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ABSTRACT

This study extends the investigation of the wetting phenomenon to larger droplets on a smooth solid substrate, where gravitational effects
become significant. We examine three distinct droplet geometries: a spherical cap, an oblate spheroidal cap, and a pancake shape, and we
observe that the approximated droplet shape depends on the droplet size and the interfacial tensions. For small droplets on a smooth solid
substrate, the droplet shape is assumed to be a spherical cap. However, as the droplet size increases, the equilibrium shape of the droplet
becomes deformed due to the effect of gravity. The actual equilibrium contact angles, here referred to as microscopic contact angles, are
determined by Young’s law and are independent of droplet size or axisymmetric shape. Macroscopic contact angles are obtained by approx-
imating the droplet shape with a geometric model and minimizing the free energy without assuming the validity of Young’s law. We extend
this concept to larger droplets and systematically compare these macroscopic angles with the microscopic ones. Our results demonstrate a
correlation between the macroscopic contact angle and droplet size, with significant deviations from Young’s law, increasing with droplet
size. These findings are consistent with the Allen-Cahn model. Furthermore, we highlight the impact of the chosen measurement method on
the accuracy of the contact angle, which varies with droplet size. In addition, the contact angle hysteresis—caused by varying liquid-solid and
solid-gas interfacial tensions, which describes an intermolecular rearrangement of the liquid and gas species in an adsorption layer on the
microscopic scale—is also influenced by the droplet size.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0275605

I. INTRODUCTION For small droplets, the effect of body energy is negligible, and
the droplet shape can be approximated as a spherical cap with
Figure 1(a)(i) illustrates a droplet deposited on a smooth solid volume V and cap radius R, illustrated in Fig. 2,
substrate in a gas phase, such as air, forming an apparent contact
angle. The liquid, gas, and solid phases are denoted by L, G, and S, ZR3 ,
respectively. The interfacial tensions of liquid-gas, liquid-solid, and V= 3 (1-cos 0)7(2 + cos 0), 1)

solid-gas are represented by o, y;, and y, respectively. This phe-

nomenon, known as the wetting effect, manifests in various everyday v 1
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applications, such as self-cleaning surfaces and inkjet printing," and = > . (2)
is also observed for larger droplets in liquid lenses.” It is influ- (1 = cos 6)°(2 + cos 0)
enced by several physical factors, including surface roughness and
heterogeneity.’ The surface area of the liquid—gas interface is given by
J. Chem. Phys. 163, 034706 (2025); doi: 10.1063/5.0275605 163, 034706-1
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FIG. 1. (a)(i) Schematic cross-sectional view of the liquid droplet (L, blue) on a solid
substrate (S, gray) in a gas phase (G, white), showing the contact angle 6 and
the interfacial tensions o, y;, and y,, and (ii) sketch of the surface composition,
illustrating a liquid droplet (L, blue) on a solid substrate (S, gray) in a gas phase
(G, orange), with intermolecular rearrangements at the adsorption layer. (b) Cross-
sectional view of the three considered shapes of the liquid droplet: (i) spherical cap,
(ii) oblate spheroidal cap, and (iii) pancake shape.
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FIG. 2. lllustration of the cap radius R and the base radius r = R'sin 6 of the liquid
droplet formed by a spherical cap.

St = 271R2(1 - cos 6).
The total surface energy of the system can be expressed as
Er = 0816 + yur(R sin 0)* + y6[S — (R sin )], 3)
where S represents the total area of the solid surface. It consists
of the liquid-gas, liquid-solid, and solid-gas interfacial energies,
respectively. By incorporating the volume constraint from Eq. (2)

and defining Ay = y; — y,, the total surface energy in Eq. (3) can be
rewritten as

[ 9V?
L=

(1 -cos 6)(2 + cos 6)2:|‘ [ZU_AV(l + cos 6)] +96S.

The derivative of E; with respect to 0 is given by

1

:| 2(Ay — 0 cos ) sin 6.

dE; [ 9V2in

a0 - (1 - cos 8)*(2 + cos 6)°
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Setting dE;/d6 = 0 and solving for 6, we obtain the equilibrium
contact angle, which satisfies Young’s law,*

cosfy, = L ; n (4)

This equation is based on several simplified assumptions and, for
example, does not account for surface roughness or heterogeneity.
Since measuring the interfacial tensions y. and y; individually is
challenging, their difference Ay :=y. -y, is typically determined
through contact angle measurements.

In the analysis above, gravitational effects were neglected, as the
calculations were restricted to small droplets.

In the following, we incorporate gravitational effects and distin-
guish between two concepts of equilibrium contact angles: micro-
scopic and macroscopic contact angles. We define microscopic
contact angles by the actual equilibrium contact angles at the three-
phase contact line. For axisymmetric droplets, it can be derived by
applying the transversality condition™® or, alternatively, by calculat-
ing the droplet profile that minimizes F — pV, where F represents the
free energy and the Lagrange multiplier p enforces volume conserva-
tion.” Both methods yield Young’s law, which is independent of the
droplet size and unaffected by gravity. Macroscopic contact angles
are obtained by minimizing the total free energy using an approx-
imated droplet geometry. As larger droplets become increasingly
deformed and flattened compared to a spherical cap due to gravity,
the approximated geometry depends on the droplet size. To account
for this, we employ three geometric models for approximating the
droplet shape, whose cross-sectional profiles are shown in Fig. 1(b):
the spherical cap, the oblate spheroidal cap, and the pancake shape.
Previous studies have primarily focused on small droplets that can be
well described by an oblate spheroidal cap.® This study extends the
approach to larger droplets, systematically comparing the macro-
scopic contact angles obtained with the respective microscopic ones.
It illustrates the influence of the droplet size and the choice of
contact angle measurement method on the accuracy of contact
angles.

The total free energy is determined as the sum of the interfacial
energies Es, which is analogous to the previously described case of
the spherical cap, and the body energy Eg.

In Ref. 9, the droplet shapes are considered as a spherical cap,
an oblate spheroidal cap, and a pancake shape. Here, Young’s law
is used to describe the equilibrium contact angle for each shape,
with the pancake shape simplified by omitting the rounded edge.
Furthermore, the effect of line tension on the equilibrium contact
angle was examined in Refs. 9 and 10. In addition, the intermolecu-
lar rearrangements of liquid and gas species in the adsorption layer
were included, as in Ref. 11. By applying the transversality condition,
Young’s contact angle is independent of the gravitational effect.””’
The gravitational effect on the oblate spheroidal cap droplet model
is addressed in Refs. 8 and 12, which includes the calculation of the
equilibrium contact angle by energy minimization, differing from
Young’s law. In Ref. 13, the RTEA (surface of revolution by rotating
two elliptic arcs) model is developed to describe the shape of heavy
droplets on hydrophobic surfaces since the symmetry of the oblate
spheroidal model is inconsistent with the Young-Laplace equation.
In Ref. 14, a size-dependent term in Young’s equation, resulting
from gravity, is examined.
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In the literature,”” the pancake shape was assumed to be a cylin-
der, the rounded edges were neglected, and the equilibrium contact
angle for this droplet model has not been investigated previously.

The remaining manuscript is structured as follows: first, we
present the Blokhuis-Shilkrot-Widom derivation of the micro-
scopic contact angle in the presence of gravity in Sec. II. We present
a theoretical investigation of energy minimization and the macro-
scopic contact angles of the droplet shaped as an oblate spheroidal
cap in Sec. III A and a pancake shape in Sec. III B. Subsequently,
these geometries are compared to determine which shape provides
the most accurate approximation in Sec. III C, depending on the
droplet size and Ay/o. In Sec. IV, we present and compare energy
landscapes by varying the liquid-gas and solid-liquid interfacial
tensions as functions of surface compositions for different values
of S/R3 and for the three considered droplet shapes. This analy-
sis aims to elucidate the differences in contact angle hysteresis on
a smooth solid substrate, induced by molecular rearrangements in
an adsorption layer, as illustrated in Fig. 1(a)(ii), across various
droplet sizes. In addition, we provide macroscopic contact angle
maps for each geometrical droplet shape model, along with maps of
the geometrical parameters of both the oblate spheroidal cap and the
pancake shape. In addition, we present the results of the Allen-Cahn
model"” in Sec. V, where the contact angles are measured using
two different methods and compared with the theoretical predic-
tions. This is followed by a conclusion in Sec. VI and an outlook
in Sec. VII.

Il. MICROSCOPIC CONTACT ANGLE: THE CLASSIC
DERIVATION OF YOUNG'S LAW WITH GRAVITY

In Refs. 7, 16, and 17, the droplet profile #(z) and the con-
tact angle, which minimize the free energy F, are calculated. The
first term of the free energy represents the gravitational energy, with
the gravitational acceleration g and the density difference between
the liquid and gas phases Ap. This term is added to the second and
third terms, which describe the interfacial energies, similar to those
described in Sec. I,

F- f ApgzdV + / odSic - f AydSsz,

where S and Ss; represent the liquid-gas and solid-liquid inter-
facial areas, respectively. The profile #(z), sketched in Fig. 3, repre-
sents the radius of the droplet shape at a given height z with respect
to the solid surface. The droplet is considered to be rotationally

z

h

n(2)

FIG. 3. Half contour line of the droplet, characterized by 7(z).
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symmetric with respect to the z-axis, and the free energy functional
is, thus, given by

h 2 7 N213
Finl = [ dpgem()” + o2mn()[1+1 ()]’
- Aynn(2)*8(z)dz,

where & denotes the height of the droplet and ¢ is the Dirac delta
function. In order to fix the droplet volume, the Lagrange multiplier
p is introduced, and the following term is added:

-p de = —p/ohrm(z)zdz.

Since the aim is to find the shape 7(z) that minimizes the free energy,

the functional derivative 5([;;(5,‘)/] is considered, given by
S[F-pV] [h { o271
— = = —p+Apgz)2nn(z) + —————
on(2) | (P + Bpgz)2mn(2) 0or (]

- UM - Ay2m1(z)8(z)}6(z -Z')dz
[1+7'(2)°]>

7' (2) =
0 n'(z)z]% 8z-z )]Zzo. (5)

The boundary term in Eq. (5) emerges through integration by parts.
A[F—pV]
(")
equation and a boundary term, namely, Young’s equation equivalent
to Eq. (4), which defines the microscopic contact angle and remains

unaffected by gravity.”

+ [0271;1(.2)

The minimization of the free energy leads to the Laplace

Ill. MACROSCOPIC CONTACT ANGLE:
APPROXIMATION BY A GEOMETRIC MODEL

In this section, we consider a liquid droplet of arbitrary size
in the gas phase on a solid substrate. The droplet size is related
to the Bond number Bo = ApRig/a, where g denotes the gravita-
tional acceleration and Ap = p; — p., represents the density differ-
ence between the liquid and gas phases. The initial radius, Ry, defines
the radius of a spherical droplet before it is placed on the surface,
with the volume given by V = %nRS. We focus on three geometric
models for the droplet shape: the spherical cap, the oblate spheroidal
cap, and the pancake shape.

The body energy of the droplet can be expressed as

Eg = ApgzV,

where z represents the height of the droplet’s centroid relative to the
solid substrate.

The free surface energy is given by the sum of the interfacial
energies of the liquid-gas, solid-liquid, and solid-gas interfaces,

Es = 0S16 + y1Sst + y6Ssc- (6)

The surface areas of the liquid-gas, solid-liquid, and solid-gas inter-
faces are represented by Sig, Ss, and Ssg, respectively. The total area
of the solid surface is represented as S = Ss;. + Ssg and the interfacial
tensions of the liquid-gas, solid-liquid, and solid-gas are given by o,

J. Chem. Phys. 163, 034706 (2025); doi: 10.1063/5.0275605
© Author(s) 2025

163, 034706-3

81:/Z¥| G20Z 1oquianoN €0


https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics

y;>and y, respectively. We obtain the total energy by summing the
surface energy and the body energy as

E= Es + E(; = O'SLG - AySSL + yGS + AngV, (7)

where Ay = y; — y,. Based on the preceding theoretical framework,
the macroscopic contact angle is obtained by minimizing the total
free energy.

A. Energy minimization of the oblate
spheroidal cap model

The blue line in Fig. 4 represents a droplet shaped as an oblate
spheroidal cap, which will be investigated in the following. It is
formed by an oblate spheroid, whose contour can be described by
rotating an ellipse, as defined by the parametric equation,

a’x* + (z-aR)* = 'R,

with 0 < @ < 1 around the z-axis. The oblate spheroid is truncated
such that the contact angle 6 is formed on the solid surface. The
vertical semi-minor axis of the oblate spheroid is R, while the
horizontal semi-major axis is R/\/a. The red dashed line in Fig. 4
depicts an imaginary spherical cap with an equivalent volume to the
oblate spheroidal cap and the contact angle 6.. This spherical cap
is used to calculate the liquid-gas interface surface area, derived in
Appendix A, and the solid-liquid interface surface area,

SiG = w(oc3 (arcsinh(lp—?) - arcsinh(la)) +v— 1//), (8)

a2 a2
2 .2
Sq = mR* sin 96) )
a

with

v= ¢\/—(C052(9c))a3 +a’ +cos*(8) v,

y=V1- o, ¢ =cosf, and w = —%. The derivation of the vol-
ume and the height of the centroid of the oblate spheroidal cap can
be found in Appendixes B and C, respectively,

V= §R3(1 7c0595)2(2+C039c)’ (10)
anR? 3
Vz = b (1 -cos6:)”(3 +cos b,). 1m
z
W Lok
0.6, i

f | T

R/\/«a r

FIG. 4. Schematic sectional view of the droplet represented as an oblate spheroidal
cap (blue line) with the macroscopic contact angle 6 and the imaginary spherical
cap (red dashed line) having the same volume as the oblate spheroidal cap and
the corresponding imaginary contact angle 6.

ARTICLE pubs.aip.org/aipl/jcp

By applying the volume constraint Eq. (10), the previous equations,
namely, Egs. (7), (8), (9), and (11), the free energy can be expressed
as a function Eyr (6., ). The macroscopic contact angle 6 can be cal-
culated by the imaginary contact angle 6. and the parameter «, as
detailed in Appendix D, being consistent with Ref. 8,

arctan ((x% tan GC) 0<0.< g,
bis bis

0=1 - 96 =
2 2

3 b1
arctan (oc2 tan 95) +7 5 <0 <m

The equilibrium oblate spheroidal cap is obtained by using
the parameters « and 6, to minimize the energy Ep (6., &) over the
domain Q := {(a,6:)[0 < & < 1,0 < 6. < 7}. Consequently, we solve
the equations OE;;/0a = 0 and OE /00, = 0. This system of equa-
tions is generally not analytically solvable and is solved numerically.
An exemplary energy landscape for Er(6:,a) on Q is shown in
Fig. 5, where the unique energy minimum in () is marked by a cross.

Figure 6(a) shows the macroscopic contact angle 0, obtained
through energy minimization of E; (6., «), for different Bond num-
bers, as a function of Ay/o. This behavior is consistent with the find-
ings in Ref. 12. It can be observed that the macroscopic contact angle
of the oblate spheroidal model depends on the Bond number, and
thus on the droplet size, the density difference Ap, the gravitational
acceleration g, and the interfacial tensions between the liquid-solid,
solid-gas, and liquid-gas phases. These interfacial tensions also
influence Young’s law. In general, these curves are not centrally sym-
metric with respect to (Ay/a,0) = (0,90°), in contrast to Young’s
law. They do not pass through the point (Ay/o,6) = (0,90°),
which implies that the rule derived from Young’s law, stating Ay > 0
for hydrophilic wetting and Ay < 0 for hydrophobic wetting, does
not hold in this case.

In addition, Young’s law matches the macroscopic contact
angle 0 obtained by energy minimization of the surface energy, as
given by Eq. (6), excluding the body energy. The contact angle con-
verges to Young’s law with decreasing Bond number or droplet
size, respectively. For superhydrophobic contact angles, a signifi-
cant deviation (of 28° for Bo = 1) can be observed. For small Bond
numbers (Bo < 1), the deviation between the macroscopic contact

E||/(G1tR02) :?’2:6-4—

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
01 F . : :
50 100 150
6¢

FIG. 5. Energy landscape Ej(6;,«) of the oblate spheroidal cap for
Ay/o = 0.0625, with the unique energy minimum marked by a cross.
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no body energy
......... Young's law

Ayl Ayle

Aylo

FIG. 6. (a) Macroscopic contact angle 6, (b) imaginary contact angle 6;, and (c) parameter « of the oblate spheroidal cap by energy minimization as a function of Ay/o for
different Bond numbers: Bo = 0.01 (pink), Bo = 1 (green), and Bo = 20 (blue) compared to the curves neglecting body energy (cyan dashed line) and Young's law (black

dashed line).

angle and Young’s law decreases as Ay/o decreases and shows a good
agreement.

In Fig. 6(b), the corresponding imaginary contact angles 0. are
presented. As the Bond number decreases, the imaginary contact
angles, 6, approach those determined by energy minimization while
neglecting the body energy (cyan dashed line).

The dependence of the equilibrium parameter a on Ay/o is
shown in Fig. 6(c). The black dashed line, derived from Young’s law,
does not coincide with the cyan dashed line obtained by minimiz-
ing the surface energy of the oblate spheroidal cap model, Eq. (6),
while neglecting the body energy. It follows a qualitatively different
course compared to the other curves. The solid lines, representing
the parameter o obtained through energy minimization of the oblate
spheroidal cap model, approach « obtained by minimizing the sur-
face energy and neglecting the body energy (cyan dashed line) as
the Bond number decreases. These solid lines converge to 0 as Ay/o
approaches 1.

The agreement of the equilibrium contact angles of the oblate
spheroidal cap model from Young’s law indicates the validity of this
model.””

B. Energy minimization of the pancake shape model

The pancake shape model, which is investigated in the follow-
ing, is shown in Fig. 7. It consists of a flat cylindrical part with the
radius r; and the height 4 at the center and a rounded edge, which
can be regarded as part of a torus with major radius ; and minor
radius R. The pancake is shaped in such a way that the contact angle
0 is formed. Rigorously speaking, the flat cylindrical part does not

FIG. 7. Schematic sectional view of the droplet formed as a pancake.

occur in a physical droplet. The pancake shape model is employed
to approximate the droplet profile for large droplets, where the
height remains nearly constant near the center. The surface area of
the liquid-gas interface S;g, the volume V, and the height of the
centroid z are calculated in Appendixes E-G, respectively,

Si = mry + 27 RO + 2R (1 — cos 6),
V=Vi+V,-V;3,

with )
Vi =nriR(1 - cos 0),
2
V, = mR*r 0 + ?ﬂR3(1 - cos ),
cosB(1, 2rf
Vi = —r=r+—_—1
} msin 9(3r n 3r
W:[ ZdV1+/ Zde—/ ZdV3,
Vi Va V3
with

f zdV; = ERZ(I — cos G)Zr%,
v, 2

R R R R R
/ AV, =27 2+ A2 —g o Jf@ i
v, 3 8 3 3 2

2 2 3 4
r r 2r r

fde3:—ﬂzf ———1+—1——12 ,
Vs 12 2 3r  4r

2
Ssp = nr”,

with r =71 + Rsin6, h=R(1-cos0), £ =cosb, and A =sin6. By
using the previous equations and eliminating the parameter r;
through the volume constraint, the total free energy from Eq. (7) can,
therefore, be considered a function Ep; (6, h) of the height h and the
macroscopic contact angle 6. The equilibrium of the pancake shape
can be numerically calculated by minimizing the energy Epn(6, h)
over the domain as

Q:={(6,h)[0<0<m0<h<hmu}

1

3V 3
(1-cos 8)*(2+cos 8) |~

hmax = (1 — cos 6)
s

where the maximum value Aimax represents the height of a spherical
cap with the contact angle 6 and, therefore, r; = 0, as visualized in
Fig. 8, and solving 8Em(9, h)/89 =0and 8E111(9, h)/ah =0.

J. Chem. Phys. 163, 034706 (2025); doi: 10.1063/5.0275605
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The macroscopic contact angles obtained through energy mini-

0.007 £ mization converge to Young’s law as the Bond number decreases.
0.006 E Therefore, the deviation of the droplet shape and the pancake
E shape is increasing with increasing Bond number. Furthermore,
0.005 F the deviation between the macroscopic contact angles obtained by
< 0004 O energy minimization and Young’s law decreases with increasing
E Ay/o. The observed curves do not intersect the point (Ay/o,6) =
0.003 £ (0,90°), which suggests that the principle derived from Young’s
0.002 E e law—stating Ay > 0 is applicable to hydrophilic wetting and Ay < 0
E pertains to hydrophobic wetting—is not applicable in the present

0.001 — ' L scenario.

50 100 150

6

FIG. 8. Energy landscape Ej; (6, h) of the pancake shape for Ay/o = 0.0625, with
the unique energy minimum marked by a cross.

Figure 9 shows the macroscopic contact angles 0 obtained by
energy minimization of Ey;(6,h) as a function of Ay/o for differ-
ent values of the Bond number, represented by colored solid lines,
and Young’s law as a black dashed line. We observe a dependence
of the macroscopic contact angle on the Bond number, where the
contact angle is decreasing with increasing Bond number. In addi-
tion, the contact angle depends on the liquid-gas, solid-liquid, and
solid—gas interfacial tensions, which also influence Young’s law, as
well as the density difference Ap and the gravitational acceleration.

C. Comparison of the considered geometric droplet
shape models

The capillary length I = \/0/(Apg) is defined by equating the
Laplace pressure ¢/l with the hydrostatic pressure Apgl and deter-
mines the initial drop radius Ry, which corresponds to Bo = 1. For
small droplets (Ry << I or Bo « 1), capillary forces dominate, and
the curvature is constant, governed by the Laplace equation, result-
ing in a spherical cap. In contrast, for large droplets (Ro > [ or
Bo >> 1), gravitational forces prevail, leading to a flattened droplet
shape.'®

In Fig. 10(a), the energies of the spherical cap, including the
gravitational energy (Ep), the oblate spheroidal cap (Err), and the
pancake shape (Epr), are shown as a function of the Bond number.
It can be observed that the energy of the spherical cap approximates
the energies of the oblate spheroidal cap and the pancake shape for
small Bond numbers. For larger Bond numbers, the energy of the

180 ‘ 5 spherical cap exceeds the energy of the oblate spheroidal cap and
) the pancake shape, which are comparatively close to each other. The
135 [~ N~ T 8\213 energy of the spherical cap is greater than or equal to the energy of

; 90
<

45 |

-1 -0.5 0 0.5 1
Aylo

FIG. 9. Macroscopic contact angle 6 of the pancake shape as a function of Ay/o

for different Bond numbers: 6y with Bo = 0.01 (pink), 61 with Bo = 1 (green),
and 6 with Bo = 20 (blue), compared to Young's law Oy, (black dashed line).

=
T

both the oblate spheroidal cap and the pancake for all Bond num-
bers, as the spherical cap is a special case of the other shapes (a = 1
and r; = 0, respectively), having one degree of freedom less,

E; > E;; and E; > Ejyp forall Bo > 0.

The difference in energy between the oblate spheroidal cap Ep
and the pancake shape Epjr near their intersection point is dis-
played in Fig. 10(b). Beyond this intersection point, at the Bond
number Bo*, the energy difference |Exr — Emn|/[0”7/(Apg) ] between
the oblate spheroidal cap and the pancake shape increases mono-
tonically, while before Bo*, it decreases. For negative values of

Bo*

2000 : : 0.08 2 _
E|/[G2rc/(Apg)] : FIG. 10. (a) Energy of the spherical
E,/[62/(Apg)] = 006} : cap E; (with gravity term) (pink), the
1500 wlo JViARg g : oblate spheroidal cap Ej; (green), and

= T Ey/[o°m/(Apg)] 3 004} : P P Eu (green),
2 = : the pancake shape Ej (black dashed
2 1000 | Y, 0.02} : line) as a function of the Bond number for
o = 0 : Ay/o = 0.14. (b) Difference between the
o i f energy of the oblate spheroidal cap Ej
500 ur -0.02 : and the pancake shape Ej; as a func-
= 4 : tion of the Bond number, highlighting the
0 ‘ 0.0 ‘ L ‘ intersection between the corresponding
0.1 1 8 8.5 9 95 10 curves in (a).
Bo
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(Ex — Em)/[0*m/(Apg)], the droplet shape is most accurately
approximated by the oblate spheroidal cap, which corresponds to
Bond numbers less than Bo™. Conversely, for positive values, the
pancake shape model has a lower energy, occurring at Bond num-
bers larger than Bo™. Here, the geometric representation that most
closely reproduces the droplet shape is the pancake shape model.
The intersection of the curve with the horizontal axis, marked by
the cross, yields the Bond number Bo* at which the energies of the
oblate spheroidal cap and the pancake shape are equal,

EU < E[H for Bo < BO*,

EH = E]H for Bo = BO*,

and
En > Emr for Bo > BO*.

The transition of the droplet shape from the oblate spheroidal
cap to the pancake shape at Bo* is discontinuous, and consequently,
a continuous transition is assumed in a neighborhood around Bo*.

Figure 11 shows the parameter a as a function of the Bond
number for different values of Ay/o. As the Bond number decreases,
o approaches 1, indicating that the droplet model is nearly spher-
ical. In contrast, a converges to 0 for large Bond numbers, which
corresponds to a flat and wide oblate spheroidal cap.

The parameters R and r; of the pancake, R of the oblate
spheroidal cap, and R of the spherical cap are shown in Fig. 12(a).
The radius R of the spherical cap, represented by the black line, and

AY/6=0.56
08 | AYl6=0.14 |
: —— Ay/6=-0.28
06 |
3
04}
02}
0 L L L
0.1 1 10 100 1000

Bo

FIG. 11. Parameter « of the oblate spheroidal cap as a function of the Bond number
for Ay/o = 0.5625 (orange), Ay/o = 0.14 (green), and Ay/a = —0.28 (blue).
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Bo*
180 T i
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| oung’s law
135 Ref. 5
£ g0}
[«=]
45
0 ‘ ‘
0.1 1 10 100

Bo

FIG. 13. Macroscopic contact angle of the oblate spheroidal cap ) (green)
and the pancake shape 6y (blue) as a function of the Bond number for
Ay/o = arccos(83°) along with Young's law (gray dashed line), including the
values from Ref. 8 with error bars due to measurement inaccuracies.

the parameter R of the oblate spheroidal cap increase monotonically
with the Bond number, as the volume grows. For small Bond num-
bers, r1 << R, and the pancake is approximately a spherical cap. For
high Bond numbers, on the other hand, r; > R, and the pancake
becomes flat and wide.

Overall, the droplet is approximately formed by a spherical cap
for small Bond numbers, where a ~ 1. For intermediate Bond num-
bers Bo < Bo”, the droplet is approximated with the highest accuracy
by an oblate spheroidal cap, while it forms a pancake shape for large
Bond numbers Bo > Bo™. Since the transition between the oblate
spheroidal cap and the pancake shape is not continuous, a transi-
tion phase between the oblate spheroidal cap and the pancake shape
around the transition Bond number Bo* is assumed.

Figure 13 shows the contact angle according to Young’s law
and the macroscopic contact angles of the oblate spheroidal cap 61
and the pancake shape Oy as a function of the Bond number. For
small Bond numbers, the macroscopic contact angles of the oblate
spheroidal cap and the pancake shape approach Young’s law. The
small deviations, within several degrees, of the macroscopic contact
angles of the oblate spheroidal cap from Young’s law for small Bond
numbers (Bo < 1.77) are consistent with the values in Ref. 8 and the
observations in Ref. 12. In addition, the experimental data in Ref. 19
show almost constant contact angles for small droplets (Bo < 4.5)
on a smooth solid surface. The deviation between Young’s law and
the macroscopic contact angles of the oblate spheroidal cap and the
pancake shape increases with increasing Bond number.

A 024 f ‘ ‘ 7 B

0.22 )
0.2 | — R (spherical cap)
0.18 } — R (spheroidal cap)

— R (pancake
0.16 |
014 | r %pancake;

0.12
01
0.08 |
0.06 |
0.04
0.02

0.08 |

0.06 |

0.04

R, ry [m]
RAo, Ro [m]

0.02

— RAo (spheroidal cap)
— Ra (spheroidal cap)

FIG. 12. (a) Parameter R of the spherical
cap (including the gravitational energy)
(black), R of the oblate spheroidal cap
(pink), R of the pancake shape (blue),
and ry of the pancake shape (green)
with Ay/o = 0.14. (b) Horizontal semi-
major axis R/\/« (blue) and vertical
semi-minor axis Ra (pink) of the whole
oblate spheroidal as a function of the

100 0.1 1
Bo

Bo

: Bond number with Ay/o = 0.14.
10 100
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Notably, the macroscopic contact angle of the oblate spheroidal
cap increases monotonically with increasing Bond number, while
the macroscopic contact angle of the pancake shape decreases mono-
tonically as the Bond number increases, which is attributed to an
increase in hydrostatic pressure.”’ For large Bond numbers, there is
a significant increase in the macroscopic contact angles of the oblate
spheroidal cap (with a deviation of 66.97° at Bo = 100 from Young’s
law). In contrast, the macroscopic contact angles of the pancake
shape show only a moderate deviation from Young’s law (of 17.7°
at Bo = 100). The large increase in the macroscopic contact angles
of the oblate spheroidal cap, represented by the dashed green line,
can be neglected because the droplet shape is best represented by
the pancake shape for Bond numbers greater than Bo*. Therefore,
the oblate spheroidal cap model does physically not occur in this
case. At the transition Bond number Bo*, the transition between the
macroscopic contact angle of the oblate spheroidal cap and the pan-
cake shape, as well as the corresponding forms, is not continuous. It
is assumed that there is a continuous transition between the oblate
spheroidal cap and the pancake shape, which could be modeled by
interpolation of both cases.

In Fig. 14(a), a decrease in the ratio of the droplet height to the
initial drop radius of the oblate spheroidal cap hr/Ro and the pan-
cake shape hyir /R can be observed. However, an increase in the ratio
of the base radius and the initial drop radius of the oblate spheroidal
cap r17/Ro and the pancake shape hpr/Ry is shown in Fig. 14(b). Both
observations are consistent with the expected impact of the grav-
itational effect, which increases with the size of the droplets: the
droplets become flatter and wider.

The Bond number Bo* at which the energies of the oblate
spheroidal cap and the pancake intersect, marking the transition of
the droplet shape from an oblate spheroidal cap to a pancake, is
shown in Fig. 15 as a function of Ay/o. For a Bond number below
the curve, the energy of the oblate spheroidal cap is lower, while for
a Bond number above the curve, the energy of the pancake shape
is lower. The transition Bond number between these two shapes
decreases as Ay/o increases. Thus, the oblate spheroidal cap pro-
vides the most accurate approximation of the droplet shape for much
larger volumes in the superhydrophobic case, and a smaller droplet
volume is required to form a geometry that resembles the pancake
shape as Ay/o increases and the surface becomes more hydrophilic.
For superhydrophilic conditions, the pancake shape yields the best
fit for much smaller droplets. The dependency of the droplet shape,
whether approximated by a pancake or an oblate spheroidal cap on
the contact angle (or the ratio Ay/o) was also studied in Ref. 21 for
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pancake shape
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5 spheroidal cap
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FIG. 15. Transition Bond number Bo*, at which the energies of the oblate
spheroidal cap and pancake shape are equal, as a function of Ay/c. For a Bond
number below the curve, a droplet formed by an oblate spheroidal cap has less
energy than a droplet formed by a pancake shape, and for a Bond number above
the curve, the droplet formed by a pancake shape has less energy than a droplet
formed by an oblate spheroidal cap.

small contact angles and the limiting Bond number, at which the
contact angle deviates from the contact angle of the spherical cap of
1°, was expressed as a function of the original contact angle.””

IV. CONTACT ANGLE HYSTERESIS CAUSED
BY MICROSCOPIC ROUGHNESS

So far, we have considered constant liquid-gas and solid-liquid
interfacial tensions y; and y,, respectively, which are not mea-
surable in reality. An adsorption layer at the interfaces, caused by
intermolecular forces,” in which the molecular organization dif-
fers from that in the bulk,”*”>* affects the interfacial tensions. This
is why, in previous literature'"“**’ and in the following, the interfa-
cial tensions are treated as functions of the volume fractions at the
adsorption layer.

Multiple equilibrium contact angles are frequently observed
in experiments and arise, for example due to heterogeneity, defor-
mation, and adaption.”® In addition, macroscopic roughness,r‘})
which is associated with structural deformation of the solid sub-
strate, contributes to this behavior. The contact angle hysteresis
CAH := 0,4, — Oy is defined as the difference between the advancing
contact angle 0,4 and the receding contact angle 0., which
represent the maximum and minimum contact angles at the

81:/Z¥| G20Z 1oquianoN €0
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equilibrium state, respectively. On a macroscopically smooth solid and
substrate, Young’s law is not able to explain the contact angle
hysteresis occurring in experiments, when considering constant $6 = Vig
interfacial tensions. To comprehend this, we incorporate micro- Vic + Vae

scopic roughness by varying the liquid-solid and solid-gas inter-
facial tensions as functions of surface compositions, following
Ref. 26. The local energy minima of the total free energy, depen-
dent on the volume fractions at the solid-liquid and solid-gas
interfaces, respectively, correspond to the equilibrium composi-
tions at the adsorption layer. Several energy minima with distinct

represent the volume fraction of the liquid species in the adsorption
layer at the solid-liquid and the solid-gas interfaces, respectively.
The parameters Vi1, Vg, Vig, and Vg are defined as follows:

e Vir:volume of the liquid in the adsorption layer beneath the

Young’s contact angles result in the occurrence of contact angle liquid droplet;
hysteresis."" %’ e Vgr: volume of the gas in the adsorption layer beneath the
In the following, we analyze energy landscapes E(¢;,¢;) with liquid droplet;
varying liquid-solid and solid-gas interfacial tensions. Here, e Vig: volume of the liquid in the adsorption layer under the
gas phase;
. ViL e Vgg: volume of gas in the adsorption layer under the gas
ViL+ Var phase.
! 8. [° 82.1109.5 75.2100.3 0.0 62.5 83.3
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FIG. 17. Macroscopic contact angles (¢, , ¢) corresponding to the minimal energy for (i) Bo = 0.1 (spherical cap), (i) Bo = 1 (oblate spheroidal cap), and (iii) Bo = 20

(pancake shape) with o = 0.0728%, Ap = 998%, g=981%.
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g=9811.

In Sec. IV, we use non-constant interfacial tensions y(¢, )
in place of y, and y(¢,) instead of y.. We define y(¢) = y,¢°
+y,6+y, as a quadratic function. The coefficients v,

=—lx, N :Kx( - A’%A"), and o :KXI% are related to the

internal energy Ap, internal energies of the gas phase p, adsorption
layer depth ¢, and the difference in the van der Waals force Ay of
the liquid-solid and gas-solid y . Here, the interfacial tensions are
calculated as

1
§(9) = 20(-0+ 30),
and the total energy is given by

E(¢1,¢6) = 0S16 — (p(¢6) — y(¢1))Ss + yeS + ApgzV,  (12)

where 0 corresponds to the macroscopic contact angle used implic-
itly in the formulation of Eq. (12). The energy landscapes shown
in Fig. 16(i) for the spherical cap agree with Ref. 11. The energy
landscapes in Fig. 16(ii) for the oblate spheroidal cap have a simi-
lar qualitative trend, with equivalent positions of the local minima
but with a slower progression in S/Rj than those of the spherical
cap in Fig. 16(i). In addition, in Fig. 16(iii), the energy land-
scapes of the pancake shape show an even slower progression.
A dependency of the contact angle hysteresis on the droplet size
arises due to the scaling of the function that depends on the ratio
of the surface area of the solid substrate and the droplet size
S/Ré, as shown in Ref. 11, in both the horizontal and vertical
directions.

Figure 17 shows the macroscopic contact angles 0(¢;,d) of
the spherical cap, the oblate spheroidal cap, and the pancake shape.
No significant qualitative differences are observed between the three
figures, aside from quantitative differences. Figure 18 shows the
geometrical parameters a(¢;,¢.), R(¢;,¢s), and 0.(¢;, d.) of the
oblate spheroidal cap corresponding to the minimum energy. The

geometrical parameters h(¢;,¢.), R(¢;,ds), and r1(¢;, o) asso-
ciated with the energy-minimizing pancake shape are depicted in
Fig. 19.

V. COMPARISON BETWEEN THE THEORETICAL
DROPLET EQUILIBRIA AND THE NUMERICAL RESULTS
OBTAINED USING THE ALLEN-CAHN MODEL

Figures 20 and 21 show the numerical results obtained using
the Allen-Cahn model'® for different Bond numbers and various
values of Ay/a. The black curves represent the estimated liquid-gas
interface derived from the previously examined theoretical calcula-
tions by applying the equilibrium parameters « and R of the oblate
spheroidal cap and the equilibrium parameters r; and R of the
pancake shape. A good match is observed between the liquid-gas
interface in the numerical work and the theoretically predicted
liquid-gas interface.

To calculate the contact angle in the numerical work, we first
determine the intersection curve of the liquid and the gas phases at
¢ = 0.5 using bilinear interpolation.

Figure 22 shows both measurement methods used to calcu-
late the contact angle in the numerical work, given in Table I.
The measured microscopic contact angle, represented in Fig. 22(a),
is obtained by selecting the intersection point of the liquid-gas
interface and the solid substrate (x1,2z1) and a second point on
the liquid-gas interface near the first point (x2,z2). The measured
microscopic contact angle is calculated using the gradient angle:

Osim,a = arctan (ﬁ) The second method, used to determine the
measured macroscopic contact angle and shown in Fig. 22(b),
involves solving the volume constraint V = V(r,h, O4im ) of the
respective droplet shape. This equation, which depends on the base
radius r and the height of the droplet h, is solved to determine
the contact angle Ogm, v. Measured microscopic contact angles may
depend on the resolution, as it requires zooming in close to the
three-phase contact line. In contrast, measured macroscopic contact
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FIG. 20. Numerical results and
theoretically ~ estimated interface
(black line)  for o =00728%,
Ap=998%,9=981%, () Bo=0.1,
(i) Bo=1, (iii) Bo = 20, and for (a)
Ayf/o = -05625, (b) Ay/o=-042,
(c) Ay/(f =-0. 28 d) Ay/o =-0.14,
and (e) Ay/o = 0. 0625
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FIG. 21. Numerical results and
theoretically estimated interface (black
line) for o =00728%, Ap =998,
g=981%, (i) Bo = 0.1, (i) Bo = 1, (iii
Bo =20, "and for ( ) Ay/o = 0.0625,
b) Ay/o =0.14, (c) Ay/o =0.28, (d)
Ay/a 0.42, and (e) Ay/o = 0.5625.
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FIG. 22. Schematics of the measurement of the (a) measured microscopic contact
angle determined by O » = arctan ( 2=2 ) and (b) measured macroscopic con-

Xy —X:
tact angle obtained by measuring the drzoplet height h and the base radius r and by
solving the volume constraint V = V(r, h, Osim 1) of the respective droplet shape.

angles are independent of the resolution and yield consistent results
for identical setups.

In Fig. 23, there is a good agreement of the measured
microscopic and macroscopic contact angles obtained from the
Allen-Cahn model of a spherical cap (Bo = 0.1) and the predictions
of Young’s law. The measured macroscopic contact angles exhibit a
closer match to Young’s law than the measured microscopic contact
angles, as also observed in Ref.15.

In Fig. 24(i), for Bo=1, the apparent contact angles 6,
the imaginary contact angles 6., and the parameter « from the
Allen-Cahn model show a closer agreement with the curves
obtained via energy minimization (green line) than those in
Fig. 24(ii) for Bo = 3. This suggests that the oblate spheroidal cap
model more accurately represents the droplet shape for Bo = 1 than
for Bo = 3.

Figure 24(a)(ii) demonstrates a good agreement between the
measured microscopic contact angles (blue squares) of the oblate
spheroidal cap (Bo = 3) and the macroscopic contact angles (green
line), as well as the predictions of Young’s law (black line). How-
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FIG. 23. Contact angles according to Young's law 6y, (black line) compared to
the measured microscopic contact angles 6sim, 2 (blue squares) and the measured
macroscopic contact angles 6sim, » (pink crosses) obtained from the numerical work
of the spherical cap with Bo = 0.1 for different values of Ay/a.

a greater deviation from the green line. In Fig. 24(b)(ii), a notice-
able discrepancy is observed between the imaginary contact angles
0. predicted by energy minimization (green line) and the imaginary
contact angles obtained from the Allen-Cahn model. Furthermore,
in Fig. 24(c)(ii), a deviation is observed between the parameter
o computed via energy minimization (green line) and the mea-
sured macroscopic contact angles from the Allen-Cahn model (pink
crosses).

For the pancake shape (Bo=20) in Fig. 25, the mea-
sured macroscopic contact angles (pink crosses) exhibit a closer
agreement with the macroscopic contact angles (green line)
compared to the measured microscopic contact angles (blue
squares), which align more closely with Young’s law. This illus-
trates a key advantage of macroscopic over microscopic con-
tact angles, as their measured values remain unaffected by the
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ever, the measured macroscopic contact angles (pink crosses) show resolution.

TABLE 1. Measured microscopic contact angles 6gm 5 and measured macroscopic contact angles g , obtained from
numerical work for Bo = 0.1 (spherical cap), Bo = 1 (oblate spheroidal cap), Bo = 3 (oblate spheroidal cap), and Bo = 10
(pancake shape) with o = 0.0728X.

Bo=0.1 Bo=1 Bo=3 Bo =20
AV esim, a esim, b esim, a esim, b Bsim, a Bsim, b Gsim, a esim, b
—-0.04095 131.57° 123.46° 129.85° 119.67° 130.21° 123.51° 126.51° 105.36°
-0.030576  120.85° 114.51° 119.92° 112.24° 118.45° 117.43° 116.42°  92.47°
-0.020384 111.14° 105.46° 109.81° 10529° 109.19° 112.31° 106.38° 90.22°
-0.010192 99.40° 99.95° 99.43° 97.68° 98.81° 107.03° 95.94° 83.00°
—0.004 55 94.05° 93.76° 93.66° 95.49° 92.93°  104.03° 90.20° 82.59°
0.004 55 83.78° 89.52° 83.54° 89.61° 83.54° 99.77° 80.38° 73.40°
0.010192 78.42° 83.29° 77.95° 84.94° 77.98° 99.93° 74.69° 66.14°
0.020 384 68.98° 77.27° 68.49° 77.53° 67.20° 91.48° 63.81° 62.05°
0.030576 59.76° 67.95° 59.56° 69.20° 57.08° 89.20° 58.45° 56.38°
0.04095 45.80° 57.34° 51.10° 60.06° 46.64° 82.94° 48.08° 49.64°
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FIG. 24. (a) Macroscopic contact angles of the oblate spheroidal cap obtained from energy minimization Ogmin (green line) for (i) Bo = 1 and (i) Bo = 3 and Young's law
Oy (black line) as a function of Ay/o compared to the measured microscopic contact angles Osim, 2 (blue squares) and the measured macroscopic contact angles Osim
obtained from the Allen—-Cahn model (pink crosses) for different values of Ay/a. (b) Imaginary contact angles 6, emin Of the oblate spheroidal cap as a function of Ay/a
(green line) compared to the imaginary measured macroscopic contact angles 6, sim b (pink crosses) obtained from the Allen-Cahn model for different values of Ay/a for
(i) Bo = 1 and (ii) Bo = 3. (c) Parameter agmin from energy minimization (green line) and ay, from Young's law (black line) as a function of Ay/a compared to asim p, from
the Allen-Cahn model and the measured macroscopic contact angles (pink crosses) for (i) Bo = 1 and Bo = 3.

o

6,[]

-1 -0.5 0 0.5 1
Ayl

FIG. 25. Macroscopic contact angles of the pancake shape obtained from energy
minimization 6gmin (green) for Bo = 20 and from Young's law 6y, (black) as a
function of Ay/a, compared to the measured microscopic contact angles Osim, a
(blue squares) and the measured macroscopic contact angles Osim, » (pink crosses)
obtained from the Allen-Cahn model for Bo = 20 at different values of Ay/o.

VI. CONCLUSION

In conclusion, we have examined three distinct shapes of the
liquid droplet in relation to the gravitational influence on the wet-
ting phenomenon on smooth solid substrates: the spherical cap,
the oblate spheroidal cap, and the pancake shape. We utilized for-
mulas for the liquid-gas and the liquid-solid interfacial areas, the
volume, and the height of the centroid for each droplet shape to
calculate the total energy and determine the macroscopic contact
angles through energy minimization by approximating the droplet

shape by a geometric model. For small values of the Bond num-
ber, the droplet is approximately a spherical cap, the body energy
can be neglected, and the macroscopic contact angle can be sim-
ply expressed using Young’s law cos fy; = Ay/o and the liquid-solid,
solid—gas, and liquid-gas interfacial tensions.

However, as the droplet size increases with Bo < Bo*, the
droplet adopts the shape of an oblate spheroidal cap and the macro-
scopic contact angle remains close to that predicted by Young’s law.
As the Bond number exceeds Bo*, the droplet assumes the shape
of a pancake. Since the transition of the droplet shape from the
oblate spheroidal cap to the pancake shape at Bo* is discontinu-
ous, we assume that a continuous transition between these shapes
occurs in a neighborhood around Bo™. At this state, significant devi-
ations of the macroscopic contact angles from Young’s law can be
observed. The macroscopic contact angles of the oblate spheroidal
cap and the pancake shape cannot simply be derived by a closed
equation dependent on the solid-liquid, solid-gas, and liquid-gas
interfacial tensions, as Young’s law. These contact angles are also
dependent on the droplet volume, the density difference of the liquid
and gas phases, and the gravitational acceleration and are calculated
numerically. As the gravitational effect increases, which corresponds
to increasing the droplet size, the droplet becomes more deformed,
becoming flatter and wider.

The Bond number Bo®, at which the transition between the
oblate spheroidal cap and the pancake shape occurs, decreases as
Ay/o increases and is, therefore, dependent on the surface tensions,
which also determine the approximated droplet shape. The contact
angle hysteresis on a smooth solid, caused by varying the interfa-
cial tensions in order to include intermolecular rearrangements of
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liquid and gas species at the adsorption layer at the microscopic caused by macroscopic roughness and distinct contact angles in the
scale, is also dependent on the droplet size, as demonstrated by Cassie-Baxter and Wenzel states. The described concept is based on
the local energy minima in the energy landscapes. By comparing

the shapes and contact angles from the Allen-Cahn model'® with

the theoretical predictions, we have validated our theory. For large

droplets, the measured microscopic contact angles, which depend

on the resolution at the triple junction, exhibit better agreement

with the theoretical microscopic contact angles, whereas the mea-

sured macroscopic contact angles, independent of the resolution,

correspond more closely to the theoretical macroscopic contact

angles. This behavior is in contrast to small droplets, for which

the measured macroscopic contact angles more closely approxi-

mate microscopic contact angles than measured microscopic contact

angles.'” This suggests that the appropriate method for contact angle

determination depends on the droplet size.

VIl. OUTLOOK

Since we have only considered a smooth solid substrate,
including microscopic roughness, macroscopic roughness, and the
Cassie-Baxter and the Wenzel states could also be incorporated.””
The ratio v € [Umin, Umax] of the liquid-solid contact area in the
considered state to that on a smooth solid substrate with an anal-
ogous setting defines the transition from the Cassie-Baxter to the
Wenzel state and describes, how much gas remains trapped under
the droplet. By modifying the interfacial areas, neglecting the vol-
ume of the liquid penetrating into the roughness structure of the
solid surface, as well as its effect on the height of the centroid z,
and neglecting any curvature of the liquid-gas interfaces below the
droplet, we obtain a free energy that depends on three parameters
E(6, a,v) for the oblate spheroidal cap model and E(6, h,v) for the
pancake model, leading to a three-dimensional energy minimiza-
tion. The parameter v = Umin corresponds to the Cassie-Baxter state,
where the droplet does not penetrate into the macroscopic rough-
ness structure of the solid surface. Here, the modified liquid-gas and
solid-liquid interfacial areas are given by

S16 = S16 + (1 - ®)Ss1
and
Ssp = OSs1,

where @ represents the surface fraction covered by the droplet in the
Cassie-Baxter state.

The Wenzel state with v = Umax represents full coverage of the
solid surface by the liquid under the droplet. Here, the roughness
of the solid surface is characterized by the ratio of the real sur-
face to its projection onto the horizontal plane, denoted by f > 1.
The solid-gas interface area is modified by S = fSsc, while the
liquid-gas interfacial area S16 = Si¢ remains unchanged. In both
states, the formulas for the interfacial areas, the volume, and the
height of the centroid of the oblate spheroidal cap and the pancake
shape can be substituted, and the energy

E = 0816 — AySs + ApgVz

can be minimized. By restricting the analysis to these two states, the
problem is reduced to a two-dimensional minimization, E(6, a; v)
or E(6,h; v), respectively. Contact angle hysteresis is expected,
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the work in Ref. 29 for spherical cap droplets and could be extended
to oblate spheroidal caps and pancake shapes.

A greater impact of gravity on a gas bubble in the liquid phase
on a solid substrate is expected compared to the liquid droplet inves-
tigated in this study. The equilibrium shape of the gas bubbles and
their corresponding contact angles could be compared to those of
the liquid droplet. By neglecting gravitational energy and focus-
ing on small droplets, no significant difference between the liquid
droplet and the gas bubble is observed.'!

The significant deviations between the microscopic contact
angles and the macroscopic contact angles derived from the pan-
cake shape model for large droplets, as observed in this study, may
decrease for a different geometric model. One possibility is to model
the edge of the pancake shape with an elliptical torus, whose cross-
section in the x-z plane is elliptical rather than circular. Such a rep-
resentation requires a three-dimensional free energy minimization
and increases the mathematical complexity significantly.
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APPENDIX A: SURFACE OF THE LIQUID-GAS
INTERFACE OF THE OBLATE OBLATE
SPHEROIDAL CAP

The following derivation applies to an oblate spheroidal cap
with 0 < & < 1. We describe the oblate spheroidal contour using the
following parametric equation:

a’x* +(z-aR)’ = 'R,

Vaz(2aR - z)

2 >
(44

dx a(2aR-2z)-az

dz 20%\/az(2aR - z)

ARTICLE pubs.aip.org/aipl/jcp

First, we use the solid of revolution around the z-axis to obtain
the surface area of the entire oblate spheroid,

Ra 2
S=2f 2nx\|1+(dx)dz
0 dz

_ 4ﬂ/Ra \/(1 - zx3)22 + (2R30c4 - 20cR)z +a?R? dz
0 a

Z(arcsinh(—vl‘“s)oc3 +V1- a3)R27T

3
2
Vi1- ca

The surface area of the oblate spheroid truncated by the solid
substrate can be expressed as

~ Ra(1+cos6,) 2
S= f 2mx\| 1+ (@) dz
0 dz

_ zﬂfRa(Hcost) \/(1 - 0c3)z2 + (2R3oc4 - 2¢xR)z +a’R? iz
0 a

- —w(a3 (arcsmh(w—?) + arcsinh(l})) v+ 1//).
o2 o2

By subtracting the truncated surface S from S, we obtain the surface
area of the oblate spheroidal cap S, = S — § as

Se = w(oc3(arcsinh(w—?) - arcsinh(ls)) +v- 1//),

a2 o2
v=V1-da,

with  v= 1[/\/—(cosz(9c))oc3 + &+ cos?(6.)¢,

R2
¢ =cos(0;),and w = 77:'

APPENDIX B: VOLUME OF THE OBLATE
SPHEROIDAL CAP

In order to calculate the total energy for the droplet formed as
an oblate spheroidal cap, we need an expression for the volume of
the oblate spheroidal cap. In the first step, we distinguish between
two cases for the imaginary contact angle: 7/2 < 6. < mand 0 < 0, <
71/2. First, we consider the case of imaginary contact angles where
nf2< 6. <m,

7
=~ =0,
{+ 5
[j’+(+g:7r,
s
p=2-
_”_95,

21 :Rsin(:Rsin(GCfg)

= —R cos b,
b=R-z =R+ R cos =R(1+ cosb,).

In the following, we include imaginary contact angles where 0 <
0c < m/2:
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=R-(2R-b) =R+,
bIZl+R,

7

95+ﬁ+5—
7

(+ﬂ+5—

Gc=(>
=R cos { =R cosB,,
b=R(1+cosb).

The volume of the spherical cap with the contour line,
(z— (R-b+ab))’ +x* =R,

truncated to form the contact angle 6., can be calculated as

2R-b+ab 5
V=n f x“dz
ab

2R-b+ab 5
m / R
ab

2R-b

R - (z- (R-b))%dz

2R-b

- (z- (R-b+ab))’dz

),
0
7'[/ — 22 +2(R-b)z+2Rb - bdz

0
(4
=7l —
3

= ﬂT(l —cos0.)%(2 + cosb,).

LR b)Y + (R=b)(2R-b)* + b(2R - b))

>3 w\»—A

— RV + 153)
3

The volume of the spherical cap is equivalent to that of the oblate
spheroidal cap.

APPENDIX C: HEIGHT OF THE CENTROID
OF THE OBLATE SPHEROIDAL CAP

To calculate the body energy of the oblate spheroidal cap, we
need the height of its centroid, which is given by z = [, ¥ dz,

2aR P
Z:—f nx zdz — a(l + )R
V Ja(1+0)R

fzaR 2(20cR 2) ————2dz-a(l+w)R
(1+w)R

ﬂ(ocR)
2V [
B 3»7ch4 (3w* + 10w + 11) (1 - w)*
 127R° (1-w)*(2+w)
_ aR(3w’ + 10w +11) a(1+ )R

42+ w)

aR(1 - cos6:)(3 + cosb.)

- 4(2 + cosb.)

(1 ) + Z(l +w)4] —a(l+ )R

—a(l+w)R

>

with @ = cos 6.
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APPENDIX D: APPARENT AND IMAGINARY CONTACT
ANGLES OF THE OBLATE SPHEROIDAL CAP

The contact angle of the oblate spheroidal cap 6 can be
expressed in terms of the imaginary contact angle of the correspond-
ing spherical cap 6. and the parameter a. The oblate spheroidal cap
and the spherical cap are visualized in Fig. 26 by the blue line and the
red dashed line, respectively. To begin, we consider the parametric
equation of the ellipse,

’x* + (z—-aR)* = 'R,
By differentiating, we obtain the following:

20°x + 227 = 2aR7 = 0,
o’x =7 (aR - 2),

’ OCSX

aR-z

The coordinates of the intersection of the oblate spheroidal cap with
the y = 0-plane are given by

zZp = ab
and

ab(20R — ab)

0(3

(1+cosB:)(1—cosb)

Xp =

R
= ﬁ\/
= isin@c,

Ja

with b= R(1+cos6) and 0 < 0. < 7. The gradient of the oblate
spheroid at the point (xp, zp) is given by
@ xp o % sin 0,
aR —zp

" aR - aR(1+cosb,)

3
= —q? tan0..

The apparent contact angle 0 of the oblate spheroid cap is given by

3 bus
arctan (oc; tan 95) 0<0.< >
b3 bis

0 = ~ ec =
2 5 - 2
arctan (ocl tan Qc) +7 5 <0, <m

APPENDIX E: SURFACE OF THE LIQUID-GAS
INTERFACE OF THE PANCAKE SHAPE

The surface area of the liquid-gas interface of the pancake
shape consists of a flat circular region at the center, with the area 77,
and the rounded edge, whose surface area S; will be derived in the
following. The cut-off torus, which represents the rounded edge of
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the pancake shape, can be parameterized using spherical coordinates
as
(r + R sin (v)) cos (u)
T(u,v) =| (r1 + Rsin(v))sin (u) |, u € [0,27],v € [0,0],
R cos (v)

and we can calculate the partial derivative as

—(r1 + R sin (v)) sin (u)
Tu=] (r1+Rsin(v))cos(u) |,
0
R cos (v) cos (u)
T, =| R cos (v) sin (u) |
—R sin (v)
cos (u) sin (v)
Ty x Ty = =R(r1 + R sin (v))| sin (v) sin (u) |,
cos (v)
| Tu x Ty = R(r1 + R sin (v)),

and obtain the surface area S; as follows:

0 2
S1 = f / R(r1 + R sin (v))dudv
v=0 =

= 27R[rv - R cos (v)],
= 271 RO + 27R* (1 - cos 6).

Thus, the total surface of the liquid-gas interface is given by

Sig = mry + 81 = mry + 27 RO + 2R (1 - cos ).

APPENDIX F: VOLUME OF THE PANCAKE SHAPE

The volume of the pancake can be calculated by splitting it into
three parts with the volumes Vi, V5, and V3, which are obtained
by rotating the colored areas in Fig. 27 around the z-axis. The total
volume is then expressed as follows:

V:V1+V2*V3.

The volume V describes an inner cylinder with height & =R
(1 - cos 8) and base radius r;. The corresponding formula is given
by

Vi = mrth = nrfR(l —cos 0).

a(2R — b)[ 2D

ARTICLE
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z

1

r

FIG. 27. Schematic cross-sectional view of the droplet formed as a pancake.

The parametrization T of a cut-off torus in spherical coordinates can
be used to calculate the volume V7 as

(r1+asin(v)) cos (u)

T(a,u,v) =

(r1+asin(v))sin (u) |,

a cos (v)

with v € [0,0],u € [0,27],a € [0, R]. The Jacobian matrix,

Jr =

sin (v) cos (u)

sin (v) sin (1)

cos (v)

—r(a)sin (u) a cos(v)cos (u)
r(a)cos(u) a cos(v)sin(u) |,

0 —a sin (v)

with r(a) = r1 + asin(v) and the Jacobian determinant,

det(Jr) = —(r1 +a sin (v))a,

are required to calculate the volume as

Vy = /u [V_ /: a(r1 + a sin (v))dadvdu

or1 1 K
= 27'[[ [ a’r + —a sin (v)] dv
ol2 3

_2/

= R’ 6 +

2
er

a=0

— + — sin (v)dv

?R (1 -cos 6).

In conclusion, we will calculate the volume of the third part,
which will be subtracted from the second part to ensure the correct

z

2 |

¢

8 N

! lab

FIG. 26. Schematic side view of the
oblate spheroidal cap (blue line) and
the imaginary spherical cap (red dashed
line) in (a) the hydrophobic case and (b)
the hydrophilic case.
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calculation of the volume of the pancake, whose base area is flat. The
base radius is given by r = r; + Rsin 6,

cos 6
sin 9

zl—rtanoc—r

The third volume V3 can be considered as a cone cut from the cen-
ter, with the parametrization C(g, ) in cylindrical coordinates, the
Jacobian matrix /¢, and the Jacobian determinant det(J),

y cos @
Clo.y)=| 759 |ge[0.2m),y e [n,r]he [-2,0],
h(l - Z)
r
-y sin ¢ cos ¢ 0
Jo=|Ycose sin~(p 0
0 -— 1-=
r

and
det (Jc) = ‘)’SiHZ ‘P(l - X) —y6052 (P(l - X)
r r

{r-2)

Thus, the required volume can be calculated as

2 r 0 y -
Vs = f f f y(l - 7)dhdyd<p
¢=0 Jy=r h=—zl r

=2mz y- —dy
y=r1

with r = r; + Rsin 6. We have, thus, calculated the volumes of all
parts and can now combine them to form the total volume V =
V1 + V, — V3, where

Vi = artR(1 - cos 6)

2
Vy = nR*r0 + ?ﬂRs(l —cos 0)
cosf1, , 2r
V3 =nr —r =i+ —|
} sin 9(3 Y

APPENDIX G: HEIGHT OF THE CENTROID
OF THE PANCAKE SHAPE

To calculate the height of the centroid, we again use the division
into the areas, as in Appendix F for the volume calculation,

E:l/zdv

Vv

V?=/de=/ de1+[ dez—f zdVs.
Vv \a V, Vs
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The cylinder can be parametrized as follows, thus providing the first
part for the calculation of Vz as

acos ¢
Vi=|asing|,¢c[0,2m),ae[0,r1],z¢[0,h],
z
—asing cos¢ 0
Ju=|acosgp sing O0f,

0 0 1

det (Jv,) = —asin’ ¢ —acos’ ¢ = —a,

2 r h
/ zdV; / f / zadzdade
Vi ¢=0 Ja=0 Jz=0

4
= fhzrf
2

ng(l —cos 0)°rL.

The second part is calculated as follows:

[/2 2dV; = /u / f (ay — RE)a(r1 + ar)dadvdu

= an f a yr1 —aRn&+ a YT — Razfrdadv
v=0 Ja=0
3 3 4

0 4
:271/ R—l//rl——r1£+R—1//T—R—f‘rdv

3 3
. (R”,\ 22 75 _g_erfg)

with y = cos(v), 7 = sin(v), £ = cos 6, and A = sin 6. The third part is

determined as
0
~ _ Z _ X ~
S (1= 2) {17 )i

2 r
/ ZdV3— f /
Vs 9=0 Jy=r

=—7Tzf/ y- 2)/—+—dy
y=n

2 2 4
r r 27 r

ﬂzf S il —12 .
12 2 3r  4r

Overall, this leads to the following expression for the height of the
centroid, scaled by the volume of the pancake:

\r:f de1+/ dez—f 2dV;
Vi v, V3

with
f zdV; = fR (1-cos 6) rl,
Vi

3 4 4 4 3
[ aavs= zn(%x . §A2 55 - 55— @se)
Va

2
2
fde3:—ﬂzf r——r—1+i—r—lz,
Vs 12 2 3r  4r

with £ = cosf@and A = sin 6.
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