KIT | KIT-Bibliothek | Impressum | Datenschutz

Evaluation of Semi-supervised Semantic Segmentation for Remote Sensing, Medical Imaging, and Machine Vision Settings

Landgraf, Steven ORCID iD icon 1; Huber, Johannes 1; Hillemann, Markus ORCID iD icon 1; Ulrich, Markus ORCID iD icon 1
1 Institut für Photogrammetrie und Fernerkundung (IPF), Karlsruher Institut für Technologie (KIT)

Abstract:

Semi-supervised semantic segmentation (S4) has garnered significant attention in recent years due to the time-consuming and costly process of creating pixel-level annotations. Instead of only relying on labeled data, semi-supervised approaches leverage both labeled and unlabeled data to mitigate the issue of the labor-intense annotation process. Although current state-of-the-art methods in S4 achieve impressive results, they are often only evaluated in specific domains, which are not fully representative of many real-world applications. For this reason, we evaluate the foundational Mean Teacher approach together with UniMatch, one of the current state-of-the-art methods, on multiple datasets spanning remote sensing, medical imaging, and machine vision settings. Our results demonstrate that semi-supervised approaches are able to achieve significant performance gains in label-scarce environments and even surpass the fully supervised baseline with 100% of the labels in the machine vision setting.


Verlagsausgabe §
DOI: 10.5445/IR/1000183402
Veröffentlicht am 23.07.2025
Originalveröffentlichung
DOI: 10.5194/isprs-annals-X-G-2025-527-2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Photogrammetrie und Fernerkundung (IPF)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2194-9050
KITopen-ID: 1000183402
HGF-Programm 12.17.21 (POF IV, LK 01) Membrane materials & processes in water process engineering
Erschienen in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Verlag Copernicus Publications
Band X-G-2025
Seiten 527–534
Vorab online veröffentlicht am 11.07.2025
Schlagwörter Semi-supervised Learning, Semantic Segmentation, Remote Sensing, Medical Imaging, Machine Vision
Nachgewiesen in Scopus
OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page