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Chapter 1

Introduction

The story of Ettore Majorana’s disappearance during a boat trip in 1938 is a notoriously
enigmatic one, having prompted speculations and debate spanning several decades. [1H3| As
fate would have it, this mystery is only accentuated by the fact that the type of particles he
proposed in his last published paper [4] even more so continues to puzzle the physics commu-
nity across a variety of disciplines, as they remain elusive to this day.

Majorana particles serve as an alternative to the realization of relativistic fermions intro-
duced by Dirac. By deducing a representation of the Dirac equation which is solved by
real-valued wave functions, Majorana opened the possibility for the existence of electrically
neutral spin—% fermions, which behave as their own antiparticles.

In the realm of particle physics, these types of elementary excitations are not part of the
Standard Model, but only appear in extensions to it as e.g. possible solution to the neu-
trino mass problem or dark matter candidates. |5| In contrast, in condensed matter physics
quasiparticles with Majorana character naturally emerge in the theory of superconductivity
as coherent superpositions of electrons and holes.

Based on that, at the turn of the millennium it was realized that superconductors with pair-
ing symmetries going beyond the standard Bardeen-Cooper-Schrieffer (BCS) mechanism |[6]
are able to host localized Majorana bound states at vortex cores or boundaries. |710] On
top of being described by Majorana operators, these are furthermore expected to have the
fascinating property of constituting non-abelian anyons, exhibiting exchange statistics which
are neither fermionic nor bosonic. |9, 10| Realizing and controlling such exotic states in fact
entails practical visions of allowing for fault-tolerant and topologically protected quantum
computing |11], attracting not only academic but also prominent industrial research |12].

However, the quest for Majorana bound states in superconducting systems has not been
in full swing until 2008, when Fu and Kane showed in their groundbreaking paper |13| that
unconventional superconductors are not a strictly necessary requisite for this endeavor, but
that effective topological superconductivity is achievable instead by means of ordinary s-wave
superconductors in combination with the spin-momentum locked surface states of a topological
insulator. This realization cleared the way for a large variety of experiments and theoretical
proposals harnessing the superconducting proximity effect in a similar vein. [14]

Systems of particular significance in this regard are Josephson junctions formed within
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these topological structures. Depending on the details, they are able to host one-dimensional
Majorana edge modes propagating along the junction as well as zero-dimensional Majorana
bound states localized in Josephson vortices. The well-understood and rich landscape of
experimentally accessible quantum phenomena in Josephson junctions then naturally lends
itself as a testing ground and control platform for the coveted Majorana physics.

While the fabrication of such junctions on topological insulator surfaces has been carried out
in several works, including characterization via the measurements of Josephson current [15-18],
Shapiro steps [19] and Fraunhofer diffraction patterns |20} 21|, conclusive proof of the existence
of Majorana bound states, in particular distinguishing them from topologically trivial Andreev
modes (let alone determining their non-abelian nature), continues to elude experiments.

In this thesis, in an effort to advance our theoretical understanding of these compelling
structures, we extend the theoretical models for topological Josephson systems by including the
dynamics of bosonic fields which couple to the one-dimensional Majorana modes propagating
along the junction. In our analysis of the resulting field theories, we find evidence for the
existence of a variety of quantum phase transitions. Furthermore, we establish a regime in
which the frequently used effective description in terms of two counter-propagating Majorana
modes is no longer applicable due to an emergence of additional low-energy degrees of freedom,
previously overlooked.

Our main focus will lie on Josephson junctions on the surface of a three-dimensional strong
topological insulator with a ferromagnet embedded between the two superconductors. Such a
setup has in the past been proposed [22-25| as a means to manipulate and control the elec-
tronic surface states with a static magnetization. Since the magnetization in a ferromagnet is
however not perfectly rigid, our aim is to deduce a theory which incorporates the dynamical
magnetic degrees of freedom on equal footing with the electronic ones, in order to study the
macroscopic consequences of their interplay. A similar model for the coupling between phase
bias and edge modes in junctions of time-reversal invariant topological superconductors will
be examined as well, in addition to the case of these junctions being subjected to an external
magnetic field.

To this end, we begin in Chapter [2| by introducing the already mentioned connections be-
tween topology, superconductivity and Majorana modes in more detail in order to establish the
framework within which the subsequent chapters operate. Particularly, after providing a brief
overview of the ideas that lead to the notion of topological insulators and topological supercon-
ductivity, we introduce the Fu-Kane system [13]| and present how one- and zero-dimensional
Majorana states can emerge there.

In Chapter we introduce the topological superconductor-ferromagnet-superconductor
(SMS) junctions and derive a corresponding low-energy effective theory in the case of a strong
magnetic easy-axis anisotropy. Within mean-field theory, a Peierls instability ensuing a Zo
symmetry breaking with a tilting of the magnetization and opening of a Majorana mass gap
can be identified, which we examine for its stability to deduce an estimate for the associated
quantum phase diagram. A similar analysis is carried out for Josephson junctions comprised
of time-reversal invariant topological superconductors. Both systems are finally investigated
for the fermionic bound states carried by solitonic excitations.




Chapter [4extends the considerations concerning the topological SMS junctions to allow for
arbitrary magnetic anisotropy strengths. Employing a combination of mean-field and renor-
malization group arguments, we find Berezinskii-Kosterlitz-Thouless transitions to be present
in both the easy-plane and weak easy-axis regime. In an effort to join these results with the
above mentioned Peierls instability, we speculate on the existence of exotic multicritical points
in the model.

Finally, in Chapter [5| a fundamental limitation of the effective theory, which is employed
here and in various other works, is pointed out using the example of a topological insulator
Josephson junction threaded by a magnetic flux. Particularly, we show the naive low-energy
approximation to fail for small effective velocities of the Majorana modes. While part of the
resulting erroneous predictions can be remedied by the inclusion of higher-order corrections,
we furthermore unveil a behavior reminiscent of a topological phase transition, which is com-
pletely missed by the usual approach.

Chapter [6] concludes the thesis and contains outlook for potential future research.







Chapter 2

Fundamentals: Josephson junctions
on the surface of a topological
insulator

To set the stage for this thesis, we begin by introducing the physical systems which will be of
interest to us. We discuss the connection between unconventional superconductors, topology
and Majorana modes in condensed matter systems and touch on why these quasiparticles have
attracted an immense amount of attention in the recent decades. Next, we present the ingenious
setup proposed by Liang Fu and Charles Kane, comprised of ordinary s-wave superconductors
and three-dimensional topological insulators, which is able to host Majorana modes. Based on
this, we finally turn to the structures which will be our main focus, namely Josephson junc-
tions on the surface of a topological insulator. We introduce the associated central concepts and
ideas, which makes us ready to dive into the main part of this thesis, in which we investigate
its potential as a platform for a variety of quantum critical phenomena.

In Section of this chapter, we loosely follow the review articles by Hasan and Kane [26|,
Alicea [14] and Aguado [27]. For a more thorough introduction to the topic, we refer the
reader to these papers as well as the references cited therein.

2.1 Topological superconductivity and Majorana modes

2.1.1 Topological insulators

An (ordinary) insulator is characterized by the energy gap between its valence and conduction
band. The same is true for the semiconducting band structure, which we can easily imagine to
be obtained by a continuous deformation from an insulating state. In fact, deforming the gap
to be as large as the energy required for electron-positron pair production, there is a sense in
which we can even smoothly deform between an insulator and the vacuum. This is the basic
idea on grounds of which the notion of a topological equivalency class can be defined, asking
the question whether two band structures can be smoothly deformed into one another without
closing the energy gap. Thus, ordinary insulators, semiconductors and the vacuum are from
this topological point of view equivalent.
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To be more precise, let us understand the band structure of a two-dimensional material as a
mapping from the crystal momentum k in the first Brillouin zone (defined on a torus) to the
Bloch Hamiltonian H(k), the eigenvalues E,, (k) of which form bands indexed by n. The goal
is now to define a quantity which is invariant under changes of H (k) which leave the energy
gap intact, called a topological invariant.

One example of such a topological invariant is given by the total Berry flux F,,, = Vi x A,
in the first Brillouin zone

_ 1 2
N= > /d k Fon, (2.1)

m OcCcC.

with A, = @ (um|Vi|uy) defined in terms of the Bloch wave functions for the m-th energy
band |u,,(k)), where the sum runs over all occupied bands. N remains unchanged as long as
there is a finite gap between occupied and unoccupied bands and is a so-called Chern number.
Additionally, note that N is an integer (which can be understood in analogy to the quantization
of the Dirac magnetic monopole [28|) and therefore also referred to as a Z invariant.

How this mathematical fact manifests physically has been first understood by Thouless,
Kohmoto, Nightingale and den Nijs (TKNN)|29]. They showed the quantized Hall conductivity

oy = Ne?/h (2.2)

to be determined by exactly this topological invariant N (with the Landau levels being inter-
preted as a band structure). The quantum Hall effect is well known to be caused by gapless
edge modes [30] and TKNN thus found a deep connection between the topology of the bulk
band structure and the existence of conducting edge states, known as the bulk-boundary cor-
respondence: The topological invariant IV, calculated by means of the bulk band structure, is
invariably linked to the number of modes present at the edge of the material.

The existence of gapless edge modes in this context can actually be understood in a rather
intuitive picture, since the energy gap at the boundary between two topologically distinct
regions has to close by definition, allowing for states at low-energies bound to this line. In the
case of the quantum Hall effect, this is the edge of the material, i.e. the boundary between
the quantum Hall sample and the vacuum.

While a non-zero Chern number can only occur in systems with broken time-reversal sym-
metry 7T, spin-orbit interaction (SOI) allows for a different class of topologically nontrivial
systems where 7T is preserved. We therefore need to include spin into our discussion, which
we have neglected to do until now.

To this end, recall Kramers theorem which states for spin—% particles that all eigenstates
of a T-invariant Hamiltonian are at least two-fold degenerate. Without SOI, this is just the
degeneracy between up- and down-states.

Now, consider the edge of a T-invariant two-dimensional insulator with SOI. If there happen
to be in-gap states present that are bound to the boundary region, they have to be degenerate
at the T-invariant points k = 0 and k& = 7/a (where k is the crystal momentum parallel
to the edge), see Fig. . Away from these points, the spin-orbit interaction lifts the de-
generacy. The shape of the edge state dispersion (recall the aforementioned bulk-boundary
correspondence) depends on the properties of the bulk and can lead to one of two scenarios:
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Figure 2.1: Sketches of the surface Brillouin zone. (a) In the two-dimensional case, the
dispersion of the surface states (black) either crosses the Fermi energy Er an even (v = 0)
or an odd (v = 1) number of times between the two Kramers degenerate points (green) at
k =0 and w/a. The orange and blue bands show the bulk valence and conduction bands,
respectively. (b) In the three-dimensional case, where the red lines show the surface Fermi
arcs, there are four Kramers degenerate Dirac points (green), which are pairwise connected
in one of the two ways shown in (a). The example for the vy = 0 case corresponds to an odd
number of crossings of the Fermi energy between I'y and I's as well as between I's and I'y
(and accordingly between I'y and I's as well as between I'y and I's in the vy = 1 example).

If the Fermi energy is crossed by the edge states an even number of times between k = 0 and
k = m/a, the in-gap states can be removed by continuous deformation of the band structure.
In the case of an odd number of crossings, however, this is not possible and these metallic
edge states are said to be topologically protected. The parity v of the number of times the
Fermi energy is crossed by the edge modes is thus a topological invariant, called the Zo invari-
ant. Their topological nature leads to them being robust against localization through disorder
and weak electron interactions. |31] Note that T-symmetry requires for every edge mode with
momentum k the existence of a corresponding mode with momentum —k propagating in the
opposite direction. A physical realization is given by the quantum spin Hall state. [31H33]

Finally, we turn to the 3D generalization of these concepts and consider the two-dimensional
surface of a three-dimensional insulator that exhibits SOI.

Four T-invariant points {I'1, 'y, '3, I'4} occur in the surface Brillouin zone for which Kramers
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theorem dictates a degeneracy of the surface states, if they are present. Thus, in this case the
surface Brillouin zone exhibits four 2D Dirac points. There are again two ways in which they
can connect pairwise, and thus the state is characterized by four Zs invariants. They can be
chosen such that one of them, called vg, corresponds to the number of Dirac points enclosed
by the surface Fermi arc.

The surface states for the simplest nontrivial example, given by stacking two-dimensional
quantum spin Hall insulators, turn out to not be protected by 7 symmetry and can be localized
in the presence of disorder. |34] This phase is therefore dubbed weak topological insulator. An
example for a corresponding surface Fermi surface is shown in the top plot of Fig. It
encloses an even number of Kramers Dirac points, 1y = 0.

If instead the case sketched in the bottom of Fig. applies, i.e. an odd number of Dirac
points being enclosed by the surface Fermi arc, vy = 1, a distinct topological phase is realized,
the so-called strong topological insulator. Here, the surface states do enjoy protection by T
symmetry. |34] Consequently, if only one Dirac point is encircled, the surface states can be
described by the Hamiltonian

Hpipae = —ivpV -0 — 1, (2.3)

where vp is the Fermi velocity, p the chemical potential and o = (0, 0y), here and in the
following, are Pauli matrices describing the spin.
The first 3D topological insulator was experimentally verified in 2008. [35]

These three-dimensional strong topological insulators form the basis for the structures we
aim to explore in this thesis. Before we are ready to do so, however, the second ingredient,
superconductivity, and its relation to topological band structures need to be introduced.

2.1.2 Majorana edge modes in spinless superconductors

The energy gap present in superconducting systems allows for an analogous topological classi-
fication. It turns out, however, that looking for topologically nontrivial superconducting states
directly leads us to the notion of unconventional superconductivity, with pairing symmetries
going beyond standard BCS theory.

In the conventional case, Cooper pairing is limited to two electrons of opposite spins, forming
a spin-singlet and exhibiting a relative orbital angular momentum of [ = 0, known as s-wave
pairing. One possibility to achieve a pairing with [ # 0, is to instead imagine a spin-polarized
system with only one active spin degree of freedom, called a spinless superconductor. The
Cooper pairs are then forced to be in a spin-triplet state and the orbital wave function thus
needs to be antisymmetric, which makes p-wave pairing possible.

For a two-dimensional model system of such a case, the so-called chiral p, + ip, supercon-
ductor, Read and Green [8] showed a topological phase transition to exist. Below, we will
loosely follow their arguments to derive a corresponding edge mode.

The chiral p, + ip, superconductor is described by the Bogoliubov-de Gennes (BdG) Hamil-
tonian

P:+p;
2m*

hBac Pz, py) = ( - u) T, — 1A (py — ipy) T4 + A" (py + ipy) T, (2.4)
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where we assume A to be constant and approximate the dispersion in the normal phase to
be quadratic for small momenta p, and p, with effective mass m* and chemical potential
1. The corresponding Nambu spinor does not have any spin structure W(r) = (&(r), & (r))7”
(here and in the rest of the thesis, 7; denote Pauli matrices in Nambu space). From this, the
quasiparticle spectrum can be determined to read

p24p: N\
cu () =2 (Pt — ) +IAR (2 + 5. (25)

It exhibits an energy gap for all i # 0. The gap closing at u = 0 signalizes a topological
transition between the instances with p > 0, called the (topologically non-trivial) weak-pairing
phase, and the (topologically trivial) strong-pairing phase with p < 0.

Let us examine a boundary at © = 0 between the two phases p(z > 0) > 0 and p(z < 0) <
0. We are interested in the low-energy physics near the transition point, where u is small and
thus the momenta can be taken to be small as well, such that the BAG Hamiltonian for a
definite p, can be written as

hpac = —p(z) 7, — A(Op +py)7+ — A" (=0, —|—py)7',. (2.6)

If py =0and A € R, hpag = —iA0,7, — pu(x)7, is equivalent to the one-dimensional Dirac
Hamiltonian with mass profile p(z), for which Jackiw and Rebbi [36] showed zero energy
solutions to exist if there is an interface with a sign change of the mass. This zero energy state
is then bound to this interface. Particularly, here the BAG eigenstate with vanishing energy
reads

®(z) oc e Jo d@'u=)/A <1> . (2.7)
The corresponding quasiparticle operator
Joc [ doen DA G) 12l (y) (2.8)

is a special zero mode, which is its own adjoint 4T = 4, 4% = 1, and therefore dubbed Majorana
zero mode (MZM) or Majorana bound state (MBS). For finite p,, chiral Majorana fermions
propagating along the domain wall with the linear dispersion £ = —Ap, are obtained

Dy, (z,y) x eipyyq)(x), (2.9)

analogous to the chiral edge modes in the quantum Hall state.

Note that the Majorana nature of these edge modes does not really come as a surprise,
since it results from a generic property of excitations in superconductors described by a BdG
Hamiltonian h, as has been pointed out in Ref. [37]. The (anti-unitary) charge conjugation
symmetry C, ChC~! = —h, dictates that for every ecigenstate with energy FE, there exists
a corresponding negative energy eigenmode with energy E_, = —FE,. Combined with the
pseudo-reality constraint satisfied by the associated fermionic Nambu spinor co = \il, it
becomes clear that this charge conjugation symmetry is however not a real symmetry, but
instead a redundancy in the description: the creation of a particle with positive energy is
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identical to the annihilation of the associated charge conjugated one with negative energy.
The excitations follow to carry no charge and the full quantum field obeys Majorana-like
anti-commutation relations.

In a similar way, one can show that discs with for example p < 0 surrounded by a region
with g > 0 [38] and vortices in superconductors [9] can lead to zero-dimensional MZMs bound
to them. Such in-gap modes with zero energy are topologically protected, since pushing them
away from their energy would violate particle-hole symmetry, as BdG excitations with finite
energy always come in pairs. Only a closing of the gap to other quasiparticle excitations
would allow for the removal of a MBS. The number of (unpaired) MZMs is thus a topological
invariant.

These zero-energy, zero-dimensional MBSs are furthermore special as they are the only
stationary solutions to h with well-defined energy that exhibit the Majorana characteristic of
being self-conjugate. It is important to note that as such, these cannot be characterized as a
quasiparticle in the usual sense. Indeed, since 42 = 1, there is no meaning to the level being
occupied or not. Only pairs of MZMs can be combined to result in a fermionic state with well-
defined occupation number. This leads (with one pair of MZMs) to a 2-fold degenerate ground
state, where the two ground states are distinguished only by fermion parity, since MZMs do
not contribute to the Hamiltonian.

These Majorana states making up a pair can still be localized arbitrarily far from each other,
which guarantees their topological protection against local perturbations. Additionally, their
combined fermionic state can thus encode highly non-local entanglement.

It can be shown as a consequence of these properties, that MZMs on top of that obey non-
abelian exchange statistics in two dimensions: not only do they behave as anyons, i.e. neither
bosons nor fermions, but as so-called non-abelian anyons, which means that in general two
subsequent exchanges do not commute. [9]

Aside from their intrinsic academic appeal, this is the reason for the ubiquitous interest in
these Majorana states within condensed matter research, and the resulting interest from our
side in systems that may be able to host them: the non-abelian exchange statistics in com-
bination with their topological nature opens avenues towards fault-tolerant and topologically-
protected quantum computing (see e.g. Ref. [11] for a review).

2.1.3 Engineering topological superconductivity via the proximity effect

Although p-wave pairing has long been well understood to support Majorana bound states [8,
10|, the question regarding materials realizing these exotic pairing symmetries is a different
and difficult one, as the quest for an intrinsic topological superconductor is to this day an
ongoing and hotly debated topic (see Ref. [39] and references therein).

It was therefore a major breakthrough, when in 2008 Fu and Kane [13]| showed that an
effective two-dimensional p, + ip, superconductor can be engineered without the need of such
a material, by instead combining an ordinary s-wave superconductor with a three-dimensional
strong topological insulator (TI). The structures we are going to explore in this thesis are all
based on this crucial insight, which in the following years has furthermore inspired many more
proposals taking advantage of the superconducting proximity effect in a similar vein. [14]

To review their ideas, consider the surface of a 3D strong TI on which an s-wave supercon-
ductor is deposited. Due to the proximity effect [40], a superconducting gap A = Age'? is
induced in the surface states. In the simplest case of only one Dirac point being encircled by

10
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the surface Fermi arc, the Hamiltonian describing this setup is thus given by H= % [ dr \iJTh\i’,

where the Nambu spinor containing the electronic field operators is ¥ = (@T,{b i’QLL —@;)T
and the BAG Hamiltonian reads

h = —ivpT,0 - V — pu1, + Ag(cos o 7, + sinp 7). (2.10)

Fu and Kane’s intuition for why this has the potential to resemble the desired spinless p-
wave superconductors stems from the fact that the TT surface states essentially comprise half
of an ordinary metal: due to the spin-momentum locking, there is no spin degeneracy present
at the Fermi surface.

Making this explicit by projecting onto the helical basis

R e 08
&= 75 <7/}k:,T +e 9’“¢k,¢> (2.11)
with vpko =~ p and k = ko(cos 0, sin 0 )”, one finds
. dk . 1A At At
H = /(277)2 [(vp|k| - ,u)c};ck + 5 <|k|<kx + zky)c};c_k + h.C.>:| , (2.12)

which is indeed formally equivalent to the pairing in . However, it is important to note
that there are a few key differences.

First, the spectrum of , in contrast to the p, + ip, superconductor, is fully gapped
for all values of pu. Furthermore, via a gauge transformation which rotates the phase to
zero (assuming it is constant in space), can be made time-reversal symmetric with the
anti-unitary time-reversal operator 7 = ioy /K (where K denotes complex conjugation). The
same does not hold for , which breaks this symmetry. Finally, since the examined two-
dimensional surface is itself the boundary of a three-dimensional T1I, it cannot have a boundary
of its own. Thus, in order to obtain edge states, an additional part of the TI surface needs
to be gapped out. One possibility is the breaking of time-reversal symmetry by depositing a
ferromagnetic insulator next to the superconductor |[41]. Another option is to open a second
superconducting gap. The latter directly leads to the notion of Josephson junctions formed on
the surface of a topological insulator, also considered in Ref. [13] and reviewed in the following.

2.2 Topological insulator Josephson junctions

2.2.1 Non-chiral Majorana wire

The geometry depicted in Fig. 2.2] with two superconductors deposited on a 3D strong TI
surface forming a Josephson junction, is described by the BAG Hamiltonian

h = —ivpT,0 - V — pu1, + Ag(z)(cos p(x) 7 + sinp(x) 1), (2.13)

where Ag(z) = A 0(|x| — W/2) and the phase difference is ¢(z) = ¢ 0(x). W is the width of
the junction.

There may exist Andreev bound states (ABS) in this structure that are confined to the
region between the two superconductors due to the energy gaps on either side of the junction.
Since the system is translation invariant in y-direction, we can analyze it for a fixed momentum

11



2 Fundamentals: Josephson junctions on the surface of a topological insulator

x S S Vi
b W2 TI -W/2 7

Figure 2.2: Sketch of the S-TI-S junction of width W and length L with a phase difference
© between the superconductors. The green arrows represent the one-dimensional Majorana

modes counter-propagating along the junction.

—i0y — ¢. In the limit W, — 0, Fu and Kane [13] found only two branches of bound states
to be present in the gap with a simple relativistic dispersion given by

e1(q) = £4/v3q% + A3 cos?(p/2). (2.14)

Consequently, the spectrum is gapless for ¢ = 7w and a low-energy effective theory incorpo-
rating finite W and p can be deduced for ¢ = 7 — ¢ ~ 0 and ¢ ~ 0. To this end, one first
solves the ‘transverse’ Hamiltonian for zero modes

hlg=e=0C1,2(z) =0, ((|z| = o0) =0, (2.15)

which can conveniently be chosen to be particle-hole symmetric C¢y 2 = (12 with C = 70, K.
The solutions read

1
— . +1 tipz/vp— [ dz’ Ao(z') /v
Ci(x) = G(x) £iCa(r) x 4l 0 . (2.16)
-1

Now, projecting the Hamiltonian onto this basis by evaluating ((,|q7.0,|(p) and
(Cal€d(x — W/2)7y|Cp), the effective Hamiltonian

heft = —ivpz0y + %Aopy (2.17)

is obtained, corresponding to a one-dimensional massive Dirac Hamiltonian with effective
velocity v, where p; are Pauli matrices acting on ((1,(2). The associated second-quantized
Hamiltonian follows from defining the quasiparticle operators

- d ;
i [ar @) e, Rl = [ e (2.18)

with @?M = 12 (¢1 £ (2)€™¥ to be given by

S

- w, . . . . ) .
Heg = / dy [—2(X33y><3 — Xr9yXr) + lerxRxL] : (2.19)
Xr,1(y) are real Majorana fields and thus a description of the low-energy physics of the junction
in terms of one-dimensional counter-propagating Majorana modes has been achieved. The
topological insulator Josephson junction can be understood as a non-chiral Majorana wire.
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2.2 Topological insulator Josephson junctions

e(y)
— |Yo(y)|?

Yo

Figure 2.3: Schematic depiction of a Majorana bound state (probability density shown
in green) localized at a zero crossing at y = yp of the mass term €(y) (orange).

2.2.2 Zero-dimensional Majorana and Andreev bound states

The counter-propagating Majorana modes hybridize and thus open a Majorana mass gap if
¢ # m. Now, suppose the phase difference to be y-dependent, ¢ = ¢(y). If this spatial
variation of the mass term is sufficiently slow, such that the semiclassical labeling in terms of
the momentum ¢ still applies, we may simply replace € — €(y) in . Points where € changes
sign correspond to Josephson vortices [42], which ensue the existence of zero-dimensional bound
states in their center.

Particularly, a topologically protected zero-energy solution, i.e. a Majorana bound state,
is guaranteed which, assuming €(y) has a positive slope at its zero crossing, is given by (see

Fig.

Ag

Wo(y) o (?) e~z Jo '), (2.20)

Depending on the details, a number of additional localized Andreev bound states with finite
energies may be present as well. [43] 44] We can understand this by linearizing the mass term in
the vicinity of such a zero-crossing %s(y) ~ a(y—1yo) and introducing the harmonic oscillator
creation and annihilation operators via

Y=y = —Oé(aJr +a), —idy:=iy/—(a' —a). (2.21)
It follows
heg = iw(ap_ — apy), (2.22)

where w = v2av and pir = %(pgc +ipy,). Thus, with the usual harmonic oscillator eigenstates
denoted |n), where n = 0,1,2,..., one obtains a discrete spectrum of states |1,,) localized at
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2 Fundamentals: Josephson junctions on the surface of a topological insulator

y = yo with energies E,, = —E_,, = wy/n given by

o) = 10 11)
1 .
1) = (n=1) 1)+ ) 1), (2.23)
me) = —(Jn — 1) [1) — i ) [1}),

NG
where p, [11) = = [1}).

Such a dependence of the phase difference on the location in the junction can be achieved by
means of an external magnetic field. [42] Naturally, topological insulator Josephson junctions
threaded by a magnetic flux have been proposed as platforms for creating and manipulating
MBSs with regards to possible quantum computing applications. [45]

In Chapter [5| we therefore take a deeper look at these structures and identify the limitations
of the here derived effective theory (and its generalizations). Before that, in Chapters 3| and
[, we extend the model by allowing the quantity which couples the Majorana modes to be
an independent and dynamic degree of freedom, and examine the possible quantum phase
transitions this entails. Of course, the above arguments hold regardless of the specific physical
nature of the mass term and we are going to, for example, find magnetic domain walls which
carry localized Majorana and Andreev bound states in analogy.
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Chapter 3

Peierls instabilities in topological
Josephson junctions

In the preceding chapter, we introduced the idea that two-dimensional topological Josephson
junctions can be engineered by depositing bulk s-wave superconductors on the surface of a
three-dimensional topological insulator, as originally envisioned by Fu and Kane [15]. The
one-dimensional Majorana modes in such structures then become hybridized through the phase
difference between the superconductors. As we will come to see in this chapter, the magne-
tization of an embedded ferromagnet can play an analogous role. Our goal is to analyze the
interplay of the dynamics of these bosonic modes (the magnetization and the phase) with the
Majorana fermions in the junction, in order to better understand the possibilities of control-
ling and manipulating Majorana bound states. To this end, we also take into consideration
a different class of topological superconductivity, which hosts edge modes without the breaking
of time-reversal symmetry. We find, as a generic feature of the type of coupling considered,
the system to exhibit a Peierls-like instability towards the formation of a Majorana mass gap,
stabilized by the parameters which govern the rigidity of the bosonic modes’ dynamics. We
finally examine the Majorana zero modes carried by solitonic excitations in these systems.

Section [3.1|of this chapter is based on Ref. |46, while Section [3.2|is based on parts of Ref. [47].
Large passages are taken verbatim or are adapted very closely from these publications.

3.1 SMS junction on the surface of a topological insulator

The embedding of a ferromagnetic insulator in the previously introduced topological insula-
tor Josephson junctions has been in the past explored with the idea to manipulate Majorana
zero modes and other physical properties of the system, like the supercurrent across the junc-
tion |22-25]. Within this avenue, not much attention has been given to the fact that the
magnetization in a ferromagnet is not perfectly rigid but exhibits dynamics which can be
described by the Landau-Lifshitz-Gilbert (LLG) equation [48-50]. Especially in view of the
strong spin-orbit coupling in the topological surface states, the back-action of the electronic
modes on the magnetization can be expected to yield a significant torque, which needs to
be taken into account since it can lead to precession and reorientation of the magnetization
direction. For non-topological systems, Josephson current-induced magnetization dynamics
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3 Peierls instabilities in topological Josephson junctions
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Figure 3.1: Considered geometry of a superconductor-ferromagnet-superconductor
(SMS) junction of width W and length L on the surface of a 3D strong topological
insulator (TI) with a phase difference ¢ between the superconductors. The magnetization
M is y- and time-dependent.

has for example been discussed in Refs. [51-55]. In Ref. [56], this effect has been touched upon
for topological Josephson junctions by incorporating an additional effective field in the LLG
equation in the voltage driven regime, allowing for control of the magnetization direction by
the Josephson current. In our work, we instead consider the zero-bias case and derive an ef-
fective low-energy theory for the superconductor-ferromagnet-superconductor (SMS) junction
on the surface of a 3D TI, which describes the coupling between the magnons and the one-
dimensional Majorana modes counter-propagating along the junction. Note that this section
is dedicated to the limit of a strong magnetic easy-axis anisotropy, before we generalize to
arbitrary anisotropies in Chapter

In our analysis of this model, we are going to see that in the mean-field approximation the
Peierls instability [57] occurs, leading to a splitting and tilting of the easy-axis and consequently
an opening of a Majorana mass gap. Next, we will examine the corresponding quantum phase
diagram by means of a fluctuation analysis, laying the basis towards the full quantum phase
diagram of the model which will be further discussed in Chapter Finally, experimental
signatures of the symmetry breaking and solitonic excitations will be explored.

3.1.1 Low-energy effective theory for strong easy-axis anisotropy

The system we are interested in is schematically depicted in Fig. The s-wave superconduc-
tors introduce superconducting gaps in the TT surface regions they cover due to the proximity
effect, effectively forming a Josephson junction of two-dimensional topological superconduc-
tors (see Chapter [2). We assume the superconducting gaps to be of the same magnitude Ay
on both sides of the junction, but differing by a relative phase . The ferromagnetic insulator
causes an effective exchange field Eeﬁ in the underlying surface of the TI which couples to the
clectrons’ spin and is proportional to the ferromagnet’s magnetization heg(r) = oM (r) with
a proportionality constant . Here and in the following, 3D vectors are denoted by an arrow
above the symbol, while 2D vectors are written in bold.
The BAG Hamiltonian describing this setup is thus given by

h = —ivpT,0 -V — ur, + aM(7) - & 4+ Ao(y)(cos (1) 7, + sin o(r)7,) . (3.1)
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3.1 SMS junction on the surface of a topological insulator

As described above

Ao(z) = Do O(|z| = W/2),  ¢(r) = ¢(y)/2[0(x — W/2) — O(=(x + W/2))],

. 3.2

M(r) = Mg mi(r)O(W/2 — |z|) 2
with vp being the Fermi velocity and p the chemical potential, which we for now assume to be
constant everywhere (in Chapter |5 we are going to allow for a renormalization of the chemical
potential due to proximity to the metallic superconductors.) The saturation magnetization is
denoted by Mg and || = 1.

The quasiparticle dispersion for the case of a ferromagnet with spatially homogeneous mag-
netization in z-direction 17(r) = €. deposited on a 3D TIreads errm(k) = \/vEk? + a2 M3+p,
which is gapped when aMg = M > u, i.e. when the Fermi level lies within the mass gap of
the Dirac spectrum induced by the exchange field. As shown in Ref. [41], a chiral 1D Majo-
rana mode emerges at the interface between the regions with superconducting and magnetic
gaps. For the geometry of Fig. [3.] this results in two counter-propagating chiral Majorana
modes near each interface. They hybridize with an amplitude o cos(¢/2) and, thus, decouple
at ¢ = m. The hybridization in this case decreases exponentially with the width W of the
junction.

If it instead holds M < p, no gap is induced for |z| < W/2 and, for a phase difference
of ¢ = m, the junction becomes a non-chiral Majorana wire with two counter-propagating
Majorana modes spread across its whole width (similar to the situation described in Ref. [13]).
A deviation of the phase difference from a value of 7, ¢ = m — ¢ hybridizes the two Majorana
modes as in the above case, opening up a Majorana mass gap, which here however does not
exponentially decrease with W.

Allowing the magnetization direction to deviate from the z-axis, we find that the m,-
component plays the same role as € in hybridizing the two Majorana modes with some coupling
constant ¢g. In Appendix the corresponding low-energy effective Hamiltonian is derived.
Since we are interested in the interplay between Majorana modes and the magnetization, we
fix from now on € = 0. In Section we will also consider deviations from ¢ = 7 and
examine the current-phase relation.

For the magnetization dynamics we employ a micromagnetic description [58|. For now, we
introduce a large easy-axis anisotropy B in z-direction, such that the z- and y-components
of the magnetization can reasonably assumed to be small m = (mx, my, 1 — (m2 + mg)/2)T.
We are going to lift this restriction and consider weak easy-axis anisotropies as well as an
easy-plane anisotropy in Chapter [d] Furthermore, we take the junction’s width to be small
compared to the magnetic coherence length in order for the magnetization direction to only
depend on the y-coordinate. The magnetic energy shall also include an exchange coupling A,
such that the corresponding (real-time) Lagrangian reads

(rgmy — matiny) — %A (Byma)? + (0ymy)?) — %B (m2+m2).  (33)

The associated equation of motion is the dissipationless LLG equation with gyromagnetic ratio
~. Note that, due to the restriction of 17} to the unit sphere, there is only one independent degree
of freedom in the dynamics of the magnetization, leading to the equal-time commutator of the
free quantized bosonic fields m, and my, being non-zero [ma (), ms(z')] = igrcapd(z—2'). [59]
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3 Peierls instabilities in topological Josephson junctions

In the absence of coupling to the fermions, the dispersion of the magnonic excitations is given
by wg = MLS(AC]2 + B).
Altogether, the effective Euclidean action reads

T 2 - M
1 ) m\T (AR +B M0\ (m,

with the two-component Majorana spinor x = (xr, XL)”, X = X" 70, the Dirac (Pauli) matrices
Yo = Gy and 1 = G, as well as J = %7087 +710y. v is the effective velocity of the Majorana
modes (see Appendix [A.1)).

At g = 0 the action of the magnetization dynamics corresponds to a charged scalar with
U(1) symmetry. This U(1) invariance reflects the spin rotation invariance in the z-y-plane
in spin space and prevents spontaneous symmetry breaking. However, the coupling to the
fermions, which are governed by spin-orbit interaction, breaks this symmetry down to Zo,
where +m, describe degenerate configurations. Hence, the coupling to fermions may give rise
to spontaneous symmetry breaking in the ground state.

Note that although this action has been motivated by a specific system, our considerations
below are generalizable to other instances of one-dimensional fermionic modes coupled to a
bosonic field, as we will see in a subsequent section.

3.1.2 Mean-field instability of the effective bosonic action

The action (3.4) is quadratic both in y and in (mg,m,)T. Since, in contrast to the free
Majoranas, the spectrum of the magnetic degrees of freedom is gapped, in order to proceed it
seems most natural to integrate out the bosons. The magnetic part of the action is diagonalized

by introducing the complex scalar field ¢ with m, = , /ﬁ(qﬁ—i—qﬁ*) and my, = —i, / ﬁ(gf)—gf)*)
One then straightforwardly obtains the effective four-fermion interaction

5t =~ [ avay () Y () 35)

where Y = (y,7) and G} = %BT — A92 4+ B. This interaction is non-local in both space

and time with correlation lengths &, ¢ ~ \/A/B and &-¢ ~ Mg/vB respectively. For fixed
B, the correlation length in space is thus governed by the exchange coupling or ‘stiffness’ of
the magnetization, while the correlation length in time is proportional to the inverse of the
magnonic excitation gap 1/wq—¢. If the corresponding correlation lengths are sufficiently small,
a gradient expansion of G, in is justified. There, it has to be noted that the zeroth order
term, involving no derivatives of the four Majorana fields taken at the same point in space
and time, vanishes due to Fermi statistics. The lowest order non-vanishing contributions to
the interaction are therefore of the form xr(9y;xr)XL(9yv;x1r) (4, = 1,2) and can be seen to
be highly irrelevant by power counting, leaving the Majorana modes gapless and the magnetic
degrees of freedom in a disordered phase. It is thus clear that in a parameter regime, where
A and Mg/~ are small enough for a gradient expansion to be applicable, the interaction has
no qualitative effects on the system. Symmetry breaking is a strong-coupling phenomenon, at
least for any finite range interaction. In order to see whether increasing the values of A and/or
Mg/~ leads to a cross-over to a non-trivial phase, it turns out to be advantageous to work in
the bosonic picture instead.
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3.1 SMS junction on the surface of a topological insulator
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Figure 3.2: The double well potential arising for m, in mean-field theory is shown in blue.
The red arrows represent the two corresponding symmetry-broken ground state configura-
tions of the magnetic field, tilted away from the z-axis with m, acquiring a finite vacuum
expectation value (m,) = +my.

Let us assume for the moment that the system breaks the Zo-symmetry. Then fermions are
gapped and can be integrated out. Integrating out the fermionic degrees of freedom in ((3.4))
leaves us with the effective bosonic action

1
Seff = Sm — Qtr logG 1, (3.6)
where
O, — 10, igm
-1 _ T y gy,
g = < —igmy 8T+iv8y> (3.7)

and Sy, is the purely magnetic part of . We assume for the moment that it is permissible
to perform a mean field analysis. Below we will analyze fluctuations that go beyond the
mean-field approach and discuss the stability of the assumption of long-range order.

For constant m,(y, T) = mo and within the mean field theory, this action has a saddle point
35/0my = 0 at £mg # 0 satisfying the BCS-like gap equation

B _ /A dk tanh(y/v?k? + g?mg/2T) (3.8)
9> Jo 2 VU2k? + g?mj
where we took the limit L — oo and introduced a UV momentum cut-off A.
Thus, at low temperatures,
gimo=A = 2uhe~2mvB/4? (3.9)

and the corresponding ground state energy in terms of m, exhibits the characteristic double-

well shape Eq/L = 3[B + %(log el — H)m2 + Eo/L (see Fig. , where Ej is the

contribution from m, = 0. This spontaneous symmetry breaking at the mean-field level,
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3 Peierls instabilities in topological Josephson junctions

signifying an instability of the easy axis with m, acquiring a finite ground state expectation
value, can be understood as follows: a positive energy cost, oc Bm2, of the magnetization
deviating from the easy-axis direction is balanced by the energy gain, o %(log x| - %) m2,
emerging due to the opening of the fermionic gap. It is the Majorana fermion analog to the
Peierls instability of the one-dimensional Frohlich model [57} [60] in the commensurate regime,
where the order parameter is real. A real order parameter furthermore means that the broken
symmetry is discrete, such that the Mermin-Wagner theorem does not apply. Nevertheless,
even if the mean-field solution turns out to be stable, with the system being one-dimensional
any emerging long range order has to be expected to be prohibited by the formation of domain
walls at T' > 0 in the thermodynamic limit of large L. This is due to the fact that the energetic
cost of creating domain walls, with m, switching sign along the junction and interpolating
between the two minima, is in 1D always outweighed by the ensuing gain in entropy, as is well-
known from the Ising model and Peierls’ argument |61} [62]. However, drawing the analogy
between the Ising model and our system further, at any finite size L the coherence length &,,,
given by the average distance between two domain walls, can be expected to be exponentially
large at low temperatures &, ~ beZoW/T where b is the characteristic width of a domain wall
and Epw its energy, suggesting significantly large stretches of an ordered magnetic phase with
hybridization between xr and xt, to be realized. This is in contrast to the results we obtained
in the gradient expansion of the fermionic picture above.

From this, one can suspect the existence of a cross-over or a phase transition from a phase
with small A and Mg/, where the fermionic gradient expansion is valid and any mean-field
considerations in the bosonic picture are rendered unusable due to large fluctuations, to a
phase with large A or large Mg/, where the fluctuations are suppressed and the mean-field
solution is stabilized such that domain walls are a meaningful concept with the interaction in
the fermionic picture being very long-ranged.

Qualitative arguments for analogous mechanisms have already been given in earlier publica-
tions. In Refs. [63] and [64] devoted to the Peierls instability, the validity of mean-field theory is
assumed based on slow response times of the phononic modes. In Ref. [65], the authors expect
a large temporal stiffness of the bosons mediating the interaction in a Tomonaga-Luttinger
liquid to stabilize the symmetry-broken phase (they call this regime “adiabatic limit”). In
the following, we aim to verify and quantify these qualitative considerations on the level of a
Gaussian approximation for the fluctuations around the mean-field solution.

3.1.3 Fluctuation analysis and phase diagram

We examine the conjectured transition when varying A and Mg/~ by analyzing the way in
which Gaussian fluctuations around a mean-field solution at zero temperature affect the gap
equation, as was done for the BCS theory in Refs. [66] and [67].

Our reasoning is motivated by the following logic: Since symmetry breaking in the Ising
universality class is allowed in principle at T' = 0, we assume a finite value of the order
parameter. Then, we study Gaussian fluctuations. If they are small, the assumption of
order is justified and consistent. If fluctuations are large, they likely destroy long-range order
and the above mean-field approach is not justified. While formally this is an uncontrolled
approximation to a strong-coupling problem, it gives insights into the parameter regime where
Ising order is allowed and provides the order of magnitude of the microscopic parameters where
this order prevails.
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3.1 SMS junction on the surface of a topological insulator

To this end, we expand the action (3.6)) around some assumed minimum m, = my, which is
not necessarily the mean-field minimum g from above, up to second order in the fluctuations
(0myg, dmy) around it, mg(x, 7) = mo + dmg(z, 7) and my(z, 7) = dmy(x, 7), to find

T
T Smy _1 [omy 1L, 5 1 -1
Seff = 2quw: <5my> Do <5my> + imeO — Qtrlog Gy s (3.10)
where
1 (AP +B+I(qwn)  Bw,
S e 2 (3.11)
sWm 7Twm Aq +B
and
—1 -1
Go ' =G s (rymo - (3.12)
Further
> T - -
II(q, wm) = 5T Z traxo |:g0(k7 5n)0yg0(k +q,en+ Wm)o'y} (3.13)

k.en

with wy, and g, being the bosonic and fermionic Matsubara frequencies respectively. The
linear terms in dm, only contain dm, (¢ = 0,w,, = 0)-contributions and can therefore safely
be omitted when determining my.

From the partition function Z = [ D(dmy, dmy) e~Sef one obtains the ground state energy
Eg g9 gmo 1 E,
7 2 |Ptaom 3 log det 20 (34
L 2[ +2’u 8 o0uA 2 Zog e2><2 qwm) +L’ ( )
q wm T—0

and the corresponding gap equation reads

2 dE¢ 1 . A
2956 _ L g2 4 x =0 3.15
LdAY) ~ om0 BA T ’ (3.15)

where A = gmg and X denotes the contribution due to the fluctuations

(3.16)

¥ /dqdw dA2 detQXZqu
2 detgxzpqw

T—0

Obviously, without fluctuations, the mean-field solution A = A is recovered. In order to take
the fluctuations into account, Eq. (3.16|) and, thus, II(¢g,w) need to be evaluated. Following
Ref. [68], in Appendix we show that

gz[Am.y

1 A h
o og 50k + " rsinh(r)

II(q,w) = (3.17)

with r = \/v2¢? + w?/2A being the radial coordinate in the (54, 5% )-plane. It follows

Arsinh(r)  F(r,¢; 9, 2)
d 1
27rv7r/ T/ \/1 +72 G(r,p; e, M, N, 2) (3.18)
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3 Peierls instabilities in topological Josephson junctions

with

F(r,p;dl, z) = d2r? cos® ¢ + 1, (3.19)

vitr®

G(ryo; A, M, N\, z) = 5 +logz + " Arsinh(r) | F 4+ A st (3.20)

where we defined the dimensionless parameters

&2454;‘214 Jﬂzg% z é g
v2B B2 427 A’ 2B’

(3.21)

The solution to the gap equation relative to the mean-field solution z thus depends on the
values of o, Ml and the “BCS parameter” A. If no solution to Eq. exists, i.e. if X, which
is always positive, is too large to be compensated by the logarithm in , the minimum of
the ground state energy is shifted back to A = 0 due to the fluctuations.

Note that for A = Mg/~ = 0 the integral is logarithmically UV-divergent, complying
with the results in BCS theory in Ref. |[66]. This divergence is remedied as soon as either A or
Mg/~ take on a finite value, in accordance with our conjecture that either of these parameters
allow the fluctuations to be controlled. The numerical solutions to the gap equation for different
combinations of the dimensionless parameters can be seen in Fig. We find that indeed for
small values of o and 4 the fluctuations do not allow for any notion of spontaneous symmetry
breaking and mean-field theory fails completely, while above a certain threshold (even if either
of the parameters vanishes), the minima of the ground state energy persist and the only effect
is a lowering of the Majorana mass gap A to values as low as z ~ 0.6.

This threshold can be interpreted as the transition region, separating the two regimes (I)
without broken symmetry, with short magnetic coherence length and free massless Majorana
modes and (II) with broken magnetic symmetry and spin canting, leading to a finite ground
state expectation value (gm,) = A, establishing a finite Majorana mass gap and a magnetic
coherence length which is exponentially large at low temperatures.

In Fig. the quantum phase transition between (I) and (II) seems to be of first order
with the order parameter discontinuously jumping to zero at the boundary (see also Fig. 3.4
where the shape of the fluctation-corrected ground state energy is depicted as a function of
the stiffnesses). In Refs. [69, 70|, apparently related phase transitions, respectively in a system
of an anti-ferromagnet coupled to the edge of a p, + ip, superconductor and Majorana chains
with minimally nonlocal interactions, have been found to be described by the tricritial Ising
(TCI) conformal field theory with central charge ¢ = 7/10. Most likely, our transition belongs
to this universality class as well (see also Section and the Gaussian approximation
employed here cannot be trusted in its vicinity, but only provides evidence for the existence
of the two distinct phases. In addition, it offers an estimate on the parameter regime in which
the transition takes place.

A further insight into the problem is provided by analyzing the relation between the Higgs
frequency of the order parameter and the fermionic gap. It is well known that in the case of
phonon-induced superconductivity, the Higgs mass, which is the frequency of the Higgs mode
at ¢ = 0, is given by w(q = 0) = 2A and thus lies exactly on the edge of the quasiparticle
continuum |71, 72]. In contrast, in Peierls systems, w(q = 0) < A. This result has been
obtained in Refs. [63] and [64] and was also discussed in detail in Ref. [65]. In our case,

the Higgs mass is determined by det Dq_zlo’m = 0. For A = A, Mg/~v = 0, it follows to

22



3.1 SMS junction on the surface of a topological insulator
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Figure 3.3: Phase diagram of the SMS junction with strong easy-axis anisotropy.
Shown by color are the solutions A/A to the gap equation 1) for A =01. A =0
corresponds to no solution existing. Regions of order with broken Ising symmetry and
magnetization canting are labeled (II), and the disordered phase, where fluctuations destroy
the ordered state, is labeled (I). If s = 0, a solution A/A # 0 is obtained for J > 13 and
vice versa.
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3 Peierls instabilities in topological Josephson junctions
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Figure 3.4: Fluctuation-corrected ground state energies of the SMS junction as a func-
tion of the order parameter A/A following from Eq. for of, M — oo (corresponding
to mean-field theory) as well as o = M = 1 and of = M = 4. In the latter case, the
minima are preserved but shifted to A/A < 1 (cf. Fig. , while for smaller values of the
stiffnesses, the minima vanish, which we interpret as the disordered phase with zero order
parameter. Note that the second-order expansion in dm, resulting in Eq. is unstable
for A/A < 1/e (red area in the figure) but since the minima vanish well before that point,
our argument remains valid.
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Figure 3.5: The Higgs gap, following from det D 0w

= 0, as a function of J (for simplicity
with A = A) For increasing JU, it is shifted further and further away from the quasiparticle

continuum at w = 2A.
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3.1 SMS junction on the surface of a topological insulator
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Figure 3.6: Jump in the current-phase relation. a) Allowing for the phase difference ¢
between the superconductors to deviate from 7 by € = m— lifts the ground state degeneracy.
The mean-field value of m, is positive (negative) for positive (negative) € with a first order
transition at € = 0. b) At mean-field level, this leads to a discontinuity of magnitude
Aly = 4eBLmg in the current-phase relation, which could be probed experimentally.

be w(q = 0) = 2A. A non-zero value of Mg/~ now reduces the Higgs mass, as illustrated in
Fig.[3:5 in accordance with the above cited works on Peierls systems. This departure from the
continuum leads to the Higgs mode being underdamped. Increasing the value of A additionally
shifts the spectral weight of the fluctuations to lower energies.

3.1.4 Experimental signature: Discontinuity in the current-phase relation

Until now we have assumed the phase difference between the superconductors to be fixed to
¢ = m. In Appendix [AT] it is shown that allowing € = m — ¢ to take on a small, non-zero
value leads to a hybridization between the Majorana modes of the form

. v
Hyyir. = —zg/dy (ma: + ﬁe) XRXL- (3.22)

The mean-field ground state energy then is given by

Eq Ey

1 2 1
+2Bm§+g<log E

_ 2) (mm + 2MW6>2. (3.23)

As sketched in Fig. a deviation of ¢ from 7 thus lifts the degeneracy of the ground state
and, in the mean-field approximation, m,, takes on a value mg(e > 0) > 0 and vice versa. The
transition at € = 0 is of first order. It corresponds to the standard first-order transition in the
ordered phase of the Ising model, where € plays the role of an external magnetic field (see also

Section [3.1.5)).
The Josephson current is given by Iy = 2e 9F/0p, where F is the free energy. At zero

9 (mx + 21\1]4FW€)
20A

L L 4o
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3 Peierls instabilities in topological Josephson junctions

temperature, the current carried by the Majorana modes near ¢ = m consequently reads

0" 29K

L L Oe

= 2eBimg(e). (3.24)

In particular, it exhibits a discontinuity at € = 0. In the parameter regime (II) of Fig. this
discontinuous jump persists when taking Gaussian fluctuations of m, around the mean-field
value into account. As it is an IR effect, the discontinuity will furthermore not be compensated
by considering the higher-energy scattering states in addition to the Majorana modes. A sketch
of the expected current-phase relation is provided in Fig. [3.6b

Measuring the Josephson current in the phase-biased junction and examining it for a dis-
continuous jump thus provides a possibility to experimentally confirm the Ising-like properties
we predict.

In order to estimate the magnitude of the jump compared to the critical Josephson current,
let us for simplicity assume that K = 1, where K is the parameter defined in Appendix
This is the case if for example W < vp/y/pu?2 — M?2. The ratio between the jump
Al = 4eBLing(e = 0) and the characteristic current scale Iy = eLAZ2/v is then given by

AL _4g e
Io _7TAO A ’

(3.25)

where g/Ag = MW /vp and we took the cut-off to be vA = Ag. Now, suppose A~ = 10, as
we did above. The Fermi velocity of the topological insulator BisSes has been experimentally
determined to be fAivgp ~ 0.4eV nm with a Fermi energy of u ~ 0.3eV|73, 74]. Assuming the
junction to have a width of W ~ 1um, it follows that a value of Alj/Iy ~ 0.05 could be
achieved with a magnetization energy of M =~ 30meV, which is experimentally feasible |75,

76] (see also the discussion in Section .

3.1.5 Similarities to the Blume-Capel model

In Ref. |70], an insightful similarity between Majorana systems which exhibit a Zs symmetry
breaking phase transition and the Blume-Capel model |77, 78] is pointed out. Since it provides
a framework with which to understand a seemingly fine-tuned point, in form of the TCI
universality class, to be generically realized here, we would like to present their argument in
the following.

The Blume-Capel model is given by a quantum spin-1 chain

Hyc=— 3 [Si85., — ST — 8(57)?] (3.26)

J

and corresponds to a two-dimensional classical Ising model with annealed vacancies (with
chemical potential ¢). Since § — —oo suppresses the occurrences of these vacancies, the model
maps in this limit to the standard transverse field Ising model and thus exhibits a second
order Ising phase transition as a function of « between a paramagnetic and a ferromagnetic
phase. For v = 0 on the other hand, the model is classical and a first order phase transition
can be determined. The point where these two transition lines meet is the TCI point. The
corresponding phase diagram is sketched in Fig. [3.7a]
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3.1 SMS junction on the surface of a topological insulator
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Figure 3.7: Phase diagram of the Blume-Capel model in (a) and the analogous sketch
for the SMS junction in (b). The blue solid line corresponds to a second order Ising phase
transition, which meets a first order transition line (orange dashed) at the tricritical Ising
point (red).

We can make out an analogy between the Blume-Capel model and our problem by recogniz-
ing that the two corresponding dimensionless parameters can, for instance for fixed values of
Mg and A, be taken to be A and € = m— . As soon as € is non-zero, there is a Majorana mass
and the system is gapped out (corresponding to the staggering in Ref. [70]). For e = 0 and
small A, the system exhibits free Majoranas, which we know to be equivalent to the critical
Ising CFT. For large values of A\, we argued in Section a first order phase transition
to take place when € crosses zero. All in all, we can thus speculate the phase diagram, as
sketched in Fig. [3.7D] to closely resemble the Blume-Capel model. With this in mind, it starts
to become clear that the TCI class might be the most natural way to transition from a ¢ = %
massless Majorana, i.e. critical Ising, phase to one with an Ising-like spontaneously broken

symmetry.

3.1.6 Magnetic solitons

In the parameter regime (II) of Fig. we argued, in analogy with the Ising model, the
magnetic coherence length to be given by &, ~ befPW/T with Epw and b the energy and
width of a domain wall between regions with (m,) = +my, respectively. Such domain walls,
which are responsible for the lack of long-range order at T' > 0, correspond in mean-field theory
to saddle points of the effective action with non-constant m,. For static but spatially
varying configurations m, = mg(y) which extremize the effective action, it holds

(—AD2 + B)mo(y 9 Zuj y) tanh(E; /2T) (3.27)
with (u;(y),v;(y)) being the solutions to the BAG equation in (xR, x1,)-space with eigenener-

gies B
(it ) () =5 (i) (3.25)

A single domain wall, or soliton, in the system is then given by the configuration mg(y)
self-consistently solving these two equations and asymptotically approaching the mean-field
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3 Peierls instabilities in topological Josephson junctions

solutions mo(y — +o0) = +mg or mo(y — +£oo) = Fmy with a single switch of the sign at
some value of y, which we take to be 0 without loss of generality.

In this case the BAG solutions generally consist of a continuous spectrum for energies |E;| >
gy, one zero-energy MBS as well as other ABS with discrete non-zero in-gap energies localized
near y = 0, where the number of ABS is dependent on the width of the soliton, while the MBS
is always present at a zero-crossing (see Refs. [36} [79] and Section [2.2.2)).

For the case A = 0, in the present model with the fluctuations thus dampened by a suffi-
ciently large M, there is extensive literature |[80-84] on the exact one-soliton and multi-soliton
solutions to this and generalized problems. The solutions are obtained by employing methods
of inverse scattering theory. The one-soliton solution is shown to read

mo(y) = £mg tanh(y/b) (3.29)

with the width of the domain wall given by b = g% . This soliton only carries a single bound

state, namely a MBS. The energy Epw is given by the difference between the mean-field energy
in presence of a soliton Eyp[mo(y)] and the ground-state energy Eq = Enp[mo] and follows

to be [82]

gmo

21’
wherein the zero-energy state also contributes by lowering the continuum density of states
through its appearance.

It is to be expected that a small, non-zero value of A will in a first approximation only alter
the length scale of the transition, making it wider and at some point leading to additional
bound states to arise, while the overall shape of the soliton is preserved.

Finding a uniformly moving soliton-solution is non-trivial and cannot be achieved by a
simple ‘boost’ of the stationary solution, as only the fermionic part of the action is Lorentz
invariant, while the magnetic action possesses Galilean invariance in the following sense: if
(ma(y,t), my(y, )T is a solution to the (real-time) equations of motion of the free magneti-

zation field, so is
(cos Guly,t) —siny(y, t)) (mz(y - “t)) (3.31)
sin gy (y,t)  cosdu(y,t) my(y —ut) )’ .

where ¢, (y,t) = % (y — %t) (this is analogous to the Galilean invariance of the 1D nonlinear
Schrédinger equation). The coupling between m, and m,, present due to Mg/ if either of
the magnetization field components is time dependent, therefore necessitates a moving soliton
to include rotation of the magnetization around the z-axis.

However, as is the case deep in the ordered phase of the transverse-field Ising model, the
dynamical soliton mass can be expected to be very large and the inclusion of only stationary
solutions to the statistical argument thus to provide a good approximation.

We leave further analysis of the cases with non-zero A and non-stationary solitons for pos-
sible future work.

Epw = Enmrlmo(y)] — Emrlio] = (3.30)

3.2 Junctions of time-reversal invariant topological
superconductors

Until now we have considered topological superconductivity engineered by depositing an s-wave
superconductor on the surface of a 3D strong TI. In order to understand whether the physics we
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3.2 Junctions of time-reversal invariant topological superconductors

Wy 4

Figure 3.8: Sketches of the TRITOPS-S and TRITOPS-TRITOPS junction. In the
TRITOPS-S case, the Kramers pair of edge modes of the 2D time-reversal invariant topolog-
ical superconductor (TRITOPS) can couple via the supragap states of the non-topological
superconductor (S). The same holds true in the TRITOPS-TRITOPS junction, but in ad-
dition the edge modes on either side directly couple with each other as well.

discussed above is more broadly applicable, in the following we are instead interested in a more
general class of models describing topological superconductivity which preserve time-reversal
symmetry. Specifically, we consider models belonging to the DIII-class defined in Ref. ,
which are often referred to as TRITOPS (time-reversal invariant topological superconductors).
Consequently, edge modes appear in Kramers pairs here. Some proposals for realizing this
topological phase in one- and two-dimensional systems can be found in Refs. [86-92].

Josephson junctions involving two-dimensional TRITOPS (see Fig. were previously
studied in Ref. . The hybridization of the Kramers pairs of counter-propagating helical
Majorana modes in these Josephson junctions defines, depending on the nature of the system,
up to two masses m;(¢) and ma(p), which depend on the phase bias ¢. Interestingly, when the
junction is formed between a TRITOPS and a time-reversal invariant non-topological super-
conductor (S), the behavior of ma(¢) turns out to be such that a quantum phase transition to
a state with spontaneously broken time-reversal symmetry at the junction is possible, in anal-
ogy to the Peierls instability in the SMS junction we studied above. In this symmetry-broken
state the equilibrium value of the phase takes values ¢ # nm with n integer.

Analogously to Section [3.1.3] in the following we aim to analyze fluctuations of ¢ in the
TRITOPS-S junction and the stability of the state with broken time-reversal symmetry. Ad-
ditionally, we introduce and study the effect of vortices in these types of junctions as well as
in TRITOPS-TRITOPS junctions, where no spontaneous breaking of time-reversal symmetry
takes place.

3.2.1 Description of the junctions

We consider the 1+1D effective action S = S, + S, _,, which describes the joint dynamics of
the phase bias along the junction ¢ and its coupling to the TRITOPS’ edge modes 7. The
two contributions read

So= [ dyat {g (% (Oe) = s (3y90)2) — By (1 - cos so)} (3.32)

as well as
1
Sp—p = B} /dy dtn' (10 — H)m, (3.33)
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3 Peierls instabilities in topological Josephson junctions

with the Dirac Hamiltonian

H = —ivady + g1()B1 + g2(v) Ba. (3.34)

The precise expressions for the matrices a and 1 2 depend on the type of junction and will
be given below. Compared to the action in Eq. , in addition to the different nature and
dynamics of the involved bosonic fields, note that the Majorana spinor 7 can either have two
components, as before, when considering TRITOPS-S junctions, or four components when
considering TRITOPS-TRITOPS junctions.

S, describes the dynamics of the phase, taking into account the effect of the states above
the gap only and corresponds to the sine-Gordon equation [42].

Ey is the Josephson energy density per length, which is related to the amplitude of the
Josephson current density (per length) J(¢) = Jysin(y) via Jo = 2eEj/h.

The gradient contributions to S, originate in the energies of the electric and magnetic fields.
The action assumed here corresponds to a 3D situation, i.e. a junction of sufficiently large
height h, > Ai 2, where Aj o are the respective London penetration depths. In this regime
the junction forms a wave guide with most of the magnetic and electric energies bound to its
volume. The phase rigidity K and the effective light velocity (Swihart velocity) ¢; are then
determined by the geometry of the junction and given by c? = c%dy/d, K = ch,/(16me?\/ddp).
Here dy is the width of the insulating barrier separating the two superconductors and d =
do + A1+ Ao [94]. If h, becomes too small, h, < A1,2, stray magnetic fields extending outside
of the junction need to be considered, leading to a non-local effective action [95].

Although the effective models for the topological superconductors considered in the present
work are two-dimensional, the mechanisms to generate such phases are typically by proximity
to three-dimensional superconductors. [92] We assume these 3D superconductors to provide
the necessary suppression of the stray magnetic fields through their height h,, acting as a
wave guide and allowing us to consider a purely local theory. Note that in the usual 3D
Josephson junctions the Josephson energy density Ej per length is also proportional to h, |94,
96]. In that case, one introduces the Josephson energy density per area so that the height h,
becomes a prefactor of the whole action S,, which can effectively be reformulated such that K
is the prefactor of S,. In contrast, here the Josephson tunneling takes place only between the
2D superconducting layers, thus our Josephson energy density per length, Ej, is completely
unrelated to K.

Sy, describes the coupling between the Majorana edge states and the phase. The details
depend on the type of junction, which is characterized by the mass terms m; 2(¢) and the
number of Kramers pairs of counterpropagating Majorana modes involved. The latter defines
the structure of the spinor 1 (see Ref. [93]). v is the velocity of the Majorana modes.

In the action introduced in Eqs. — we consider two mass terms. The first one is
denoted by mq(¢)51 and corresponds to a coupling between the edge modes on both sides of
the junction. Its leading contribution is of first order in the tunneling element t¢j.

The second mass term in Eq. , denoted by ma(¢)S2, is due to the virtual coupling of
edge modes on one side of the junction to states above the gap on the other side. Hence, it
effectively couples the edge modes within each superconductor and is of order t% /Aot with Ao
being the magnitude of the superconducting gap. Obviously, for the TRITOPS-S junction mso
is the only possible mass term.

We now summarize the description on the basis of low-energy Hamiltonians describing a
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3.2 Junctions of time-reversal invariant topological superconductors

spin-preserving tunneling (¢3) at the Josephson junction, in part making use of the results pre-
sented in Ref. [93|. For the TRITOPS-S junction there is a single pair of counter-propagating
Majorana modes. Consequently, n is a two-component spinor and we have

a=6, [2=0dy, (3.35)
gi(9) =0, ga(p) = g5 sin(p). (3.36)

(TRITOPS-S)

The Pauli matrices ¢ act on the two members of the Majorana Kramers pair. The edge
modes of the TRITOPS are coupled to the supragap states of the non-topological supercon-
ductor S. As mentioned before, the non-vanishing mass term géo) o t% /A is originated in a
second-order process in the tunneling amplitude.

In distinction, for the TRITOPS-TRITOPS junction, n is a spinor with four components
corresponding to the two Kramers pairs associated to the two TRITOPS (labeled by Sy, S2),

and we have

a:%zéz, ,81 :%yﬁz, 52:7:05'3/, (337)
91(¢) = 91" cos(¢/2),  g2() = g5 sin(). (3.38)
(TRITOPS-TRITOPS)

7 are Pauli matrices acting in the S1, S subspace. Here, the mass term modulated by ggo) Xty
is generated by the hybridization of the Majorana edge states at both sides of the junction.
This is the leading order in the tunneling ¢3 and it becomes exact when the superconducting
gap is large enough Agg/ty — oo to prevent the hybridization of the edge modes on one side
of the junction with the supragap states of the other side. The second mass term ga(¢p) is a
second-order perturbation with géo) x t% /Aegr and has to be taken into account when the edge
states on one of the TRITOPSs hybridize, not only with the edge states, but also with the

supragap states of the other TRITOPS.

To identify the 4 x 4 matrices o and 312 of Eq. that determine the Dirac Hamilto-
nian H for the TRITOPS-TRITOPS junction, we analyze the behavior under time reversal,
charge conjugation, and under the exchange of the two identical TRITOPS. Time reversal
corresponds to simultaneously transforming ¢ — —¢ and 7 = 790, K in the fermion sector.
The charge conjugation operator C = UK acts on the BAG Hamiltonian as UC’HUa1 =—H"
We use a basis with real field operators n' = 1. In this basis Ug = 1 and thus H = —H*.
Finally, the exchange symmetry of the two superconductors S; and S, corresponds to si-
multaneously transforming ¢ — —¢ and Uy = 7,6, in the fermion sector. The conditions
of time-reversal, charge-conjugation, and exchange symmetry uniquely determine the matri-
ces for the TRITOPS-TRITOPS junction. In Appendix [A-3] we give further details on the
derivation of these symmetries. The underlying assumptions are p+ type of pairing in both
superconductors and spin-preserving tunneling at the junction.

The transformation ¢ — —¢ is necessary if the phase ¢ is a genuine dynamic variable.
However, if one considers the properties of the fermionic sector for a fixed configuration ¢ (y),
the mass term go (@) breaks both, the time-reversal and the exchange symmetry. This will be
important when we analyze the fermionic spectrum near given soliton solutions of the phase.
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3 Peierls instabilities in topological Josephson junctions

3.2.2 Fluctuation analysis and phase diagram

The distinct dependency of the edge-mode mass g1 2(¢) for the two junctions, given in Eqgs.
and , gives rise to qualitatively distinct behavior. For the TRITOPS-TRITOPS junc-
tion, the net mass at ¢ = 0 is finite while it vanishes for the TRITOPS-S junction. This
is consistent with the bulk-boundary correspondence; see Ref. [93] for a discussion. As we
will see in the proceeding section, a fermion zero mode will only be associated with a phase
slip soliton if the fermion is massive at constant phase. For the TRITOPS-S, this requires
spontaneously breaking time-reversal symmetry with an equilibrium phase ¢, # n7. In this
case, the protecting symmetry of the massless edge modes is spontaneously broken for the
TRITOPS-S junction and the bulk-boundary correspondence does not apply.

We will see below that the stability of the time-reversal symmetry broken state depends
on the value of the rigidity K, analogously to the situation in Section [3.1.3] The symmetry
is broken for large values of K and hence large values of h,, while at small K quantum
fluctuations are important and restore the symmetry. The ordered state is characterized by
an Ising variable that describes the two states £¢, mod(27). The quantum phase transition
is then expected to be in the tricritical Ising universality class, the natural transition from an
Ising ordered phase to a massless, critical phase that corresponds to the critical point in the
usual Ising model (see Refs. [69} [70] and Section [3.1.5)).

In our analysis we are rather interested in the quantitative location and parameter depen-
dence of this transition and in the properties of phase slips on the ordered side of the transition.
The ordered state can be described in a controlled fashion in the limit of large rigidity K. To
estimate the phase boundary, like in Section [3.1.3] we go beyond the mean field limit, valid
at K — oo, and include fluctuation effects; the transition is estimated from the parameter
regime where these fluctuations start to dominate the equation of state.

In a semi-classical approach, where the fermionic modes are treated in a full quantum
mechanical framework, while ¢(y,t) is regarded as a classical field defined by its mean value
with K — oo in Eq. (3.32)), the total energy density after integrating out all the fermionic
modes of the junction in (H,_,) and adding the contribution of the supragap states reads

2 U2 2
Ea(p)/L = Ej[1 — cos()] — QSS) [1 + log @2(2))} , (3.39)

where g%(p) = g?(v) + g3(p) is the net mass and vA a high-energy cutoff of the order of the
effective superconducting gap Acg.

The contribution of the states above the superconducting gap, i.e. all states except for
the edge modes, is given by the first term of Eq. which has a minimum at ¢ = 0.
As discussed above, the effect of the edge modes given by the second term does not affect
this minimum in the TRITOPS-TRITOPS junction since g(¢) x go # 0 at small ¢, while a
competing minimum may develop for the TRITOPS-S junction. In what follows we analyze
the stability of this time-reversal symmetry breaking solution in the TRITOPS-S junction
against the effect of the phase fluctuations introduced by a finite K in Eq. .

Under the assumption ¢ < 1, one finds the minima of the ground state energy-density

B39) to be

20A E
@(()1/2) L exp (_7w2 J) £ 0, (3.40)
go 90
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3.2 Junctions of time-reversal invariant topological superconductors

hinting, as discussed, at a spontaneous symmetry breaking. However, we already know that
one has to keep in mind the possibility of quantum fluctuations of ¢ destroying the phase with
®o # 0. This is exemplified by expanding the action in Eq. up to second order in ¢,
which yields the Gross-Neveu-Yukawa (GNY) model in 1+1 dimensions, a bosonized version

of the Gross-Neveu model [97], S ~ SQ(OO) + S,—, with

59— [aya{y (L @0k -a00?) - 5} (3.41)

In the limit K — 0, integrating out ¢ results in a local 4-Majorana interaction which is RG
irrelevant and thus no symmetry breaking takes place: in this limit, the mean-field approach
is invalidated by fluctuations. Since the stiffness K suppresses the fluctuations (and renders
the effective 4-Majorana interaction non-local), we expect a quantum phase transition at some
positive value of K, beyond which the non-zero expectation value of ¢ is stabilized. K plays
here the role the magnetic rigidities took for the SMS junction.

Following the reasoning laid out in Section [3.1.3] we expand the GNY action up to second
order in the fluctuations d¢ around some assumed minimum (p) = o of the ground state
energy, p(x,t) = po + dp(x,t). After integrating out dp, we derive the equation of state for
o and examine whether it allows for solutions g # 0, i.e. whether the mean-field solution
is consistent and only weakly affected by fluctuations. If this is the case, we conclude that
fluctuations are small and the treatment in the limit of large rigidity therefore justified. If not,
fluctuations are large, suppress long-range order, and the symmetry remains unbroken.

The fluctuation-corrected equation of state determining the gap in the Majorana spectrum
reads

dEq
d(p})

/ do / Arsinh(r) [8 Ky <J81n e+ J cos 9) (3.43)

-1

=0 & log +X,=0, (3.42)
%o

with

V1 2
+ log £0 +—HArsinh(r)]
%o r

w vq
2900’ 2900
merically for different values of v/c; and find the curve of critical values I'.(v/cy) depicted

in Fig. representing the minimum value K3 needs to take on in order for solutions to
Eq. to exist and thus the symmetry breaking to be stable against Gaussian fluctuations.

The relevant experimental scenario corresponds to small values of v/cy < 1 (~ 107 —1073),
in which case a small value of K 470(% is enough to guarantee the stability of the mean field
solution. The precise value of K should anyway depend on the geometric details of the junction.

As already has been noted in Section [3.1.3] within the Gaussian fluctuation framework, the
quantum phase transition is of first order. However, there is no reason to expect that the em-
ployed approximation properly describes the critical fluctuations at this transition correctly.
As stated above, the quantum phase transition is expected to be in the tricritical Ising uni-
versality class, where all exponents are exactly known, while our approach is useful in getting
an estimate of the phase boundary as function of the system parameters.

Here, (r,0) are polar coordinates in the ( )—plane. We calculate the integral nu-
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Figure 3.9: Phase diagram of the TRITOPS-S junction with the boundary I', between
symmetry broken (red) and unbroken (blue) phase determined from Eq. (3.42)) for v/cy €
[0,1] (inset: v/cy € [0, 5]).
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3.2 Junctions of time-reversal invariant topological superconductors

3.2.3 Fermionic bound states at fluxons

Fluxons trapped in Josephson junctions lead to vortices and the formation of phase slip soli-
tons. Specifically, one flux quantum corresponds to a 27-phase slip along the junction [42]. Due
to the logarithmic instability in the TRITOPS-S junction, however, assuming the system to be
in the symmetry broken regime, two distinct types of solitonic solutions ¢g ; /g(y) are possible,
for which asymptotically ¢g1(y = —00) = o (mod27), ps1(y — 00) = 2w — ¢ (mod 27)
and ¢pga(y — £00) = %o (mod 2), respectively, as depicted in Fig. The equations
governing the form and dynamics of these solitons is further discussed in Ref. [47]. For our
purposes, knowledge of the asymptotic behavior is sufficient. Each type of soliton is associated
with a phase change less than 27 and therefore a fractional fluxon (see Fig. . Since both
types of solitons still lead to a sign change of the mass term g2(p) (see Fig.[3.10d)), they each
carry a Majorana zero mode

B2 () (il1> SFL Y A 92(05,1/2(0)) (3.44)

In contrast, time-reversal symmetry remains unbroken in the ground state of the TRITOPS-
TRITOPS case and the equilibrium values of ¢ are separated by 27. Taking into account for
now only the larger of the two mass terms g;(¢), we find for solitonic profiles pr(y) two
(Kramers) degenerate Majorana zero modes near each fluxon

Wo4(y) evt” dy’m(w(y’))’ Wo(y) = TWo4(y) x ev /M g1(er(y). (3.45)

O = O =
_— O = O

Now, including a generic but fixed configuration of the second mass term go(p) breaks time-
reversal symmetry, as discussed in Section [3:2.I] Hence, one expects the Kramers degeneracy
to be lifted. However, as long as both mass terms have a well defined parity under y — —y
the spectrum continues to be doubly degenerate. For the soliton solution, both mass terms
are odd under y — —y. In this case one can identify two “pseudo-parity” operators

P1 = 7~'05'xp, (346)
Py, = 7,6.p, (3.47)

with pf (y) = f(—y). Both commute with the Hamiltonian H of Eq. , but do not
commute with each other. More generally, P, and P, commute with H if ¢ — 27 — ¢ under
y — —y. Hence, the spectrum of H with masses that are odd under y — —y is doubly
degenerate. To prove this, let ¥; be a simultaneous eigenstate of H and Pj, then ¥y = P,W,
is a distinct eigenstate with same energy; the only alternative would be W9 = 0, which is not
allowed since PoWy = W4 due to P22 = 1. For go = 0 we have exactly one pair of Kramers
degenerate normalizable zero modes. As charge conjugacy requires eigenstates to occur in
pairs of opposite energy, the pair must remain at zero energy, i.e. the pair of zero modes
cannot be split by the mass term go32. Notice U9 # TWq, i.e. the two zero modes are not
Kramers pairs, but protected by the fact that both masses are odd in y. They do adiabatically
connect to Kramers pairs at go — 0 though. In Appendix [A74] we explicitly demonstrate the
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Figure 3.10: Solitons in TRITOPS junctions. a) Sketch of the TRITOPS-S and TRITOPS-
TRITOPS ground state energies as a function of ¢. The minima connected by the solitons
are depicted below for each case. Due to the spontaneous symmetry breaking in TRITOPS-
S junctions, there are two distinct types of solitons possible. b) Sketch of the solitons as a

function of y. ¢) Sketch of the mass profiles g2(¢s ;(y)) for the two kinds of solitons in the

TRITOPS-S junction. d) Sketch of the two mass profiles g;(¢r(y)) for the soliton in the
TRITOPS-TRITOPS junction. Note that ga(y — +o00) — 0.




3.3 Summary

existence of doubly-degenerate normalizable zero modes for given antisymmetric mass profiles
91(y) and g2(y), with g2(y) vanishing for y — 4o0.

A discussion on the consequences of the presence of these bound fermionic modes on the
collision dynamics of the solitons can be found in Ref. [47].

3.3 Summary

In this chapter, we have studied the dynamics of a ferromagnet’s magnetization with large
easy-axis anisotropy coupled to the one-dimensional Majorana modes in a topological insu-
lator Josephson junction, as well as the corresponding situation regarding the phase bias in
Josephson junctions comprised of at least one time-reversal invariant topological superconduc-
tor.

In both cases, we have encountered logarithmic Peierls-like instabilities, which lead to the
formation of a Majorana mass gap if the stiffnesses of the respective bosonic field are sufficiently
large. We estimated the location of the corresponding phase boundary beyond which the gap
is stable against quantum fluctuations and, by analogy to related models, furthermore deduced
the associated phase transition to likely belong to the tricritical Ising universality class.

Solitonic excitations in the gapped phase bind Majorana zero modes. In the SMS junction,
these correspond to magnetic domain walls with nontrivial dynamics. In the TRITOPS-S
junction, they can be understood as fractional fluxons.

In contrast, in the TRITOPS-TRITOPS junction, no Peierls instability and thus sponta-
neous breaking of time-reversal symmetry occurs. Despite the explicit breaking of time-reversal
symmetry by introducing a fluxon, we found the would-be Kramers degeneracy to persist as
a result of the well-defined soliton-parity.

Additionally, in the magnetic case we proposed an experiment which is able to probe whether
the system is in the symmetry-broken phase. Namely, there we predict the Josephson current-
phase relation to exhibit a discontinuity near a phase difference of ¢ = m, based on a first
order phase transition taking place, as a value ¢ # 7 lifts the Zo ground state degeneracy.
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Chapter 4

BKT transitions in topological SMS
junctions

Our goal in this chapter is to generalize our earlier analysis of the topological SMS junction
to take into account arbitrary magnetic anisotropy strengths. The phase transitions we en-
countered in the previous chapter can be brought in connection to the tricritical Ising point,
since the disordered phase is described by a critical Ising theory itself — a direct result of the
fermions’ Majorana nature. In the SMS junction, this disordered phase corresponded to the
magnetization being pinned to the z-axis, since we assumed a strong easy-aris anisotropy to
be present in this direction. Relaxing this simplifying assumption, employing mean-field and
renormalization group techniques, in the following we are able to reveal additional intriguing
critical phenomena to exist in this model in the form of Berezinskii-Kosterlitz- Thouless (BKT)
transitions. Notably, one of the BKT phases unexpectedly arises from a novel interplay between
the anisotropy of the magnons and their interaction with the Majorana fermions. In combina-
tion with the tricritical Ising and possible further multicritical points, we thus are going to find
these kinds of hybrid structure to be a promising platform for the realization of exotic quantum
critical phenomena.

This chapter is based on Ref. [98] and most of its content has been adapted verbatim or very
closely from this publication.

4.1 Generalization to arbitrary magnetic anisotropy strengths

As mentioned earlier in this thesis, the deposition of a ferromagnet in a topological insulator
Josephson junction is usually proposed as practical means to alter and control the electronic
surface states and the associated properties of the junction. In studying the interplay of
magnetic and electronic degrees of freedom in the previous chapter, we have shown that this
can result in a quantum phase transition. In the following, we would like to generalize the
earlier effective theory to examine whether further such transitions occur in the model.

The effective action for the SMS junction on the surface of a 3D TI given in has
been derived for a strong magnetic easy-axis anisotropy with mg,, m, < 1. If the exchange
coupling between the magnetization and the TI surface states 04|M | in the Hamiltonian ({3.1)
can be treated perturbatively, this action can be generalized to arbitrary magnetic anisotropies.
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L}
0.005 0.01 0.1 anisotropy strength
(easy-plane)

Figure 4.1: Mean-field ground state energy in the easy-plane regime ESAF(H, ©), given
by (4.2), divided by the anisotropy strength (—B) for a fixed value of the coupling constant
3% = 0.01. The small diagrams show the projection onto the unit sphere.

Specifically in the experimentally relevant regime p > o M|, Ag, we find

S = /dr dy [;X(v&? + gsinf cos )y
(4.1)
—iM(0rp)(1 — cosf) + g ((0y0)* + (9yp)? cos® ) — gcos2 |,

where the angles (6(y), ¢(y)) parameterize the magnetization direction in spherical coordi-
nates 1m = (sinf cos p,sinfsin p,cosf)’. The effective fermionic velocity is given by v =~

2 —
%‘ cos (uW/vp) ‘vF and the coupling constant by g ~ O‘IM‘UF/LAO (see Appendix |A.1)). The
scalar anisotropy B in z-direction can here take on either positive values, corresponding to an
easy-axis anisotropy, or negative values, leading instead to an easy-plane anisotropy.

4.2 Easy-plane anisotropy

In contrast to the case discussed in Chapter [3] in the following we are going to consider an
easy-plane anisotropy with B < 0, before returning to the case B > 0 in Section [4.3]

One-dimensional ferromagnetic chains with a sufficiently large easy-plane anisotropy are
known to be well described by an XY-type model [99]. If the continuous symmetry in the
easy-plane is broken by means of a Zeeman field, the long-wavelength dynamics can be mapped
to a sine-Gordon action for the azimuthal angle ¢ and the Zeeman field can thus induce a BKT
transition , . In the following, we will see that the Majorana-magnon interaction in our
system plays a very similar role to such a Zeeman field by breaking the continuous symmetry
and pinning the magnetization.
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4.2 FEasy-plane anisotropy

4.2.1 Mean-field theory

Integrating out the fermions from (4.1)) and for now simply assuming 6 and ¢ to be constant,
one finds the mean-field ground state energy density E[I)VIF to read

2

1 B g T
WE(I)\/IF(G, p) = —3 cos? 0 + gTr sin? @ cos? {10g <g4 sin? @ cos? go) — 1} , (4.2)

where we introduced the dimensionless parameters B = B/(vA?) and § = g/(vA). The
resulting energy landscape for different values of (—B) and g is plotted in Fig.

For large values of (—B) > §2, the first term in dominates and the situation resembles
the pure easy-plane picture one would expect: the energy is minimal for configurations with
m in the z-y-plane, i.e. with § = 7/2, and there is an approximate continuous symmetry
regarding rotations around the z-axis, i.e. the energy does not depend on ¢. This suggests
the strong easy-plane case to correspond to a phase with ¢ fluctuating freely, while 0 is fixed
to /2, i.e. a pure XY model. If in contrast (—B) < §?, the interaction with the Majorana
fermions dominates and leads to pronounced minima on the z-axis at ¢ = 0 and ¢ = 7 (still
with § = 7/2). With regards to the action , this signals a fermionic gap opening with
a spontaneous Zo symmetry breaking akin to the strong easy-axis case discussed in Section
B.1] Note however, that there the mean field minima were exponentially close to each other,
whereas here they lie on opposite ends of the unit sphere. In analogy to our earlier discussion,
we then expect the stability against quantum fluctuations of this massive phase, emerging in
the mean-field picture, to be dependent on sufficiently large values of the stiffnesses A and/or
M. The less pronounced the minima, i.e. the larger (—B) compared to g2, the larger the A-
and M-values required for the stability become. If the stiffnesses are too small, the minima
get smeared out and the system resides in a massless phase with free ¢.

Note that we operate here and below under the assumption, that even the “small” stiffnesses
are large enough to sufficiently suppress fluctuations in #-direction, i.e. fluctuations out of the
easy-plane, which is reasonable for a ferromagnet.

4.2.2 Effective theory near the easy-plane and RG analysis

In the strong easy-plane anisotropy case, (—B) > 32, we saw that it is natural to limit
the theory to the x-y-plane and only consider small fluctuations around it, 8 ~ w/2 + 66
with 00 < 1, as is reflected in the mean-field results in Fig. Furthermore, the mean-
field picture suggests that for the possible phase transition to a phase with massive fermions
and the rotational ¢-symmetry broken down to a spontaneously broken Zs-symmetry, only
configurations in the x-y-plane are of importance as well. We therefore proceed by deriving
an effective field theory valid in the vicinity of the z-y-plane (see Fig. .

Replacing 8 = /2 + 66 in the action and only keeping terms involving 66 up to
Gaussian order, it follows

S ~ —Z'M/dT dy (0r¢) + /dT dy [giax + iM(9-p)d0

A B
+5 ((0400)* + (9y)?) —5562 + %)‘(X cosp| .

(4.3)

41



4 BKT transitions in topological SMS junctions

V4

Figure 4.2: Sketch of the magnetization direction on the unit sphere, illustrating
the restriction of the theory to the vicinity of the easy-plane. Only small values
of §0 are taken into account, such that after integrating it out, an effective theory with the
magnetization direction 7 being fully characterized by the azimuthal angle ¢ is obtained.

The first term is a theta term, which is trivial in the present case and can be omitted.
Integrating out 06 yields

v _ g_ 1 [ dwdq M?w? 9
— v 9 - [ 4.4
S /dey [QX(‘/?H ZXXCOS@} +5 / (@m2 P o (A,q2 —5 TAC | g0 (44)

where ¢(y,7) = [ %goq,weiqy*i‘”

scopically equals A but scales differently under RG than the A already present. In particular,
we find at tree-level dA’/dl = —2A’. A’ is thus strongly irrelevant and will be omitted in the
following. In Appendix we explicitly check that even if A’A% > (—B) holds microscop-
ically, the A’-term can safely be neglected from the outset without qualitatively altering the
resulting phase diagrams.

and we introduced the new parameter A’, which micro-

Additionally, we will see that a cos2¢-term is generated under RG flow and the resulting
effective theory can thus be written as

S = /dT dy [;X@x + % <1(8T¢)2 + c(@x¢)2> + ucos2B¢ + g;zx cos | . (4.5)

Here, we defined 5% = \/—B/(M2A), the effective bosonic velocity ¢ = /—BA/M? and the
rescaled field ¢ = ¢ /5. Microscopically, u = 0.

This model is evocative of the supersymmetric sine-Gordon (SSG) model, which it corre-
sponds to for ¢ = v, g> = —48%u and u < 0. It is known that the SSG model always flows to
a gapped phase [101], which can be checked to be consistent with Eqns. —.

Employing a momentum-shell RG analysis, for which the details can be found in Appendix
, yields the flow equations (up to second order in % = u/(vA?) and §) below. They are
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4.3 Easy-axis anisotropy

valid as long as 32 > 7/2 and read

2~2 2
% = 1575/6 <ZQ — 1> c, (4.6)
‘fi = —2011;&‘%2 —~ Si 45/2(;’ (4.7)
CC%‘ =24 (1—53 —85’;, (4.8)
% —3 (1 - 4; - 0225%1) , (4.9)

where (' /o are numerical constants. Similar flow equations for this type of model have been
obtained in Ref. [102].

From Eq. follows an emergent Lorentz symmetry. The flow of the remaining three
parameters, starting in the & = 0-plane relevant for this problem, is shown in Fig. [£:3al It
exhibits the characteristics of a BKT transition: there is a line of fixed points on the 2-axis,
and a transition near 32 = 4, from a regime with the couplings running to zero (orange) to
a strong coupling regime with g — oo and @ — —oo (purple).

This corresponds to a phase transition from unbounded fluctuations of ¢, being described
by a free massless theory, to a massive phase with (¢) = 0 or 7, i.e. the magnetization being
pinned to the z-axis, spontaneously breaking the inversion symmetry. An expectation value
(p) # £m/2, and thus (my) # 0, gaps out the Majorana fermions.

Plotting the resulting phase diagram in terms of the original parameters of the problem in
Fig. reveals that the RG considerations confirm the mean-field picture: the larger the
easy-plane anisotropy (—B), the larger the stiffnesses A and/or M need to be in order to
stabilize the massive phase.

4.3 Easy-axis anisotropy

In Section [3.1] we examined the case of an easy-axis anisotropy B > 0 of such a magnitude,
that only configurations of the magnetization with m,, m, < 1, i.e. near the z-axis, were of
interest. For weaker easy-axis anisotropies, no such immediate simplifications of the problem
are obvious. Still, in the following, we are going to attempt a generalization to weaker easy-
axis anisotropies based on observations within mean-field theory: there, as we will see below,
a regime can be identified in which an effective easy-plane is spanned by the easy-axis and
the axis perpendicular to the junction, along which the interaction with the Majoranas takes
place. This allows us, using similar arguments as above, to again postulate an effective field
theory for which an RG analysis can be performed.

We would like to stress, however, that, compared to the previous section, the arguments
that lead to the effective theory here are of rather conjectural character. Still, we interpret
the consistency between the mean-field and RG results to be an indication of the merit of this
approach as a step towards an understanding of the full phase diagram.
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(b)

Figure 4.3: Results from RG analysis of the easy-plane case. (a) RG flow correspond-

ing to Eqns. — starting in the & = O-plane. The characteristic BKT flow with a
transition from a regime with %,§ — 0 (orange) to a strong-coupling regime (purple) is
evident. The inset shows the same diagram from a rotated perspective to make the flow
towards negative u visible. (b) Resulting phase diagram in terms of the original parameters
at g = 0.01, showing increasing critical values of the stiffnesses for increasing anisotropy
(A= A/v,M = M/A). The slope of the critical line diminishes when increasing the cou-
pling constant g.
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Figure 4.4: Mean-field ground state energy in the easy-axis regime E)'(n,) divided
by the anisotropy strength B for a fixed value of the coupling constant g2 = 0.01. The small
diagrams show the projection onto the unit sphere.

4.3.1 Mean-field theory

In the easy-axis case B > 0, configurations with 7 pointing in z-direction will be important. In
the parametrization we used until now, this is problematic, as ¢ is not well defined if 6 = 0 or 7.
Let us therefore introduce new angles (1, %) with which 17 = (sinn cos v, — cosn, sinnsin )7
The resulting mean-field ground state energy density is plotted in Fig. [4.4]for different values of
B. Analogously to the easy-plane case, at weak anisotropies B < §2 the interaction dominates
and leads to minima near the z-axis, whereas at B > §* the regime discussed in Section
with minima near the z-axis is recovered. For B ~ §? /2, the system resides in a transitional
regime between these two edge cases, as the minima, stemming respectively from interaction
and anisotropy, merge. Remarkably, this results in an energy landscape which resembles an
easy-plane anisotropy, as the energy is minimal and nearly degenerate for all ¢ at n = 7/2.
Effectively, in this regime one can think of an easy-plane being spanned by the easy-axis-
direction and the magnon-Majorana interaction. Mean-field theory thus suggests that here
only configurations in the x-z-plane are of importance, as furthermore the energy barriers for
fluctuations in n-direction are always larger than for the ones in ¢/-direction. In analogy to our
approach of the easy-plane case, we therefore suggest the low-energy physics to be reasonably
well captured by an effective theory for ¢ which is valid near n = /2.

4.3.2 Effective theory near the emergent easy-plane and RG analysis

Motivated by mean-field theory, we thus only consider small fluctuations out of the z-z-plane
and take n ~ w/2 4+ dn with 0n < 1 (see Fig. . Once again, only keeping terms involving
on up to Gaussian order, subsequently integrating out dn and omitting the irrelevant A’-
contribution, results in an action of the form ,

S = /dT dy [;)_((Z’X + % ((1:(87\11)2 + c(@m\Il)2> + ucos 2BV + %)‘(X cos BU |, (4.10)
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4 BKT transitions in topological SMS junctions

Figure 4.5: Sketch of the magnetization direction on the unit sphere, illustrating
the restriction of the theory to the vicinity of the emergent easy-plane with
rotated spherical coordinates. Only small values of 7 are taken into account, such that
after integrating it out, an effective theory with the magnetization direction m being fully
characterized by the new azimuthal angle v is obtained.

where now 32 = \/B/(2M2A), ¢ = \/AB/(2M?), u = B/4 and ¥ = /3. Crucially, even
though this is of course the same theory with the same flow equations — as in the
easy-plane case, here u # 0 microscopically, which results in a more involved phase structure.
Specifically, note that positive values of 4 slow and may even revert the growth of g. If the
initial value of @ is sufficiently large, the flow might lead into a different strong-coupling regime
than the one above (which is still present here, of course), namely one with & — oo and § = 0,
see Fig. This would hint at (¢) = +7/2, i.e. the magnetization pointing in z-direction,
corresponding to the regime with critical Majorana fermions discussed in Section In
between these two possible strong-coupling limits, @ and g are growing in competition with
each other. Rigorously differentiating between the strong-coupling regimes (green in Fig. |4.6a))
is not possible in this framework, on account of the derived flow equations only being valid
for 42 > 7/2 and the result of a weak-coupling expansion. Still, the BKT transitions near
the B2-axis are well controlled. This allows the identification of a massless phase (red), where
i, g — 0 with 9 fluctuating without bound.

Looking at the resulting phase diagram at fixed g in the MZ2A-B-plane shows a non-
monotonous behaviour of the critical value of the stiffnesses with a maximum at finite B
(see Fig. [4.6b)). This is in agreement with what can be expected from the mean-field picture:
the energy landscape is the shallowest in the transitional regime between weak and strong
anisotropy, which is why there the largest values for the stiffnesses are necessary in order to

stabilize a phase with (¢)) # 0.
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2.00 x10~4 g = 001

Figure 4.6: Results from RG analysis of the easy-axis case. (a) RG flow corresponding
to Eqns. —. As compared to Fig. an additional BKT transition to a different
strong coupling regime (& — oco0,g — 0) emerges, most clearly visible in the vicinity of
the g = O-plane. The interpolation between the BKT transitions in the & = 0- and the
g = O-plane forms a critical surface, separating the different strong-coupling regimes (green)
from the one with @, — 0 (red). (b) Resulting phase diagram in terms of the original
parameters at g = 0.01, showing a non-monotonous behaviour of the critical values of the
stiffnesses as a function of the anisotropy. This can be linked to the observation that in
mean-field theory the energy landscape becomes shallowest and thus allows for the largest
fluctuations at some finite value of B.
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4 BKT transitions in topological SMS junctions

4.3.3 Experimental accessibility

Our analysis is primarily focused on qualitative aspects of the quantum phase structure of
the given model. Still, for the sake of completeness, we proceed by roughly estimating the
experimental accessibility of the identified relevant parameter regimes.

In Refs. |75, [76], evidence for magnetic exchange gaps a|M| induced in TI surface states
via covering with a ferromagnetic insulator as large as several tens meV has been provided.
Assuming a superconducting gap corresponding to a few Kelvins as the high-energy cut-off
vA = Ag ~ 0.1 — 1 meV, we thus see that the coupling constant g ~ a\]\_ﬂ% can be on the
order of the cut-off even for very conservative estimates of the magnetic exchange coupling
and/or very narrow junctions. The small values of g/Ag, needed for our analysis to hold true,
can therefore be presumed to be readily attainable.

In order to estimate the regions which are accessible in the M 2A—B—phase diagram with
realistic materials, consider for example the 3D TI BisSes. Its surface states exhibit a Fermi
energy of p ~ 300meV and a Fermi velocity of vp ~ 400 meV nm |73, [74]. The corresponding
superconducting coherence length is £ = vp/Ag ~ 400—4000 nm. Values for the micromagnetic
parameters of ferromagnetic insulators (see e.g. Refs. [103H107]) typically fall in the range of
A/(DW) ~ 10712 — 107" Jm~! for the exchange stiffness, B/(DW) ~ 103 — 10% Jm~=3 for
the scalar anisotropy constant as well as |[M|/(DW) ~ 10* — 10° Am™! for the saturation
magnetization, which leads to a ratio between saturation magnetization and gyromagnetic
ratio (y ~ 10" s71T~L) of M/(DW) ~ 10*" — 102Am=3. Here, D is the thickness of the
magnetic covering. The characteristic length scale over which the magnetization varies is

given by the magnetic exchange length lex = 1/2A/ ,UO‘M |2 ~ 10 — 400nm. As indicated in
the listed references, these properties are generally not purely material-specific, but depend
on the geometry and temperature of the sample.

The values of the dimensionless parameters we are interested in are given by B = vB / A%
as well as M~ A = vM?A/AZ. They are thus proportional to v o< | cos(uW/vp)|.

With the given estimates, we find experimentally viable parameters, depending on the
width W and thickness D of the magnetic film, to read B ~ 1075 — 1072 25| cos (uW/vp) |,

MPA ~1072 - 10! (%)3 | cos (uW/vp) |. Consequently, due to the large stiffnesses naturally
associated with ferromagnets, in order to roughly land in the region of the phase diagram that
is examined in Fig. a small cross sectional area with e.g. D ~ W ~ 0.6 — 0.8 nm is neces-
sary, which corresponds to few atomic layers in each direction. While typically the dimensions
of magnetic thin films for applications like spintronics range from a few nanometers to a few
micrometers, atomically thin layers exhibiting ferromagnetism have been succesfully realized
in the past (see e.g. Refs. [L07H110]). A reduction of the saturation magnetization, for example
in diluted ferromagnets, would also allow for the parameters in larger, more readily available
junction geometries to be found in the desired region. It can thus be said, that the predicted
BKT transition likely resides at the boundary between current experimental capabilities and
what are foreseeable advancements.

It is worth noting that generally a larger number of fermion flavors stabilizes the mean-
field results, where an ordinary (complex) fermion can be understood as two (real) Majorana
fermions. Therefore, if we considered a one-dimensional channel of “ordinary” instead of Majo-
rana modes (e.g. quantum Hall edge states), this BKT transition would likely not be attainable
in realistic systems, since in that case even smaller stiffnesses of the magnetization would be
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Figure 4.7: Conjecture for the full phase diagram at a fixed, finite g. The dotted boxes
mark the areas for which we conducted an analysis in this work, the areas outside of that are
a subject of speculation. The TCI transition in the dotted box (a) is discussed in Section
the BKT transitions in the dotted boxes (b) and (c) are analyzed and discussed in
Sections and respectively. The (green) strong coupling phase of Fig. for B> 0
is here comprised of the phases colored blue, pink and purple. The speculations of Section
[.4] furthermore lead us to expecting an Ising transition to take place between a phase with
both z- and z-inversion symmetry spontaneously broken (pink) and one with z-inversion
spontaneously broken (purple). The way in which the Ising and the TCI line connect to
each other and/or the BKT line remains an open question. The isotropic limit B — 0 (dark
grey) is out of the scope of this work but likely characterized by strong fluctuations.

necessary to access it. It is the Majorana nature of the fermions that allows the transition to
take place at higher values of M and A.

In contrast, for the TCI transition at strong easy-axis anisotropies discussed in Section
consider the case where B ~ § ~ 1. With the estimates from the fluctuation analysis
carried out there (assuming a ratio AB/M ? ~ 107 in accordance with the experimentally
relevant values), we find for this transition critical stiffnesses of MPA ~ 10°. According to our
estimates above, this transition is thus accessible by devices with a more readily attainable
magnetic cross-sectional area of DW ~ 100 nm?.

4.4 Conjectured phase structure in strong-coupling regime and
full phase diagram

As mentioned above, within our framework it is not possible to rigorously differentiate between
the different strong-coupling phases which may emerge for B > 0. Let us here speculate about
this part of the phase diagram, which is not accessible to our calculations, and subsequently
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present a conjecture for the full phase diagram, resulting from combining these speculations
with our analysis in this work.
We expect three strong-coupling phases to exist for B > 0:

(i) one with the z-inversion symmetry spontaneously broken ({(m,) = £1, purple in Fig. ,
(ii) one with z-inversion symmetry spontaneously broken ((m.) = =£1, blue in Fig. [4.7),
(iii) and one with both z- and z-inversion broken (0 < | (my) |, | (m.)| < 1, pink in Fig. [£.7).

The latter two phases are the ones identified and discussed in Section [3.I] expected to be
separated by a TCI transition. This claim can be further supported by noticing that the large
B-limit corresponds to SV being restricted to small values in . Expanding the cosine
terms for small arguments then yields the action of the Gross-Neveu-Yukawa model, for which
a TCI transition has been theorized in Ref. |69).

In contrast, the transition between (i) and (iii) is one between two massive phases. It seems
therefore most natural for it to belong to the Ising universality class with ¢ = 1/2. This is
supported by the fact that close to the x-axis, where this transition happens, i.e. at n ~ 7/2
and ¢ ~ 0 or 7, integrating out the (massive) Majorana fermions, one arrives at an effective
¢*-theory.

The way in which the TCI and the Ising critical line connect to the BKT transition remains
an open question to be investigated. A relation to the considerations in Ref. [111], where
a supersymmetric multicritical point at the intersection of an Ising and a BKT transition is
identified, seems very likely. A possible connection to such kind of a supersymmetric multicrit-
icality is further supported by the similarity between the supersymmetric sine-Gordon model
and the effective theory that arises here.

Together with the analysis and discussion presented in Sections and we arrive
at the conjectured phase diagram presented in Fig. [1.7]

4.5 Summary

Extending and generalizing the considerations on the topological superconductor-ferromagnet-
superconductor junction of Chapter |3| to include arbitrary magnetic anisotropies, we here
proposed this system as a platform for hosting 1+ 1-dimensional BKT transitions, in addition
to the TCI phase transitions we found earlier.

In the case of an easy-plane anisotropy, such a BKT transition separates a massless phase,
with unbounded fluctuations of the magnetization within the easy-plane, from a massive phase
with gapped out Majorana fermions and the magnetization pinned to the axis perpendicular
to the junction, spontaneously breaking a Zo symmetry. The massive phase is, as before,
stabilized by the spatial and temporal rigidity of the magnetic modes.

For the weak easy-axis anisotropy, the derivation of an effective theory is less straightforward
than in the easy-plane and strong easy-axis case. Starting from mean-field considerations, we
arrived at a conjecture for an effective low-energy theory based on an emerging effective easy-
plane (oriented perpendicular to the propagation direction of the Majorana modes). Therein,
we again identified a BKT transition separating a phase with unbounded fluctuations in the
effective easy-plane from a strong-coupling regime with pinned magnetization, leading either
to a phase with massive fermions or, if the magnetization is pinned to the easy-axis direction,
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4.5 Summary

a different phase with critical Majoranas. This pinning of the magnetization is again enabled
by the magnetic stiffnesses dampening the fluctuations.

Finally, we presented a suggestion for the phase diagram of the topological SMS junction
spanning all values of the magnetic anisotropy, based on mutually complementary mean-field
and RG arguments. For the regions in parameter space not accessible within our framework,
we provided speculative conjectures including a possible multicriticality.
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Chapter 5

Limitations of the effective theory and
emergence of additional zero modes

The results of the preceding chapters are based on an effective low-energy description of the
topological Josephson junction in terms of two linearly dispersing one-dimensional Majorana
modes. While this approach has proven to be extremely insightful, as for all approximations,
one has to keep in mind its regime of applicability. In this chapter, we show that the effective
theory breaks down at points where the effective velocity of the Majorana modes becomes too
small. This is in contradiction to the naive expectation one might infer from the Fu-Kane
logic, in which the effective velocity seems to appear as a perturbative correction. This failure
of the description can be in part remedied by taking into account virtual processes involving the
quasiparticle continuum. However, as we will come to see by means of an alternative approach,
the points of zero effective velocity furthermore mark the emergence of additional low-energy
modes, which do not appear in the effective theory, but have to be expected to contribute sig-
nificantly to the physics of the junction.

The results of this chapter have been discussed and developed in collaboration with Kiryl
Piasotski and Alexander Shnirman.

5.1 The low-energy approximation and its applications

The effective low-energy theory employed throughout this thesis and based on the groundbreak-
ing insights by Fu and Kane [13| |41], in which the topological insulator Josephson junction
is described by means of a 2x2 Hamiltonian in one spatial dimension, has in the past been
utilized in a variety of works.

As a reminder, the main idea can be sketched as follows: starting from a 4x4 BdG Hamilto-
nian in the form of , describing two-dimensional T1 surface states, a projection onto the
2x2 subspace of linearly dispersing one-dimensional Majorana modes is carried out, yielding
the Hamiltonian

hef = —iVetp20y + €(Y)p2 (5.1)

with an effective velocity veg, where one operates under the assumption that the effective
mass term (y) only varies slowly with the coordinate y along the junction. p; are here Pauli
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5 Limitations of the effective theory and emergence of additional zero modes

matrices acting in the low-energy subspace. The effective velocity arises as a correction from
the p, contribution of the original Hamiltonian, in which all parameters are initially treated
as effectively y-independent.

Based on this description, experimental signatures of Majorana modes in the form of the
(anomalous) Josephson current [25, 44], lifting of zeros in the Fraunhofer diffraction pat-
tern [21, 45| as well as braiding operations |45, 112] have been examined.

Recently, the treatment has been generalized to more carefully take into account the y-
dependence of the model parameters and thereby arrive at a Hamiltonian of the form

e = 5 (v (1), 0y o + (9 (2

involving an effective velocity vesr — ver(y) which depends on the position along the junction
as well. [113, 114] We are going to elaborate on its derivation in the next section. In Ref. [114],
it has been proposed that this spatial dependence of veg in combination with irregularities
of the fabricated junctions can explain the anomalous Josephson currents experimentally ob-
served in Refs. [115} |116].

Note that the effective velocity is an oscillating quantity as a function of some system
parameters like the chemical potential p and the width of the junction W. E.g. in the
experimentally relevant limit pu > Ap, Fu and Kane [13| found for the S-TI-S junction veg o
cos(uW/vp) with vp the surface state Fermi velocity. In a similar calculation for ballistic
graphene, Titov and Beenakker [117] obtained veg o sin(unxW/vr), where ppy is the chemical
potential in the non-superconducting region. Realistic systems thus might feature points at
which the effective velocity vanishes, veg — 0. In the following, we are going to examine such
points and will come to the conclusion that the low-energy approximation fails in their vicinity.
Crucially, in subsequent sections we will see that the occurrences of these points furthermore
mark the emergence of additional low-energy degrees of freedom, reminiscent of a topological
phase transition, which the effective theory does not capture either. Thus, we will be able
to define a wide range of system parameters for which the frequently employed low-energy
description is in fact not directly applicable.

5.2 ‘Black holes’ and the breakdown of the low-energy
approximation

5.2.1 Topological Josephson junction in a transverse magnetic field

Since we are here not interested in the additional complications stemming from a dynamic
magnetization, we fix oM = ME, in the Hamiltonian . Instead, we include a magnetic
field B = V x A perpendicular to the TI surface into our considerations which induces a
position-dependent phase difference ¢(y) (see Fig.[5.1). Additional y-dependencies, which we
will not discuss here, might arise e.g. from irregularities of the width of the junction or the
chemical potential [114]. This type of setup is of current experimental interest [115, 116 and
has been theoretically proposed as a platform for creating and manipulating Majorana zero
modes |44} 45]. These Majorana zero modes as well as low-energy Andreev states are localized
at points y,, at which ¢(y,) = (2n+1)m, n € Z, in the center of Josephson vortices (see Section
2.2.2)). They are known as Caroli-de Gennes-Matricon (CAGM) states. [118]
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5.2 ‘Black holes’ and the breakdown of the low-energy approximation
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Figure 5.1: SMS junction on the surface of a 3D TI in an external magnetic field.
a) Sketch of the system, where the green arrows indicate the magnetic field é, while the
magnetization is fixed to point in z-direction, M x é,. b) Top: Sketch of the vector
potential A,(x), as given in Eq. , which generates the magnetic field in z-direction. Ap,
denotes the length scale over which the magnetic field penetrates into the superconductors
while decaying exponentially, the London penetration depth. Bottom: The running phase
difference ¢(y) along the junction resulting from the magnetic flux. The y-intercept is here
chosen as ¢ = 7/2. Josephson vortices are centered at the points at which ¢ = (2n + 1),
indicated by the dotted lines, separated by one magnetic length Ip.
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5 Limitations of the effective theory and emergence of additional zero modes

The corresponding BAG Hamiltonian reads

h(z,y) = |—ivp0yo. + (—ivpay + ev?FAy(:L')TZ) oy — /L(:E):| T, (5.3)

+ M(z)o. + Ao(x) (cos p(z, y) e + sinp(z, y)7,)

where

Ao(x) = Ao b(|z| = W/2),  (z,y) = ¢(y) O(z),
M(z) = MO(W/2 — |z|), (5.4)
() = pn O(W/2 = [z]) + ps (x| — W/2).

To account for a possible renormalization of the chemical potential due to proximity to the
metallic superconductors, we additionally allow u to exhibit a step-like profile in x-direction.
The orbital effects of the applied magnetic field are accounted for by the vector potential
A= (0, Ay(z), 0)” in Landau gauge, which, under the assumption of London screening with
London penetration depth Ap, is given by

)\Le(“’”%)/AL, r < —W/2,
x{(z+% + 21, z| <W/2, (5.5)
(W AL (2 - e_(‘”_%)/)‘L)) x> W2

e s

We introduced the magnetic length [, which is inversely proportional to the strength of the
applied magnetic field. Under the assumption [p < Ay, where A is the Josephson penetration
depth of the junction, the phase difference then grows linearly

2w
o(y) = 1LYt (5.6)
B

with some phase offset ¢y and [ is equal to the distance between two neighboring Josephson
vortices.
5.2.2 Deriving the effective one-dimensional low-energy theory

In order to now give a sketch of the general approach with which to obtain the effective low-
energy theory, consider first some generic 2D BdG Hamiltonian which can be separated into
two Hamiltonians hg and hy of the form,

h(z,y) = ho(z, Ro(y)) + ha(y, R1(2)), (5.7)

such that hg only parametrically depends on ¥ via some quantities collected in PLO, and accord-
ingly for h;. For definiteness, since this is the form which is of interest to us, let us take hg =

—VpT,0,0, + Ro(y) T and h; = —VFT,0y0y + Ry (x) T, where T' = (T000, T00, - - -, T205) .
If we are then able to find the solutions to
ho(z, Ro(y))én(x, Ro(y)) = en(Ro(y))én(x, Ro(y)) (5.8)
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5.2 ‘Black holes’ and the breakdown of the low-energy approximation

for each y (where due to particle-hole symmetry we can arrange the solutions such that e, =
—e_p), we may make the ansatz

U(z,y) =Y an(y)énl, Roly)) (5.9)

for the solution to the full problem (ho + h1)Y = Ew. This can be understood as ‘gluing’
together of one-dimensional slices at fixed y in a way dictated by hi. Since {&,(z, Ro(y))}
form a complete basis for every y, this is an exact procedure. The corresponding effective
Hamiltonian acting on «a,(y) follows to be

hgggm (y) = — ivp (m|T.0y|n) 8y — ivp (m|T,0,|0yn) + (m|Ri(x) - T|n) + en(Ro(y))dm.n,

(5.10)
where (| - |-) only entails integration over z and (z|n) = &, (x, Ro(y)).
Rewriting
1 1
(mlr.0,|0,n) = 50, (miz=0,ln) + 5 ( (ml7=0,|04m) = @ymlraoyln) ), (5.11)
it follows

—

héﬁ" )(y) = §{vmn(y)alay} - §an(y) + <m|R1 (z) - T‘n> =+ En(RO(y))‘Sm,na (5~12)
where we defined
Vmn(y) 1= vp (mImzoyln) . Bun(y) i= ivp ( (mir.oy|0,n) = @ymir.oyln) ). (5.13)

Consider now a situation in which the spectrum of hg for each value of y can be separated
into 2N low-energy solutions with €, <y < Ag separated from the rest of the spectrum
Elnj>N = Ao by a finite energy gap. If then £ < Ay, it seems reasonable to assume that the
full solution can be well approximated by

Yx,y)~ Y an(y)éale, Roly))- (5.14)

In|<N

If there are only two branches of states in the gap (connected by particle-hole symmetry),
as is the case in all our considerations of the previous chapters, one thus obtains an effective
2 x 2-Hamiltonian which is only dependent on y.

5.2.3 Application to the topological Josephson junction

Following the procedure outlined in the previous section, we separate the Hamiltonian
into two parts h = ho+h1, where we take hy = —ivpT.0y0,+ L Ay(x)0y. ho = —1VF0, 0T, —
()1 +M(z)o, + Ao(z) (cos p(z, y) Tz + sin(z,y)7,) then only depends on y parametrically
through ¢(y) and the corresponding eigenvalue equation can be solved for each value of . We
find that the bound state spectrum of hy with eigenenergies |e(¢)| < Ag is determined by the
solutions to the transcendental equation

cosp = M?sps_ + (2e2/A% — 1) [cyem + (uy — €?)sps_] (5.15)

+26/Dg\/1— £2/A3[(e + pn)ssce + (e — p)scs ],
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5 Limitations of the effective theory and emergence of additional zero modes

where

sin (v/(e £ pun)? — M2W/E)

VEE P P 10

c4 = COS (\/(Eﬂ:uN)2—M2W/§>, Sy =

with the superconducting coherence length & = vp/A.

Note that the spectrum is independent of the chemical potential ug in the superconducting
regions. If M = 0, it can be checked that the solutions to are independent of uy as
well [114]. Examples for the resulting spectrum are shown in Fig. and correspond to the
results found in Ref. [119]. As noted there, for an increasing width W more branches of bound
states appear, which are degenerate at ¢ = nw, n € Z, for M = 0 (Kramers degeneracy)
and eventually merge with the continuum states (|e|] > Ag). Finite M breaks time-reversal
symmetry and thus can lift all of the degeneracies (apart from the crossing at € = 0 for ¢ = 7
which is protected by conservation of fermion parity [119]). By tuning the parameters, we can
thus find regimes in which only two branches are present in the gap and well separated from
the continuum for all ¢. This corresponds to our basic approach so far in this thesis and to
the case N =1 in the approximation . This situation will here continue to be our focus.

Let us label the two relevant states by ¢ = +1. The effective Hamiltonian in the low-energy
subspace, following from Eq. , then is given by

evgp

/ 1 . 1
h((;fjfﬂ ) = _i{va,a’(y)a lay} - iBa,J’(y) + T <‘7‘Ay(w)‘7y’0/> + En(gp(y))(sa,a’- (517)
The diagonal components of the effective velocity vanish
Vg0 = VF <O"Tzo'y|0'> =0, (518)

which follows from an z-inversion symmetry as shown in Appendix[C.1.2l We may thus express
the effective velocity as

Voot = Verr(0()) P77 + vegle(y)) Y7, (5.19)
where p; are Pauli matrices. By performing the gauge transformation
€5 — £, X2 uch that  (&|T.0y|¢) € R, (5.20)

we eliminate v%; and can thus define the effective velocity as veg = v%. Note that this gauge
transformation generates no additional contributions to By, since

(o]m204|0y0") — (Oyol|T0yl0’)  — e~ 7N/ ((o|r20y|0y0’) = (OyolT204|0")) (5.21)

+ 20 (0 +0) e N2 (57,0, 10") .
2 N—— ———
=0 if o#0’ =0 if o=0’

From particle-hole symmetry follows furthermore (see Appendix |C.1.1))
<‘7’72‘7y’8y‘7/> = <8y(_‘7/)‘7z0y‘(_0)>a (5.22)
which allows us to write

Byor(y) = B (y)p?” . (5.23)
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5.2 ‘Black holes’ and the breakdown of the low-energy approximation
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Figure 5.2: Examples for the bound state spectrum of the (transverse) Hamiltonian h
as a function of ¢ for the parameters given in each panel, determined from Eq. (5.15)). If

M = 0, the spectrum is independent of p .




5 Limitations of the effective theory and emergence of additional zero modes
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Figure 5.3: Examples for the effective velocity shown on the right-hand side as a function
of ¢ in the case of only two branches of bound states present in the gap (left-hand side).
Here and in the following, unless specified otherwise, lengths are measured in units of the
superconducting coherence length £, and energies in units of Ag.

Once again from particle-hole symmetry (Appendix|C.1]) follows finally that (o|o,| — o) = 0,
such that, defining

(AW oo
EE (o] Ay (@)aylo") = 27 Aly) (5:24)
we arrive at an effective Hamiltonian of the form

et = — 5 {vei(v), 10, }pu + (=) + B(y) + Av)) p- (5.25)

with e = ¢5.

5.2.4 Zeros of the effective velocity as black hole-analogues

As mentioned above, in contrast to the effective Hamiltonian which we employed in the
preceding chapters, within this approach the effective velocity of the one-dimensional modes
obtains a y-dependence, while previously we approximated v = veg(¢ = 7). An explicit
expression for veg(y) for the case M = 0 is provided in Ref. [114].

In Fig. [5.3] we show some examples of the effective velocity as a function of the phase
difference together with the corresponding spectra (remember that ¢ o< y). veg is symmetric
with respect to ¢ = 7 and displays local extrema at ¢ equal to mutiples of 7, while the
magnitude and the amount of variation is dependent on the parameters.

For specific parameter combinations, there exist values of ¢ for which veg = 0. These special
points may occur at arbitrary ¢ (but always symmetric with respect to 7). In Fig. [5.4] we
show an example of this by tuning pg, which has no effect on the spectrum.

Let us have a closer look at the vicinity of these zero-velocity points. To this end, we take
vesi(y) & ay with some slope a, while we assume £(y) + B, (y) + A(y) ~ o to be approximately
constant. We then find
hig = —a2y28§ —2a*ydy, + (5 — a*/4). (5.26)

€
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Figure 5.4: Examples for the effective velocity crossing zero at different values of ¢
shown on the right, for parameters indicated above the figure and corresponding to the
bound-state spectrum given on the left.

The general solution to hgﬁw = E?1) (which can be found by means of the Frobenius method
[120]) reads

Y(y) = ey 3 VEEa oyt EY e, (5.27)

A solution which is normalizable thus only exists as long as E? < 5(2), with the wave function
diverging at y = 0 if E? < sg —a?/4 is not met.

It has been pointed out [121] that the Hamiltonian can in fact be mapped to a
Dirac Hamiltonian in a 1+1 dimensional curved space-time with a spatially varying mass
m(y) ~ e(y)/verr(y) and metric ds* = vZ;(y)dt* — dy?. The points at which the effective
velocity vanishes veg(y) = 0 then correspond to the event horizons of Schwarzschild black
holes, effectively slicing the system into two ‘universes’ between which no information can be
passed [122]. This singularity ensues the observed divergences of the wave functions.

These peculiar results, in particular the absence of normalizable solutions for £? > 5(2), hint
at a breakdown of the employed approximations and can be attributed to the step of strictly
limiting the theory to the low-energy subspace via Eq. . Naively, one might expect that
with only two, well separated branches in the gap, the approximation becomes increasingly
accurate as the ‘correction’ induced by hq, in form of the effective velocity, diminishes. We see
here that this line of reasoning is flawed.

To build intuition and illustrate that veg — 0 indeed corresponds to instances where the
two-level approximation fails, consider the case without any y-dependence. In this setting,
Eq. reduces to a simple Dirac Hamiltonian with dispersion E? = Ugﬁsz + 2. Now, as
Vet goes to zero and we look for solutions with E # ¢, arbitrarily large values of k become
important. But since h; « k, the matrix elements of h; connecting the low- and high-energy
subspaces also necessarily grow large and thus can no longer be neglected. Taking them into
account adds a correction to the dispersion which then reconciles the necessity of large k,
effectively imposing a cut-off.
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5 Limitations of the effective theory and emergence of additional zero modes

In order to proceed, we can thus either include the higher-order effects in the low-energy
approximation or add an explicit upper cut-off to k. In the following, we examine the first
option. We will see that the higher-order corrections indeed regularize the ‘black hole’-like
behavior and reproduce some of the features that emerge through an alternative method
discussed in the subsequent section.

5.2.5 Second-order corrections to the low-energy theory

Let us go back to the eigenvalue equation for the (exact) expression in Eq. (5.10|), ignoring for
now the vector potential A,(x) for simplicity

Z [_wmn(y)ay - an(?/)} an(y) = (E — em(y))om(y), (5.28)

n

where we defined B,,, = ivg (m|7,04|0yn). Remember that vy, = 0 due to the z-inversion
symmetry (see Appendix . The logic of our original two-level approximation works as
follows: if the left-hand side, i.e. the contributions from hi, are zero, the low-energy solutions
read £ = e, withay =1, a1 =0, and B =¢_ = —e; with a1 =1, apx_1 = 0. Then,
we assume the corrections induced by h; to be small, and therefore the eigenstates to still
have ay,-+1 ~ 0, such that in the sum on the left-hand side we only have to take into account
n = =+1.
In other words, rewriting Eq. as

|~ e (W)dy — Bo-o(w) | 0o w) — | £~ 0(4) + Boo(v) | s (v)

== 3 [~ i0n )8y — Bon(®)] an(v) (5.29)

n#+l

with o = £1, we neglected the right-hand side of the equation since we assumed ay,+4+1 ~ 0
for £ ~ ¢,.

In the following, we instead effectively integrate out the higher-energy contributions to take
into account their higher-order effects on the low-energy subspace. To this end, one can

rearrange Eq. (5.28))
1 ~

am(y) = g D) > [=imn )0y — Bon(y)] om () (5.30)

n#Em

and iteratively plug this into the right-hand side of Eq. (5.29) (cf. Brillouin-Wigner perturba-
tion theory). In Appendix we carry this procedure out up to second-order and obtain an
effective Hamiltonian of the form

W™ =~ 0, (A)dy) ps + () + By)) p- (5.31)
- % {00y, vest(y) + 002(y)} po — % {i0y, 00y (y) } py — % {idy, 000(y)} po-

Most notably, disregarding the details of the individual parameters, in comparison to a
term ~ 85 is generated, such that the Dirac nature of the Hamiltonian is lost, the dispersion
becomes quadratic. Thus, if the leading contribution wveg becomes comparable to the pre-
sumably small corrections, the associated differential equation is governed by a higher-order
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5.3 Spectral matrix

Figure 5.5: SMS junction on the surface of a 3D TI in an external magnetic field, as
depicted in Fig. [5.1] closed into a Corbino ring geometry such that y and y + L correspond
to the same point along the junction. The gauge is chosen such that the phase of the inner
superconductor is 0 while the phase of the outer superconducting ring is given by ¢(y).

derivative. The singular behavior we obtained above is thereby regularized, but the shape of
the CAGM modes is to be expected to be altered (compared to the usual simple Gaussian form
of the zero-energy state).

As mentioned earlier, although the ‘black hole’-anomaly is thus no longer an issue, in the
following we are going to see that the effective theory still inherently misses an important
aspect of the low-energy physics of the system.

5.3 Spectral matrix

Having encountered the limitations of the effective theory, we would like to pursue a different
approach, which does not rely on a limitation to a specific low-energy subspace but instead
entails an upper cut-off to the momentum k in y-direction. Expanding in Fourier modes ~ e**¥,
we are going to define the infinite-dimensional spectral matrix My, ;s (E), with entries that are
relatively easily found and the zero-modes of which represent solutions to our problem.

5.3.1 Corbino geometry and expansion in Fourier modes

While the expansion in transverse eigenmodes is a procedure that is local in y, in the
following the boundary conditions will be of immediate significance. In order to gain a phys-
ically clear picture, we are going to consider closing the Josephson junction into a Corbino
ring geometry such that the system becomes periodic in y (see Fig. . Consequently, the
magnetic flux through the junction can only take on values corresponding to integer multiples
of the flux quantum, such that the length of the system L is a multiple of the magnetic length
lp, L = nlp with n € N, which ensures the single-valuedness of ¢ (mod 27) at each point
y. n then corresponds to the number of flux quanta in the junction as well as to the number
of Josephson vortices (separated by one magnetic length from each other). For the sake of
simplicity, we are going to assume a perfectly screened magnetic field and set the London
penetration depth to zero, A\, = 0. We expect the presented results to qualitatively hold true
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5 Limitations of the effective theory and emergence of additional zero modes

for small but non-zero Ay, as well.
Furthermore, we take advantage of the fact that the unitary transformation U () := e~%7=/2
satisfies

U()m:U 1 (p) = cos o1, +sinp 7, (5.32)

Consider then a complete basis of momentum eigenfunctions in y-direction

oo

1 .
(ylhe) = =™/ 37 ke el =1 (kel ) = bt (5:33)

l=—00

where to enforce periodic boundary conditions corresponding to the Corbino geometry, one
chooses

ke = 2ml. (5.34)
In this basis, the Hamiltonian (5.3]) reads

k
wz ¢y ezFAy(:c)Tz) oy — pu(x)] 7 + M(z)o,

(- — W/Q)Aon} + 0@~ W/2)A0 S Uy UL, (5.35)
p

hess = (kelhlke) = S { [ - ivpduo, + (

and the energy eigenvalue equation can be written as ), hep ()1 (x) = Etpe(x).

5.3.2 Matching conditions

In each region, i.e. z < —W/2 (L) , |z| < W/2 (M), x > W/2 (R), we can explicitly find the
linearly independent solutions to the respective eigenvalue equation. Since we are interested
in Andreev bound states with |E| < Ay, in the left and right region we choose only those two
out of four that are zero at minus/plus infinity, respectively. The general solutions then are
given by linear combinations of those

W) (g
bra(w; B) = ()@ B), )2 B) ) C(Lz’f( N v i@ YO (E), (5.36)
CL,£<E)

1) ) i ()
Ure@i E) = Y Une (Vi@ B). iy (@ B)) |3 (5.37)
o CR7Z’(E)

= Z Up Vg (2; E)CR e (E)
g/
where 9,/ ¢ satisty

k i
([—mazaz + %ay - MS} 7, + ATy — E> w(L} (1 E) =0 (5.38)
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5.3 Spectral matrix

with @b(Li}Rf(x — Foo; E) — 0. Even though A,(z > W/2) # Ay(x < —W/2), ¥, and ¢,
are zero modes of the same operator, since for x > W/2 there is an additional contribution
following from

> U} Uprky = 6000 (ke — nrs), (5.39)
p

which cancels the A -term. For the middle region it holds accordingly

i (E)
Uase(w E) = (Qp(;}(m;E), e E)) | = Uara B)Care(B) (5.40)
i (E)

)

with

k i
([—wpaxax + <”FL . ezFAy(CC)TZ> oy — MN] .+ Mo, — E) U (@ E) =0, (5.41)

In this form, we can write the matching conditions at the boundaries as

\I’L,Z(_W/2§ E)CL74(E) = \I’M,Z(_W/Q; E)CM7£(E), (5.42)
> UreVUre(W/2 E)Cre(E) = Uaro(W/2; E)Care(E), (5.43)
él
from which follows
> CR@/(E)>
My op(E ' =0 5.44
e/:z:oo £, ( ) <CL75/(E) ( )

with the 4x4 matrices
Myp = (UZ,Z’\I'R,Z’(W/Q;E)v _\IJM,Z(W/2§E)‘I’X/jl,z(_W/Q;E)\I'L,é(_W/ZE)(SK,Z’)‘ (5.45)

Thus, the spectrum of the system is determined by the existence of zero modes of the infinite
spectral matrix M (E) with entries My (E), which can be found as presented in the following
section.

5.3.3 Determining the entries of the spectral matrix

In the superconducting regions, the eigenvalue equation can be rearranged to

vrky
L

vpOphg = 0, +ipsoy + AoTyoy +iET.04 | Vs (5.46)

which is solved by 1g(z) = £ge"5%/UF with kg the eigenvalues of the matrix in the square
brackets and &g the corresponding eigenvectors. For the left /right region we choose Re(kg) =
0, respectively.
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5 Limitations of the effective theory and emergence of additional zero modes

Then

Wi (- W2 B) = (0 (B)e b BV ()emriiEIWE) (5.47)
and

(W2 E) = (€5 (E) e B2, ) (p)erirEW/2), (5.48)

Due to the z-dependence of A, in the middle region, the solutions are a bit more involved.
Since the Hamiltonian here is diagonal in particle-hole space, we can consider 7, = +1 sepa-
rately. The eigenvalue equation can then be written as

W IgWk
(ivF(—iOZ)% + ET (x + 52 ‘) oy + Maz> wﬁj}g(x) =(E+ MNW%?@(CC)-

IgW 2 w L
(5.49)
Defining the dimensionless coordinate
e | (e W LBV ke _ [Ty
Tq 1= i (1‘ + 5 + - L> = 0O,= lBWGxi (5.50)
and introducing in each case the harmonic oscillator ladder operators
By = i(a* +a), —idz, = i(a* —a) (5.51)
:l: \/i ) T4 \/§ .
we find
[Fi(aog — aos) + Mo.] i) (3) = Brvi,) (@) (5.52)
with M = éBUVZFM, By = /i (E + py) and op = 3(0, Lioy).
The four linearly independent solutlons read (up to normalization)
Uelws B) = (105 @) 1) + (= BT @ b)) 1), (5:58)
W@ B) = (1 + Bo)ofy @) [to) —idg: @) o)) 1) (5:54)
U@ B) = (=igg; TN @) o) + (M = B)ery @) W) 1), (5:55)
USelws B) = (0 + B_)of; ™ (5-) o) +idhy ' (3-) o) ) Ir) (5.56)

with |1} {UJ}) denoting the eigenvectors of o, and 7, respectively. We defined here the gener-
alized harmonic oscillator eigenfunctions (see Ref. [123] and Appendix |C.3)

1-K 1 .
o) =0 (15 Gt e, (5:57)
3-K 3 e
¢f€<$) =aM (47 27x2> € /2 (558)
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5.4 Emergence of additional zero modes near low-effective velocity-points

with Ky = E’i — M and M (a,b, z) the confluent hypergeometric function of the first kind.
Finally, it is

L 1
UZ,Z’ _ i/ dy e—igp(y)Tz/Qe—i(k:g—kzz/)y/L _ e—igoo'rz/Z/ dy e—iw(nn-ﬁ-?((—é’))g} (5.59)
0 0

00 ,
<0 1), n=20(-1),

i 10
= e 020 , n=-2(0—1),
0 0

; - 2 —10)+n)"1 0
E((_l) 1) < 0 (200 — ) — n)—l) , else.

where we remember L = n - lp. With this we know all components of M (FE).

Practically, we need to cut off M (E) at some |¢| = ¢, and argue that high momenta ky~,, do
not contribute to the low energy physics. Due to this cut-off and finite numerical precision, we
will not be able to find exact zero-modes of M (E). The eigenvalue \j;(E) with the smallest
magnitude will in general be non-zero. However, we observe that with an appropriately chosen
and sufficiently large cut-off, values of the order of |A\y/(E)| ~ 10~%-~15 separated from the
next largest eigenvalue by multiple orders of magnitude, can be achieved. We argue that,
within the employed approximations, these can be interpreted as true zero-modes of M (F).

Note that for the case of even n, each Fourier mode is pairwise coupled to only two others,
since the non-diagonal contributions are given by U r ~ §,, o—p| (in contrast to odd n, where
the coupling between Fourier modes extends infinitely far ~ [2(/—¢')+n]~1). When employing
a cut-off, the modes with ¢ = £/, thus only couple to one mode each. This allows for unphysical
non-trivial solutions (regardless of the parameters) where the contributions from the subspace
{=Ley,—L. +2,...,0.} vanish, although these kinds of eigenstates cannot be present in the
infinite matrix-limit. To combat this artifact of the cut-off procedure in the case of even n,
we artificially introduce an additional matrix element between +£. and —/., such that there
exists no decoupled subspace. With the cut-off being chosen large enough for these modes
not to significantly contribute to the low-energy physics, one now obtains physically sensible
results which are independent of this fictitious coupling.

In Appendix we confirm that in the appropriate regime the results obtained via this
method are in agreement with Ref. [114], where the effective theory-approach presented in
Section had been employed for the case without magnetization M = 0. The parameter
regimes corresponding to vanishingly small effective velocities, which we established to not be
accessible using said approach, will be examined in the following.

5.4 Emergence of additional zero modes near low-effective
velocity-points

In Section we saw close to points with sufficiently small values of |veg|/vp, that the
effective Dirac-like theory breaks down and higher-order corrections need to be included. We
expected this to lead to altered profiles of the probability densities of the CAGM states com-
pared to the usual expectations. In the following, we confirm this suspicion using the spectral
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5 Limitations of the effective theory and emergence of additional zero modes

matrix-approach just introduced. In doing so, however, we furthermore are able to identify
new low-energy degrees of freedom which occur near these points and fundamentally elude the
effective theory.

5.4.1 Spectral flow

In Ref. |[114], in the Andreev regime the effective velocity near the Josephson vortices has been
found to be proportional to sin(uyW/vp). Thus, it becomes zero if uxyW/vp is an integer
mutiple of w. As a direct consequence, the authors found around such points all bound states
in the effective theory to condense around zero energy. In Fig. we sketch an example
for the energy of the first excited state as a function of px obtained via the effective theory,
which goes to zero at puy/Ag = 7(W/€)~! (as just mentioned, within the effective theory the
energies of all excited states go to zero at this point. Here, we only plot the first excited state
for better legibility). In color the associated eigenvalue A\j; of the spectral matrix is shown,
where we remember that \j; >~ 0 corresponds to an eigenstate of the Hamiltonian.

At small ppy, the two methods coincide and result in roughly the same energy of the first
excited state (see also Appendix . However, as we get closer to the zero-effective velocity
point, the disagreement between the two methods grows. While within the spectral matrix
approach an accumulation of bound states at low energies is still present, it occurs at a
shifted value of puyx compared to the effective theory. Furthermore, it is only the first excited
state that goes to zero energy as uy is increased. The other states remain at finite energy.
The condensation of all bound states at zero energy within the effective theory can thus
be attributed to its previously discussed breakdown in the case of low effective velocities.
Curiously, after merging with the zero-energy state at uy = ug\c,), what previously was the
first excited state remains at this energy and we obtain triply degenerate zero-energy states
for pun > ,us\c,) (triply, because due to particle-hole symmetry there is also a state merging from
the negative energies).

In Figs. and we confirm that this picture also holds true for differently chosen sets
of parameters, not corresponding to the Andreev regime. In Fig. the magnetization is
finite and the parameters are chosen such that the transverse Hamiltonian only exhibits two
branches of bound states in the gap for all values of py shown (as in Fig. [5.4). In Fig.
furthermore the periodic behavior in py (which is also present in the effective theory) is
displayed. To exemplify the degeneracy at zero energy, in Fig. we additionally show the
behavior of the lowest-lying eigenvalues of M (E = 0) as a function of uy.

Examining the corresponding wave functions, depicted in Fig. we see that the bound
states at low energies exhibit an oscillatory behavior in the vicinity of the special point
,ug\c,) /Ay =~ 107, as can be expected from the leading order corrections to the low-energy
Hamiltonian in the low-effective velocity case derived in Section [5.2.5] As pn grows, what for
N < ug\c,) is the second excited state changes shape and takes on the role of the first excited
state for uy > ,ug\(;). The newly formed zero-modes are furthermore localized in the Josephson
vortex as well.

The emergence of additional zero-modes can be a signature of a topological phase transition
(the Hamiltonian belongs to the Altland-Zirnbauer symmetry class D, which in d = 2
dimensions has a Z-valued topological invariant). Note firstly, however, that the new zero
modes are generically not Majorana states, since under charge conjugation, rather than being
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Figure 5.6: Spectral flows in two distinct regimes. Shown in color is the absolute value of
the lowest-lying eigenvalue A\js(E) of the spectral matrix M (E) for the respective parameter
combinations and energies. Bright spots indicate the presence of an eigenmode. In both
the Andreev regime (a) and the strongly magnetized regime (b), we observe that the first
excited state merges with the zero-energy state as a function of py. In (a), the orange
dashed line corresponds to the prediction for the first excited state from Ref. [114].
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Figure 5.7: Spectral flow and corresponding probability densities. As in Fig. for

different parameter combinations, in panel (a) the merging of the first excited state with the
zero-energy state is observed. Here, it can additionally be seen that this process is periodic
in uy. The colored dotted lines indicate the slices for which the respective probability
densities of the first three eigenmodes are plotted in panel (b). After the transition near
,ug\c[) /Ag =~ 107, the E' = 0O-state is triply degenerate and (including the inset), we show three
linearly independent superpositions within this subspace.
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Figure 5.8: The absolute values of the four lowest-lying eigenvalues of M (E = 0) near
the transition point for the parameter combination indicated above the plot (same as in

Fig. . For puy > ME\C,), the ¥ = 0 -state can be seen to be triply degenerate.

self-conjugate, they transform into one another. Only appropriately chosen linear combinations
are self-conjugate. In fact, further investigation reveals that these zero modes are not robust
against small deformations of the Hamiltonian. Introducing a small asymmetry to the junction,
for example by taking pg(z) or Ag(z) to be slightly different on the left and right side, leads
to a small shift away from zero energy, as can be seen in Appendix In real systems,
these CAGM states thus have to be expected to manifest at very small, but non-zero energies.
The observed additional zero modes can thus likely be characterized as accidental zero modes
instead of the result of a topological phase transition.

In order to understand the origin of this phenomenon and the reason for it being missed by
the effective theory, we need to return to the system without any external magnetic field and
a fixed phase difference.

5.4.2 Revisiting the field-free model

In the case of no external magnetic field and thus translational symmetry in y-direction, the
momentum p, = k is conserved and the problem can be solved for each value of k separately.
Instead of taking k& = 0 and subsequently including small values of k perturbatively, as has
been the strategy in Ref. [13] and the previous chapters of this thesis, let us here thus find the
low-energy eigenmodes of

hi(x) = [—ivpdyo, + vrkoy — p(x)] 7, + M(2)o, + Ao(z) (cos p(z) 1, + sinp(z)1,), (5.60)

directly for each value of k, with p(z), M(z), Ag(x) and ¢(z) as given in (5.4)).

Using the parameters from Fig. for small values of uy below the phase transition,
we recover the earlier results: plotting in Fig. the dispersion, i.e. the energies F (k) at
which an eigenmode can be found, for a phase difference of ¢ = 7 two linearly dispersing
modes crossing at E(k = 0) = 0 are visible. These correspond to the familiar one-dimensional
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Figure 5.9: Dispersion of the one-dimensional bound states following from the Hamil-
tonian with ¢ = 7 and the parameters from Fig. At the point Ng\?)/AO ~ 3.625m
(b) at which the effective velocity (i.e. the slope at k = 0) becomes zero, the non-linear
corrections to the previously linear dispersion (shown in (a) with ux/Ag = 0.17, where
the naive effective theory is still an adequate description) become apparent. Increasing iy
further to pun/Ag = 5.57 (¢), two additional Dirac cones, i.e. linearly dispersing low-energy
modes, at finite momenta appear. The insets show the opening of a gap for ¢ # 7 in each
case.
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counter-propagating Majorana modes. The slope is equal to the effective velocity dE/dk|x—o =
Vet(p = ) = v. Away from ¢ = 7, a gap opens (see inset), as the hybridization between the
Majorana modes is proportional to cos(¢/2) [13], which we remember is exactly what leads to
the Majorana zero modes being bound to the Josephson vortices in the preceding sections.

As we increase py, the slope v diminishes and we approach the point ,ug\(;) at which the
effective velocity vanishes (Fig. . There, the non-linear nature of the dispersion becomes
apparent, corresponding to the higher-order corrections derived in Section [5.2.5] Increasing
py beyond ,ug\(;) (Fig. , two additional low-energy Dirac cones appear at finite momenta
k = £K. These are gapless only at ¢ = 7 as well and thus fully explain the emergence of
additional zero modes we observed above via the spectral matrix-approach. Indeed, examining
in Fig. the shape of the three degenerate zero modes in k-space, they have support only
near three distinct values of k; symmetric around zero. For growing pn, more and more such

Dirac cones appear (see Fig. [5.11al).

The fact that we find the transition in the Corbino systems to happen at a significantly

shifted point ug\c,) > uﬁ)

is partly (but not fully) caused by finite size effects, as can be
deduced from tracing ,ug\c,) as a function of increasingly large lengths /g in Fig.

It is now clear that the effective theory-approach is insufficient not only as v — 0, but that
the included expansion around k& = 0 furthermore does not necessarily capture all relevant
low-energy degrees of freedom.

Considering experimentally available topological insulators, the values of py necessary to
be able to observe the emergence of the additional Dirac cones can moreover be estimated to
be well within the regime in which the effective 2D description in terms of Dirac surface
states holds. E.g. in Ref. [124], in Sn-doped Bij 1Sbg.9TesS with vp ~ 400 meV nm, it is found
that pny can become as large as ~ 100meV before entering the bulk bands. Assuming the
induced superconducting gap Ag to be of the order of ~ 1meV, it holds ,ug\?) ~ 25 — 50 meV
with the values we found above. Here, we would like to point out that although we focused on
tuning the chemical potential uy in the non-superconducting region, other quantities, as for
example the width W of the junction, can also be used as control parameters of the transition.

Note that the appearance of the additional 1D Dirac cones is in principle already present
in a very similar analysis carried out for a graphene-system in Ref. [117], though it is not
explicitly mentioned there.

Breaking the x-inversion symmetry, as shown in Appendix finally reveals that the
crossings at finite momenta are not robust, as a small gap opens. Though these points still in-
troduce relevant low-energy degrees of freedom, the bound states we observed in the preceding
section are thus in realistic systems no true zero modes, but ordinary CdGM states with very
small energies instead. As such, they have to be still expected to significantly contribute to
the low-energy physics of the system and have to be taken into account in the interpretation
of e.g. measured Josephson currents and microwave spectroscopies |114} [125].

5.5 Summary

Generalizing the effective low-energy theory employed in the preceding chapters to take into
account the spatial variation of parameters along the junction, as for example the linearly
growing phase difference due to an external magnetic field, we discovered zeros of the effective

73



5 Limitations of the effective theory and emergence of additional zero modes

S
! 2 B 2
B an . L - P
cl
0 7 "“""""“'.: v‘.."'nuu“"mo 4 -. Q;muu”mw. ;io 4 u. .:“Oum'umu“u".“’. .u
—40 0 40 —40 0 40 —40 0 40
ke/m

Figure 5.10: Zero-energy bound states in Fourier space. Shown are the probability den-

sities for a slice at = 0 corresponding to the three E = 0 -states at uy/A¢ = 117 in
Fig. The subspace thus only has support near three distinct values of ky, symmetric

around k, = 0, as expected from Fig. Shown are arbitrary linearly independent super-
positions within the degenerate subspace.
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Figure 5.11: (a) Centers of one-dimensional Dirac cones, determined by the values of k

for which E(k) = 0, as a function of puy following from for the parameters given in
Fig. As un grows, new Dirac cones emerge periodically every time the effective velocity
at k = 0 vanishes. The first branching occurs at ,ug\?)/ Ag =~ 3.67.

(b) Scaling of the critical chemical potential with the length of the ring. Asip

becomes larger, the critical value ,u§\c,), at which the degeneracy of the ' = 0 -CdGM state

is observed to be increased, decreases exponentially. The extrapolation suggests ,ug\c,) /Ay —
6.37 for Ig — oo.
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velocity to correspond to points at which this frequently utilized effective description breaks
down.

Taken at face value, it predicts the zero-velocity points to emulate black hole-event horizons,
leading to unexpected divergent behavior. To remedy this, we included higher-order corrections
to the low-energy description, stemming from virtual processes coupling the in-gap with the
above-gap states. These corrections result in an effective Hamiltonian which no longer posseses
Dirac, but rather Schrodinger nature as it is governed by a second-order derivative. This
higher-order derivative regularizes the unphysical divergences. However, by means of a different
approach, we revealed that the effective theory misses another crucial aspect of the low-energy
physics, which relates to the zeros of the effective velocity as well.

In the translationally invariant situation, additional Dirac cones at zero energy, centered at
non-zero momenta, emerge periodically anytime the effective velocity vanishes. In our example
of the running phase, this leads to additional zero modes being bound to each Josephson vortex.

Although the crossings of the Dirac cones, and thus the zero modes, are not robust under
the breaking of inversion symmetry and therefore will not correspond to true zero modes in
a realistic scenario due to disorder and irregularities, as long as these effects are small, the
additional low-lying states have to be taken into account in the interpretation of experiments.
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Chapter 6

Conclusions and outlook

In this thesis we presented a study of topological Josephson junctions across a variety of re-
alizations. By extending the well-known description in terms of one-dimensional Majorana
modes to incorporate the dynamics of coupled bosonic degrees of freedom, as well as probing
the boundaries of said effective theory’s applicability, we have uncovered novel phenomena
which may prove crucial towards a comprehensive understanding of the low-energy physics in
these topological Josephson structures.

One such system is given by the Josephson junction on a topological insulator surface formed
between two s-wave superconductors with a ferromagnet deposited between them. Here, the
ferromagnet’s magnetization induces an exchange field which couples to the spin of the elec-
tronic surface states. In Section [3.1] we have seen that the component of the magnetization
which is perpendicular to the junction acts similarly to a phase bias between the superconduc-
tors in that it hybridizes the counter-propagating Majorana modes. Taking into account that
the magnetization dynamics can be described by the Landau-Lifshitz-Gilbert equation and
assuming a large magnetic easy-axis anisotropy perpendicular to the surface, we then deduced
a logarithmic Peierls instability towards the opening of a Majorana mass gap with a sponta-
neous Zo symmetry breaking. Within mean-field theory, this corresponds to the splitting and
tilting of the easy-axis. The mean-field result is stabilized against quantum fluctuations by
means of the spatial and temporal rigidities of the magnetization dynamics. By analyzing the
Gaussian fluctuations in the associated gap equation, we were able to estimate the parame-
ter regime in which the corresponding quantum phase transition takes place. By analogy to
related models, we expect this transition to be described by the tricritical Ising universality
class and our system could thus provide a physical realization of the abstract models proposed
in Refs. |69, 70]. A possible experimental signature of this broken symmetry is a discontinuous
jump in the corresponding current-phase relation. In analogy to the Ising model at low but
finite temperatures, we argued that there are exponentially large stretches of ordered phase,
which are separated by domain walls, each carrying a Majorana bound state. The energy and
width of these domain walls allow an estimate of the magnetic coherence length. We further-
more provided the corresponding self-consistency problem in the case of stationary solitons,
for which the solution is known if the exchange coupling can be neglected.

The non-trivial dynamics these solitons exhibit, being governed by the Landau-Lifshitz-
Gilbert equation, is an exciting avenue to be explored in future research. Possibly building on
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6 Conclusions and outlook

similar work which made use of inverse scattering theory [126, 127|, understanding dynamical
and scattering processes of the solitons ensues prospects for the experimental detection and
control of the associated Majorana bound states.

Another system in which we discovered solitons to carry Majorana bound states under inter-
esting circumstances are the Josephson junctions comprised of two-dimensional time-reversal
invariant topological superconductors which we studied in Section [3:2] Analogously to the
magnetic system, in the TRITOPS-S junction we encountered a Peierls instability which is
stabilized by the stiffness of the phase bias’ dynamics, leading to a spontaneously broken time-
reversal symmetry. Consequently, the solitons in this phase correspond to fractional fluxons,
each carrying a single Majorana state. In the TRITOPS-TRITOPS junction, no spontaneous
symmetry breaking takes place. Interestingly, though the presence of a fluxon breaks time-
reversal symmetry explicitly, here we found Majorana bound states to appear in pairs due to
an accidental inversion symmetry which protects the Kramers degeneracy.

In Chapter (4] we returned to the topological SMS junction, extending the effective theory to
take into account arbitrary magnetic anisotropies. Both in the easy-plane and weak easy-axis
case we identified BKT transitions. In the latter case, this is based on an emergent effective
easy-plane, spanned by the easy-axis and the component of the magnetization which couples
to the Majoranas. Furthermore, the experimental accessibility of these transitions has been
estimated and discussed. By combining the complementary pictures from the mean-field and
perturbative RG analysis, which we conducted here, with the results for the strong easy-axis
anisotropy from Section [3.I] we arrived at a conjecture for the parts of the phase diagram
which are not accessible by these methods. There, prospects for the realization of exotic
multicritical points are given.

Establishing and harnessing a connection to related models which were shown to feature
multicritical points and emergent supersymmetry [111} [128| is a promising avenue for future
work towards confirming and expanding on our conjectures.

Finally, we examined the effective low-energy theory the previous chapters were built on for
its range of applicability. To this end, we simplified our previous model of the SMS junction
by eliminating the magnetization dynamics in place of an external magnetic field, which leads
to the phase bias growing linearly along the junction.

In the first part of Chapter [5] we showed that, if applied naively, the low-energy descrip-
tion erroneously predicts black hole-analogues to occur for specific parameter combinations,
leading to anomalous behavior of the bound state wave functions. These points at which the
effective theory loses validity correspond to instances of vanishing effective velocity of the one-
dimensional Majorana modes. Subsequently, we demonstrated how the black hole-anomalies
can be regularized by including corrections from virtual processes via the quasiparticle con-
tinuum to the theory, resulting in a quadratic dispersion in place of the Dirac cone.

In order to confirm the breakdown of the effective theory at these zero-velocity points, we
derived an alternative approach via an expansion in Fourier modes in a Corbino geometry of
the junction. By means of this, we were indeed able to see the growing discrepancy between the
two approaches as the effective velocity diminishes. Additionally and surprisingly to us, it also
revealed that the zero-velocity points furthermore mark points at which additional low-energy
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degrees of freedom emerge, leading to an increase of the number of zero modes bound to each
Josephson vortex. Although these additional zero modes are not robust against irregularities
which break the inversion symmetry, they can be expected to significantly contribute to the
low-energy physics of real systems as low-lying CdGM states.

Thus, possible directions for future work lie in an explicit inclusion of these additional
states in the interpretation of experiments done in topological Corbino geometry Josephson
junctions [115, 116, expanding the employed method to be able to account for irregularities
and disorder |114] as well as further investigations of the spectrum in instances where overlap
between neighboring CdGM states is present and significant.

To summarize, in this thesis we have thus conducted an extensive analysis on a variety
of aspects concerning topological Josephson junctions. In doing so, we were able to identify
a range of quantum phase transitions, which not only demonstrate the potential for these
systems to serve as a platform for the experimental realization of exotic critical phenomena,
but also open new possibilities for the manipulation and detection of Majorana zero modes. In
addition, we unveiled previously overlooked shortcomings of the universally employed effective
theory, which are crucial for an accurate understanding of the low-energy physics in these
structures.
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Appendix A

Supplemental material for Chapter 3

A.1 Low-energy BdG Hamiltonian for the SMS junction

Starting from the Hamiltonian given in 7 by adopting a semi-classical description of the
magnetization and labeling the fermionic states by their momentum —i0, — ¢, which is valid
if m and ¢ only vary slowly with y, a low-energy effective Hamiltonian for the fermionic
degrees of freedom in the considered SMS junction can be derived analogously to what has
been done in Ref. [13]. To this end, we consider the limit where the width of the junction
is much smaller than the superconducting coherence length W < wvp/Ag, such that there
exist only two branches of in-gap bound states (related by particle-hole symmetry). Splitting
into two parts, h = h(® + h(M) with O = h|g=my=m,=0,p== and treating h(Y) as a
small perturbation, one then finds zero-energy solutions h(O)Ca:LQ = 0, onto which h can be
projected to define the effective BAG Hamiltonian. It is convenient to choose them such that
they obey C(, = ¢, with the charge conjugation operator C = 7,0,K, where K denotes complex
conjugation. They can be written as

Cx(2) = Qiz) +iG(2)

cos (@) sin 40(@)
19(1} ) m??af)
. sin #2%) cos 524
o e/ —Vpu+M . m;)(Fx) Fivu-M us(Fx) x Al
SIHT COS T ( . )
p9(x) o ()
cos - sin

Here, we defined 9(z) = (z —sgn(z)%) © (|z| — %). Small values of ¢, my, my and 7 — ¢
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are now included by calculating the matrix elements

2 M2 Ag(r—¢) ,

<Ca ’UFquO'y ’<b> = qugb,
7%!@ 0,

(Cal MOW/2 = Jyl)myoy|Gy) = (Gl MOW/2 — |y|)——

MQ—M2 AOMW b
aM 2 — 0 = — :Eaa

where the Pauli matrices p; 4 . act on (1, (2), the effective velocity reads

| w2— M2 A
v = 'LL2 — M2K2 A% n Hz KUF (AS)

and the dimensionless constant K = cos (VMQ - M2W/UF) + \/2A07M2 sin <\/,u2 - MQW/’UF>
2

has been defined. With that, the low-energy effective BAG Hamiltonian

. w2 — M? T—p MW "
ef‘f_ <Ctl‘h‘<b> - —w8yp \/IA < 2 + Up My Py (A4)

is obtained. We find the component of the magnetization perpendicular to the junction m, to
play a similar role as the deviation of the phase difference from .

In contrast to mg, the y-component of the magnetization m, does not directly couple to
the fermionic degrees of freedom. This can also be understood via the symmetries discussed
in Appendix from which follow that all matrix elements of o, vanish.

Finally, by fixing ¢ = 7 and introducing the right and left-moving Majorana fields xg 1,(y) =

IE XR/L iqy — XR/L( y) with X = [dr (& Tq;( ) = (leéL)T, where 5(111/L<T) _
2(41( z) £ (2(x))e'?, we obtain

m2 + m (A.2)

w .

2_M2 AW
pu2—M2K? wvp -

with the coupling constant g = M

A.2 Calculation of the self-energy

Our aim is to calculate the self-energy II(g,w) defined in Eq. (3.13)), following the method of
Ref. [68|. In the zero-temperature, infinite-system limit, we can write

) (6—5) v(k = 9)) (e + %) +ok+9)) +g°mg
H(W)g/ / 2102k — 92+ ¢?m2) (e + 2) + 02(k + §)2 + ¢?m3)
- / Ph ke k: +z<k:+>< o — itk )a(k)y — g?md (A5)
(k2 + g?m3) (k> + g>m}) ’ '
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where we defined k = (¢,vk)T, ¢ = (w,vq)T and k+ = k £ q/2.

In the following, we make use of the identity

1 ! 1
— = d A7
AB /0 " (Au+ B(1 —u))? (A.T)
as well as
/1 du ! _ 1 Arsinh(r) with 7% = ¢%/4m? (A.8)
o M wE T VI with 1= '/dm -
We find
/ d*k 1 / 4 / 1
u
(2m)? (k2 +9m0)(k2+9 mg) 2(k2+q%/4+ (1 —2u)k - g + g®>m3)?
1 14 r
d = —————Arsinh(r) := I(¢®) (A9
/ u/ —(u— )@+ Pm2)?  Ar @It r? rsinh(r) (") (A.9)

where we defined 72 = g*/4¢*m? and made use of the substitution f =k + (1 — 2u)q.
The rest of the terms we need to evaluate are of the form («, 5 € {1,2})

Tonla?) = /(d?k (ko / / Jrueld s (o e

)% (k2 + g*md) (k2 +g mg) — (u? — u)g? + g>m})?

1 dzf fafﬁ u(u — 1)
= d +qo , (A.10
fy | | = wa gt (= ag + ae |
J(°><q2> —J3)(a?)
where the integrals over terms that are odd in f, immediately vanish. It is
@), o 1 Arsinh(r)
= —-1]. Al
Tor (@) qu(r 0 (A.11)
J;%) (g?) diverges logarithmically. We therefore first calculate
0ap [(V1+12
J(ioﬁ) (q%) — JO(COB)(O) = —4—75 < :—r Arsinh(r) — 1> (A.12)
and finally introduce a high-momentum cut-off A to find
0 20A
J90) ~ 298 () 6. A13
0= 52 (log 2~ b (A13)
Thus, altogether
(g.) =~ (a(a?) + o) — g*m3 1(a))
9 (A.14)

g ( gmg V1412
= lo +

Y " Arsmh(r)) .
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A.3 Symmetries of the TRITOPS-TRITOPS junction

Consider the BAG Hamiltonian
HE) = —,u(i) (2)7200 + VT (P02 + Pyoy), (A.15)

modelling a TRITOPS with p-wave pairing up to leading order in the momenta, assuming zero
contribution from s-wave pairing. u(z) is taken to change sign at the edge of a given sample
and the topological phase corresponds to /v > 0. Thus, we distinguish p(*)(z = 0) < 0 and
,u(_)(x 2 0) 2 0 describing right and left edges, respectively. For p, = 0, we find in each case
two normalizable zero modes bound to the respective edge satisfying H®o(x) = 0 given by

N T ’ /
o) (x) = SeF N dnE/v (1 +4,0,0,-1 )7,
2 (A.16)

N T g ’
O (1) = SN0, 1 5 0,1 +4,0)7.

Note that the solutions are chosen such that they are orthonormal and are invariant under
charge conjugation C@éi (0) = CI)((M) (0), where the charge conjugation operator is given by
C = 1y0yK = UcK. Additionally, it is worth noting that the two respective solutions are
Kramers pairs T@éi) = @éﬁ), with the time-reversal operator 7 = i0y,K. Including finite
momenta p, entails projecting the corresponding term in the Hamiltonian onto this basis,

which yields
() f (") ~ \7,7 (= \o,0’
(@070(0)) 20y @y 1 (0) = (72)77 (52)77, (A.17)

as given in Eq. (3.37). Transforming the anti-unitary operators C and 7T to this basis, one
finds C = K and T = ig, K.

Additionally, we can identify the symmetry corresponding to exchanging the right and the
left edge with each other. On the level of the Hamiltonian in ([A.15)), this is achieved by
simultaneous inversion along the z-axis P,, i.e. P, f(z) = f(—z), and rotating with Ux = 7,0,

(Ux Pp) HF) (PUX) = — ) (—2)7, + 07 (puos + pyoyy).- (A.18)

This is the same Hamiltonian as (A.15]) only with the direction of the sign change of p, which
determined whether we called it a right or left edge, reversed. Ux connects the right and left
edge modes in (A.16)) with each other

Uxey) = o), Uxey) =) (A.19)
Expressed in the new basis, it therefore holds
Ux = T40,. (A.20)

A.4 Zero-energy solutions to double mass Dirac equation

The Dirac equation for zero modes in the TRITOPS-TRITOPS junction in the presence of a
phase slip soliton reads

(A.21)
(A.22)

(—iv0yT .0, + g1(y)Ty0= + g2(y)Tody) ¥ (y)

)~ Y =0
& (V0y + 91(Y)Ta00 + 92(y)T20.) Y(y) =0
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A.4 Zero-energy solutions to double mass Dirac equation

where asymptotically gi(y — do0) = :i:g%o) and go(y — +oo) = 0 with both mass terms

antisymmetric g1 2(y) = —g1,2(—y). Note that go # 0 breaks time-reversal symmetry and one
would thus expect the Kramers degeneracy to be lifted in its presence. However, as argued in
the main text, this turns out not to be the case if both masses have well-defined parity, due
to the existence of the two non-commuting “pseudo-parities” Py = To0,p and P, = 7,6,p. As
a consequence, the two-fold degeneracy of the zero modes bound to the soliton also persists.
Here, in order to demonstrate this, we will explicitly derive the two zero-mode solutions to
Eq. in the simple case of the soliton profile being given by

91(y) = ¢”sen(y), (A.23)

92(y) = g5 sgn(y) ©(w/2 — y). (A.24)

We start by looking for a solution |¢1) to (A.22) which is simultaneously an eigenvector of P;
and make the ansatz

1) = &) @ [4) (A.25)
where ¢, |+) = £|£). Eq. (A.22)) then reduces to
(ivdy + g1(y) 72 + g2(y)72) & = 0, (A.26)

to which the normalizable solution can be found to read

G) egﬁo)(erw/?)’ y < —w/2,
(0)

(0)
1 +
y+w/2 g1 99 . y+w/2
<1>C08h( B2) A g — g siuh (£52) . —w/z <y <o,

§i(y) o 1 (0) n (0)
<1> cosh (y_j\”ﬂ) —A (91 92 ) sinh (y—;\u/Z) , O<y<w/2,

g§0) . géo)

<1> e, y>w/2,

(A.27)

2 2
where we introduced <g§0)) + (géo)) = A2, The second, degenerate zero mode |19) is then

found by application of P, to the first solution
|tha) = Pa|t1) = T2 |€1) @ | ) - (A.28)

Note that for géo) — 0, |[¢1) and |12) are indeed transformed into one another by the time-
reversal operator 7.

It is easy to check that for mass profiles of the form as given in (A.23]) and (A.24), but with
an added asymmetry of some sort, in general no non-trivial solutions to Eq. and thus
no zero modes exist. Their degeneracy and thus existence is dependent on the parity and with
that also sensitive to any impurities or inhomogeneities.
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Appendix B

Supplemental material for Chapter 4

B.1 Derivation of RG flow equations

In the following we are going to sketch the derivation of the flow equations (4.6))-(4.9) from
the action (4.5, where, for convenience, we shift 8¢ — f¢ — 5

S = /dT dy [g)_(@)( + % (i(37¢)2 + c(ﬁx¢)2> —ucos26¢ + g)‘o( sin B(b]. (B.1)

So Sint

To this end, we employ a Wilson RG and choose a scheme in which the bosonic velocity ¢ flows
while the fermionic one v stays fixed. Following the standard approach|65] 129, the fields are
split into slow (w?/v? 4+ ¢% < A?/b?) and fast (A?/b? < w?/v? + ¢® < A?) components (with
v replaced by ¢ for the bosonic fields), x = xs + X, ¢ = ¢s + ¢, and b = el, 1 < 1. For the
partition function one then has

P / Ds Df e~ Solsl=Solfl=Simlsts] — 7 / Ds e=Soldl (e~Simls+1ly (B.2)

where <(’)>f = é foOe_SO[ﬂ denotes averaging over the fast fields and 7! = | Df e—5olf],
0

With this, an effective action only containing slow modes can be obtained via

Serls] = Sols] —log (e~ = 8ofs] + SO [s]—2 [sPfs] — (50[5])]

2 (B.3)

+O(?, g%, u?g, ug?)

where S [s] = ((Sint[s + D™ -

The first order contributions evaluate to
2

2
(05 26) ; = cos 266, (1 - iz) L (i B6); = X sin o, (1 - Zz) LB

such that the flow equations at this level read

du 52 dg 32
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Note that the mass and self-interaction of the bosonic field become irrelevant for 32 > 2,
while the fermion-boson interaction becomes irrelevant for 52 > 4.

For the second order terms, one needs the fact that

(cos28¢(r) cos 28¢(r"))  — (cos 2B6(r)) ; (cos 2B6(r"))

= § 3 00823000 +o0ne e exp (aot [ B EE) ] B0
o=%

(2m)? p?

where r = (y,c7), p = (q,w/c) and [ s d?p implies integration over the fast momenta only.
Since the integral over p only includes values |p| ~ A, the main contribution to it stems from
|r — '] < A~L. Followingly, we can introduce the center of mass R = (r +r')/2 and relative
coordinates dr = r — r’ and expand in small A dr.

For 0 = +1 then, the resulting operator is proportional to cos48¢,, which we have seen to
be irrelevant if 42 > 7/2. Since we will focus on the region where either u or g are marginal,

ie. 2 < 82 < 4, we discard this term and only keep the ¢ = —1-contribution.
Performing a gradient expansion of the cosine
08 2B(ps(r) — ¢s(r")) ~ const. — 26%(6r - D)2, (B.7)

we finally find

/d2rd2r' [(cos 28¢(r) cos 2[5’¢(r’)>f — {cos 2ﬂ¢(r)>f (cos 2ﬂq§(r’)>f]

725401

(B.8)
= A4 l/d2R (6R¢s)2a

d?p cosp-r
@2m)? p?
ﬁF (A|r]) + O(I?). For the plots in the main text we used C; = 8, as follows from employing

a Gaussian cut-off fOA dp — fooo dp e PP /A

where we introduced the numerical constant C', = fooo dpp*F(p) > 0 with Il f

We proceed similarly for the remaining second-order terms, discarding the generated 4-
Majorana- and ¥y sin 33¢-terms as irrelevant in the region of interest. We find

/d2r d?r! <Xf(T)Xf(T)Xf(T,)Xf(T,) sin B¢(r) sin 5¢(7"/)>f

l 12,2 (B.9)
~ —ﬂ—(; d’R cos2B¢s(R) — 275;20/\2/d7 dy [11}(37%)2 + U(3y¢s)2
as well as
/ d*r %1’ X, (r)xs(r) [(sin B (r) cos 286(r")) ; — (sin (1)) ; (cos 266(1")) ]
(B.10)

2
N _5A§21 / 2R X,(R)xs(R) sin Bs(R)

with the numerical constant Cy = fooo dp pF(p) > 0 and Cy = 2 for the Gaussian cut-off.

Plugging these results into (B.3)) yields the flow equations (4.6)-(4.9) given in the main text.
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B.2 RG flow taking into account irrelevant exchange stiffness

B.2 RG flow taking into account irrelevant exchange stiffness

Even though the parameter A’ in Eq. is strongly irrelevant, in the case A’A? > (—B)
it is not immediately clear how the (at least initially not neglectable) influence of A" affects
the flow. Let us therefore rederive the RG equations at lowest order in @ and g taking A’ into
account. We can write the relevant action as

2 A/2 B
Sy—54t /dqdww q°/

2
(2m)2 ¢o 1 —A’q2/B|¢q’w‘ ’ (B.11)

where S is the action given in Eq. (4.5) and ¢yp = ¢(I = 0) will not be renormalized. With
that, one finds

dA’ - dii 2 dg 32
— =24 —=2u(1-T g|1-T(A)— B.12
dl ol “( (4 )277) dl g( ( )47r> (B.12)
with
_ 2m Al e
Ay = 1/ d L+ Alcos”0 . (B13)
2m Jo (Ysin® 6 + € cos? ) ( + A’ cos? 0) 24 in2 0 cos? 0

where A" = A/A2 /(—B). Note that I'(0) = 1. Let us here for simplicity consider the Lorentz
symmetric situation v = ¢ = ¢y. Then

F(;l/) = (1 + A/) v cos (; arctan \/E) . (B.14)

Generating in Fig. [B.I] as an example the same phase dlagram as shown in Fig. [£.6D] of
the main text while taking F(A/) into account, with a value of A0 (0) as large as A/(O) = 100,
clearly shows that quantitative, but no qualitative corrections occur. Considering A’ in second
order in % and g makes the constants C'; ;, become dependent on A’. We do not expect this
either to lead to any qualitative changes to our findings.
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<10-4 §=0.01, A’ =100

4.0

"0.00 0.05 0.10 0.15

o
s

Figure B.1: Phase diagram taking into account irrelevant exchange stiffness. Same
phase diagram as in Fig. 4.6b| but with A" = 100 taken into account. Note the different
scale compared to Fig. [£.6b]
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Appendix C

Supplemental material for Chapter 5

C.1 Symmetries of the BdG Hamiltonian and consequences for
matrix elements

C.1.1 Particle-hole symmetry

The particle-hole symmetry of the BAG Hamiltonian A in is described by the anti-unitary
operator C = UcK, where K denotes complex conjugation and the unitary part is given by
Uc = 1yoy. It holds UCh*Ua1 = —h and thus, given an eigenstate |n) with energy ,, an
eigenstate with energy £_,, = —¢, exists, for which holds (up to a phase) |—n) = Ug |n*).
Consider now a matrix element of the form (m|r,0,|n), relevant in Section It is

(m|7.0y|n) = ((=m)"|UcT0,Uc|(=n)") = — ((=m)"[T=0y|(=1)")

((=m)*[(1204)"1(=n)") = (=m|T20y| — )" = (=n|T20y] —m). (C.1)
In the same section of the main text we have also made use of the fact that
(aloy| — o) = (a|mylo™) = (o"|rylo)” = — (o]rylo™) = 0, (C.2)
where the second equality follows from the hermiticity of 7.

C.1.2 Inversion symmetry

For the transverse part of the BAG Hamiltonian hg, defined in Section for a given phase
difference (at some y) ¢(x) = ¢ 6(z), it holds

hy = €7/ (hol,_,_,) e 7/2, (C.3)

since

. —ip(—z) . ip(1-0(—x))

T2 /2 0 e '’ —ipT2 /2 _ 0 €

et <ew<m> 0 ) e Tt = (ewue(z)) 0
eigo(a:

- (@—z’?pm 0 )>‘ €4

91



C Supplemental material for Chapter@

Thus for the eigenmodes &, (z) it holds (up to a phase),
&n(x) o 9726, (). (C.5)
It follows
(n|720y[n) = (n|r20y|n)" = — (0| o0y |n*) = — (nle” 7=/ 2 1.0,/ %|n)
— (n|r.0oyn) = 0. (C.6)
By the same logic (n|moy|n) = 0.
In fact, the inversion symmetry holds even for the full Hamiltonian (5.3). The y-dependence,

which the unitary transformation in (C.3]) obtains via ¢(y), is then crucial, since the additional
contribution following from the inversion of the vector potential

T
Ay(—z)oy = —Ay(z)oy + an (C.7)
is compensated by the extra contribution stemming from
. ; 1
et W)T=/2 (—iT,040y) e P W)T=/2 = — 17,040y — §¢’(y)ay, (C.8)

since ¢'(y) = 27 /1p.

C.2 Second-order corrections to the effective Hamiltonian

Plugging (5.30)) into the right hand side of Eq. (5.29)), it follows

2 o). 0} a-a(0) ~ (B = 2o 0)as 1) (©9)
. 1 . .
- n;; ; —iVon (y)0y — Bon(y)] E o)t Bty [~ v (y)8y — Bu(y)] auy).

We next approximate in the denominator F — &, (y) + Bnn(y) & —en(y) = €_n(y). Further-
more, in the sum over [ we once again assume the contributions by I # +1 to be negligible
compared to the low-energy contributions and are thus left to evaluate

> [=itra0)0, = Bonl)] — s [=0,00)0, = B (0]
n#+1 EnlY
1 92
;1 [ @) van(y)vm/ W52
- (00 ) = B 0) ~ i) B ) 5 (€0
+ enty) <’L'U0'n(y)B,,no./ () + Bon(y)Bpor (y))]

N Z n() [ vm,(y)g fwgn(y)ffmf(y)}

2
T eny) Y
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C.2 Second-order corrections to the effective Hamiltonian

with ¢/ = 0. From charge conjugation symmetry, it follows
Unm = U—m,—n, Bpm = 10y V—_py,—n — B_m_n = 10yUn,m + B;n (C.11)

With this, we find the coefficient in front of the second derivative

Von Ung! oo’
o -3 ) e (C12)
n#+1 nlY
where
2
V41,n\Y)Un, Yy V41,n\Y
A= - 3 eethealy) g Res WD gy proy ) (€9
n#+1 n\Y n#+1 n\Y
: n) nl ) {n| —|-n) (—n|
with P= )’ - =y 25n o : (C.14)
n#+1 n#+1
Furthermore, the expression multiplying the first derivative then yields
By AWl +idto(y)e]” + it y)es” + 60, (y)po (C.15)
where
009 = Re(004), 60, =Im(604), 00, =Re(60-), 07, =Im(60_), (C.16)
with
~ U:I:l,an,+1 .
0oL =2 Z — = 2i (1| T0y P20y [0yés1) - (C.17)
n#+1 "

Finally, for the contributions without derivative, we obtain

1: ~ O'O' 1 ~ CTO'/
Lo @) o7~ [P+ 0| 27 (©18)

i ~ o0’ i ~ o,0’

5(5%( ) 3 5(5%@)),@’

with
|Bn +1|

Z — (0y€41|T20y PT20y|0y€41) - (C.19)
n#+1

All in all, including the second-order corrections, the effective Hamiltonian thus is of the
form

W™ = 2 {0, ven() + 50w} pe — 3 (10,5, (1)) (C.20)
=0, (AW p= — 5 (10,5500} o + [<(0) + Bolo) + D) + 5 000 | -

Note that all additional terms comply with the charge conjugation symmetry, the unitary
part of which on this level is given by Ugx = p,.
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C.3 Generalized set of harmonic oscillator eigenfunctions

The Schrodinger equation for the harmonic oscillator of the form

2
<_(:ldz2 + z2> d(z) = Ko(z) (C.21)

has a well known normalizable solution if K = 2n + 1, n € Nyp. In Section we are
interested in the complete set of solutions to this equation for arbitrary values of K, regardless
of normalizability. In Ref. [123|, these are shown to be given by

1-K 1 2
K - M - 2 —z%/2
¢O (Z) 4 7272 € )

- K
¢{((2) — M (347 2’22) e—z2/2

(C.22)

with the confluent hypergeometric function M (a,b,x). The ladder operators

a:\}g(i—i—z), aT:\}i<—jz+z) (C.23)

act on these in the following way:

adf (2) = (1= K)¢1 2(2), adi (2) = 65 (=), (C.24)
a6 () = (1 + K)o1 (2),  aloi (2) = —¢5(2). '

C.4 Confirmation of results from Ref. [114]

In Ref. |[114] (in the case of zero magnetization M = 0) the energies and wavefunctions of the
CdGM states bound to a Josephson vortex have been derived using the method presented in
Section [5.2.2] of this thesis. Here, we compare and confirm the results using the approach of the
spectral matrix M (FE) (see Section for one example set of parameters. In Fig. the
absolute value of the lowest eigenvalue of M (F) is shown as a function of E. Since eigenmodes
of the Hamiltonian correspond to zero modes of M, we expect zero eigenvalues at the energies
predicted by the formulas taken from Ref. [114], indicated by the red dashed lines. Indeed, we
find that the results closely match, with the agreement becoming increasingly worse for higher
excited states. In Figs. , the probability densities for the zero-energy state (MBS)
and the first three excited states are plotted and shown to closely resemble the predicted
form of the wave functions (for exemplary purposes we chose an offset ¢y = 7/2 of the phase
difference which shifts the Josephson vortex from being centered at I[p/2 to lp/4).

For demonstration purposes, in Fig. we also show the two degenerate zero-energy states,
localized with a distance [g between each other, we find if we choose n = 2 flux quanta to be
trapped in the junction.

C.5 Introducing asymmetry to the junction

As mentioned in the main text, the additional zero modes we find to emerge by tuning un
in Section are not robust under breaking of the z-inversion symmetry. Since in any real
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W =0.01,M =0,py =1, ug = 100,lp = 16,n = 1,{, = 64

0.125 : : : :
E ! i i
0.100 : ! ! !
—0.075 N i i i i
S SR S ! ! ! :
= ’ - | | P e
= 0.0501 : ! ! — :
1 1 1 " LY 1
. b b ! !
0.025 1 . e — ' L
~ ‘e 1 ee 10" 1 1
. en i o i ot
A d 5 kY
0.000 - ~ 5
0.00 0.02 0.04 0.06 0.08 0.10 0.12
E/AO
(a)
E=0n=1¢ =7/2 (Ay~10"") E=00623,n=10=1/2 (Ay~ 1079
~1.01 —1.01
E 0.8 2 0.8
g 5
5 0.6 = 061
2041 o 04l
= =04
= >
0.2 T 021
= =
200 200
0 4 8 12 16 0 4 S 12 16
y/€ y/€
(b) (c)
E=0081,n=1,0=7/2 (A~ 1074 E=01078n=1,0=7/2 (A~ 107%
—~1.0 —~ 1.0
g o] =]
=081 E 0.8
206 Z 0.6
2 2
2 (4] 204 “
=Y Y
= =
0.2 I 0.2
B B
20,0 2.0.0
0 4 8 12 16 0 4 8 12 16
y/€ y/€

Figure C.1: CAGM spectrum in the Andreev regime (a) Absolute value of the lowest-
lying eigenvalue A\j/(E) of the spectral matrix M(E) for the parameters given above the
plot. The red dashed lines indicate the spectrum found in Ref. , which closely matches
the occurrences of \yy = 0 we find here. (b)-(e) Probability densities of the determined
CdGM states along a slice at « = 0. The profiles are in agreement with the ones predicted
in Ref. , shown in the insets. Note that for demonstration purposes we chose ¢ = /2,
leading to the states being localized at y = I /4.
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W =0.01,M=0,uy=1,us =100,lp = 16,n = 2,0y = 7/2,0, = 128 (Apy ~ 1071)

|W (2 = 0,y)[*(not normalized)

01

0 16 32 0 16 32
y/¢ y/¢

Figure C.2: Two degenerate zero modes for n = 2 Josepshon vortices in the Andreev
regime. Depicted are arbitrary linearly independent superpositions of the two localized
solutions at y; = lp/4 and yo = y1 + 5.

system irregularities of the width, chemical potential and induced superconducting gap have
to be expected to be present, these modes will thus appear at low, but non-zero energies. In
Fig. we show the spectral flow for the case of Ag(z > W/2) # Ag(xz < W/2) (differing by
one percent) and see, compared to Figs. |5.6aL |5.6b| and |5.7a|7 that for puy > ,uS\C,) indeed the
first excited state does not become a zero mode but remains at a constant non-zero energy

instead.
In accordance, in Fig. [C4] the additional Dirac cones we observed in Fig. [5.9d are gapped

out under these circumstances.
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C.5 Introducing asymmetry to the junction

W = 0.05, M—O s =20l =24n=1,0, =48

i >0.02
0.025 No(z > T/ Ag(x < —1) = 1.01 B
0.020
0.015 =
1 o)
J ~
0.010 B
0.005
0.000 1 s oSS Smsmmsm=ss=====s ' 0
T 107 137
/Do

Figure C.3: Spectral flow for asymmetric superconducting gaps, breaking the z-
inversion symmetry. It can be observed that the previously found emergent zero modes
instead remain at a constant, finite energy. The black dashed lines serve as guide to the

eye. Note the different energy scale compared to Fig. .

pv > pl, Aoz > W) /Ag(x < &) = 1.01

-3 9 41 0 1 P 3
UFk/A[)

Figure C.4: Dispersion of the one-dimensional bound states for asymmetric super-
conducting gaps for a value of py/Ag = 5.57 at a phase difference of ¢ = m. The rest of
the parameters are chosen as in Fig. While the crossing at k = 0 is robust against the
breaking of z-inversion symmetry, the two additional Dirac points become gapped (note the
different energy scale in comparison to Fig. to make the gaps more clearly visible).
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