KIT | KIT-Bibliothek | Impressum | Datenschutz

Surface-modified gelatin hydrogel scaffolds with imprinted microgrooves: physical characterization and study on endothelial cell interaction

Salehi, Ali ; Rutz, Lena; Ulbrich, Konstantin; Stevens, Johanna; Guttmann, Markus ORCID iD icon 1; Worgull, Matthias 1; Cattaneo, Giorgio
1 Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)

Abstract:

Endothelialization of biomaterials enhances biocompatibility, hemocompatibility, and reduces inflammatory responses in blood-contacting materials. Surface topographies, particularly groove-like structures, influence endothelial cell morphology and function. This study investigates the impact of microgroove dimensions on endothelialization in gelatin hydrogel scaffolds, alongside assessing their physical and mechanical properties. Using sequential replications, six microgroove geometries with widths ranging from 2.86 µm to 84.20 µm and depths from 284 nm to 919 nm were fabricated on gelatin hydrogel. Surface characterization of the scaffolds over 5 days using confocal microscopy revealed a shrinkage followed by dimensional stability after 24 h. Tensile testing after conditioning in cell culture environments showed Young’s modulus of 327.2–529.5 kPa comparable to natural blood vessels. Cultivation of human endothelial cells demonstrated improved cell orientation and elongation on microstructured surfaces. Notably, two specific microgrooved scaffolds (9.33 µm width, 599 nm depth and 22.27 µm width, 919 nm depth) enhanced cell proliferation, adhesion and accelerated confluent monolayer formation as confirmed through fluorescent staining for cell nuclei, Vinculin, and VE-cadherin expression, respectively. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000183410
Veröffentlicht am 24.07.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mikrostrukturtechnik (IMT)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 07.2025
Sprache Englisch
Identifikator ISSN: 0920-5063, 1568-5624
KITopen-ID: 1000183410
Erschienen in Journal of Biomaterials Science, Polymer Edition
Verlag Taylor and Francis
Seiten 1–36
Vorab online veröffentlicht am 20.07.2025
Nachgewiesen in Scopus
OpenAlex
Web of Science
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page