep learning; End-to-end representation spaces
Nachgewiesen in OpenAlex
Scopus
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page