KIT | KIT-Bibliothek | Impressum | Datenschutz

Best practices for AI-based image analysis applications in aquatic sciences: The iMagine case study

Azmi, Elnaz ORCID iD icon 1; Alibabaei, Khadijeh ORCID iD icon 1; Kozlov, Valentin ORCID iD icon 1; Krijger, Tjerk; Accarino, Gabriele; Ayata, Sakina-Dorothée; Calatrava, Amanda; De Carlo, Marco Mariano; Decrop, Wout; Elia, Donatello; Fiore, Sandro Luigi; Francescangeli, Marco; Irisson, Jean-Olivier; Lagaisse, Rune; Laviale, Martin; Lebeaud, Antoine; Leluschko, Carolin; Martínez, Enoc; Moltó, Germán; ... mehr

Abstract:

The iMagine project is an EU-funded initiative led by the EGI Foundation. One of the objectives of this project is to provide an AI platform that leverages AI-powered tools to improve the processing and analysis of imaging data from marine and freshwater ecosystems, contributing to the study of the health of oceans, seas, coasts, and inland waters. Connected to the European Open Science Cloud (EOSC), iMagine supports the development, training, and deployment of AI models by collaborating with twelve use cases across diverse aquatic science fields. This collaboration fosters valuable insights and accelerates scientific progress by refining existing solutions in data acquisition, preprocessing, and model deployment. The platform offers trained models as a service, integrating AI tools for image annotation, ensuring the creation of high-quality datasets that comply with FAIR principles. Through these methodologies, iMagine enhances consistency, enabling researchers to efficiently publish and share data in repositories.
Beyond its AI tools, iMagine places a strong emphasis on deep learning models, such as convolutional neural networks, for tasks like image classification, object detection, and segmentation, tailored to the unique requirements of aquatic sciences. ... mehr


Verlagsausgabe (Version 2) §
DOI: 10.5445/IR/1000183393/v2
Veröffentlicht am 25.09.2025
Originalveröffentlichung
DOI: 10.1016/j.ecoinf.2025.103306
Scopus
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Scientific Computing Center (SCC)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 11.2025
Sprache Englisch
Identifikator ISSN: 1574-9541
KITopen-ID: 1000183393
HGF-Programm 46.21.02 (POF IV, LK 01) Cross-Domain ATMLs and Research Groups
Erschienen in Ecological Informatics
Verlag Elsevier
Band 91
Seiten 103306
Projektinformation iMagine (EU, EU 9. RP, 101058625)
Schlagwörter Machine learning, Deep learning, Computer vision, Image processing, FAIR data, Open science, Aquatic sciences, Ocean and marine sciences, Automated species classification
Nachgewiesen in Scopus
OpenAlex
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 14 – Leben unter Wasser
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page