KIT | KIT-Bibliothek | Impressum | Datenschutz

On the consistency of pseudo-potential lattice Boltzmann methods

Czelusniak, Luiz Eduardo 1; Bingert, Tim Niklas 2; Krause, Mathias J. 1,2; Simonis, Stephan ORCID iD icon 1
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)
2 Institut für Mechanische Verfahrenstechnik und Mechanik (MVM), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

We derive the partial differential equation (PDE) to which the pseudo-potential lattice Boltzmann method (P-LBM) converges under diffusive scaling, providing a rigorous basis for its consistency analysis. By establishing a direct link between the method's parameters and physical properties—such as phase densities, interface thickness, and surface tension—we develop a framework that enables users to specify fluid properties directly in SI units, eliminating the need for empirical parameter tuning. This allows the simulation of problems with predefined physical properties, ensuring a direct and physically meaningful parametrization. The proposed approach is implemented in OpenLB, featuring a dedicated unit converter for multiphase problems. To validate the method, we perform benchmark tests—including planar interface, static droplet, Galilean invariance, and two-phase flow between parallel plates—using R134a as the working fluid, with all properties specified in physical units. The results demonstrate that the method achieves second-order convergence to the identified PDE, confirming its numerical consistency. These findings highlight the robustness and practicality of the P-LBM, paving the way for accurate and user-friendly simulations of complex multiphase systems with well-defined physical properties.


Verlagsausgabe §
DOI: 10.5445/IR/1000183417
Frei zugänglich ab 02.07.2026
Originalveröffentlichung
DOI: 10.1063/5.0268276
Scopus
Zitationen: 1
Web of Science
Zitationen: 1
Dimensions
Zitationen: 1
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Institut für Mechanische Verfahrenstechnik und Mechanik (MVM)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 01.07.2025
Sprache Englisch
Identifikator ISSN: 1070-6631, 1089-7666
KITopen-ID: 1000183417
Erschienen in Physics of Fluids
Verlag American Institute of Physics (AIP)
Band 37
Heft 7
Nachgewiesen in Dimensions
OpenAlex
Scopus
Web of Science
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page