KIT | KIT-Bibliothek | Impressum | Datenschutz

Optimal spectral approximation in the overlaps for generalized finite element methods

Alber, Christian; Bastian, Peter; Hauck, Moritz 1; Scheichl, Robert
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

In this paper, we study a generalized finite element method for solving second-order elliptic partial differential equations with rough coefficients. The method uses local approximation spaces computed by solving eigenvalue problems on rings around the boundary of local subdomains. Compared to the corresponding method that solves eigenvalue problems on the whole subdomains, the problem size and the bandwidth of the resulting system matrices are substantially reduced, resulting in faster spectral computations. We prove a nearly exponential a priori decay result for the local approximation errors of the proposed method, which implies the nearly exponential decay of the overall approximation error of the method. The proposed method can also be used as a preconditioner, and only a slight adaptation of our theory is necessary to prove the optimal convergence of the preconditioned iteration. Numerical experiments are presented to support the effectiveness of the proposed method and to investigate its coefficient robustness.


Volltext §
DOI: 10.5445/IR/1000183415
Veröffentlicht am 25.07.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 07.2025
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000183415
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 22 S.
Serie CRC 1173 Preprint ; 2025/33
Projektinformation SFB 1173, 258734477 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Siehe auch
Forschungsdaten/Software
Schlagwörter generalized finite element method, multiscale method, Kolmogorov n-width, local spectral basis, spectral computations on rings, RAS preconditioner
Nachgewiesen in OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page