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Abstract: The distinction between information models of device types and device instances
poses a significant challenge in digitally representing industrial assets. This paper analyzes the
modeling relationships between types and instances of industrial field devices, e.g. mass flow
sensors, using metamodel theory, highlighting conceptual gaps in current modeling methods.
By delving into object-oriented metamodeling, the implicit and explicit relationships across
varying abstraction layers are clarified, illustrated with examples from the process industry. As
a conceptual solution, an extended modeling framework is proposed, separating structural and
conceptual-semantic aspects. This approach allows for distinct profiles of type and instance-
related information and offers a categorical approach for the categorization of updates of asset

information.
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1. INTRODUCTION

Within the automation engineering domain of process
plants, information models provide an effective mecha-
nism for the seamless exchange of information among the
various disciplines involved in the process (Griiner et al.,
2024). Standardized information models, such as the Asset
Administration Shell (AAS), facilitate concurrent access to
the data stored within the AAS repository for component
manufacturers, service providers, integrators, and plant
operators (Wagner et al., 2017). The Information Model
(IM), which functions as a virtual representation of a real
asset, aims to enhance transparency and efficiency dur-
ing plant development, monitoring, and maintenance. IMs
are formulated on the foundation of metamodels, which
describe the structural design, permissible elements, and
their interrelationships. In this modeling context, adopting
the object-oriented approach prevalent in engineering, a
distinction is made between the types and instances of
industrial assets. Therefore, a differentiation is established
between Type-IM and Instance-IM within the informa-
tion exchange during an engineering process (Tauchnitz
et al., 2024). However, the definition of type or instance-
oriented information lacks sufficient precision and exhibits
variations in terms of domain, role, or use case, which
complicates the standardization of this procedure.

Field devices for process automation, such as mass flow
sensors, are custom configured in limited quantities and
manufactured according to specified configurations. This
leads to a high degree of complexity, with potentially
millions of distinct configurations (field device types) de-
pending on the kind of device and the manufacturer’s

catalog. Manufacturers of these field devices can provide
integrators or plant operators with all relevant information
on the characteristics of a particular field device type prior
to its production. When this Type-IM is made available,
both conceptual and practical challenges emerge, which
are elaborated in Sec. 2.

Due to its analogous structure to natural hierarchies, en-
compassing inheritance and polymorphism, object orienta-
tion is a prevalent modeling paradigm within engineering
sciences (Maffezzoni et al., 1999). It underpins numer-
ous industrial software solutions for the development and
management of technical systems. The classification of
devices and system components according to their func-
tionality and properties, such as the type of an ultra-
sonic flow sensor (which includes configuration parameters
such as process connection type, nominal diameter, cali-
brated measurement range, and connectivity), is standard
practice. These field device types can be modeled using
templates, analogous to classes in object-oriented software
development. The term “template” is intentionally chosen
over the term “class” to clearly distinguish these structures
since classes in object-oriented programming provide data
encapsulation and executable functions. Therefore, “tem-
plate” maintains both linguistic and conceptual accuracy
for our domain-specific modeling approach.

In software development, an instance corresponds to an
object created precisely according to the blueprint of
its class, with identical methods and attributes that re-
main unchanged during the program’s runtime (Meyer,
1997). However, for industrial field devices, factors such
as firmware updates challenge this assumption, since an

2405-8963 Copyright © 2025 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2025.11.940



150 Marcel Auer et al. / IFAC PapersOnLine 59-25 (2025) 149-154

instance of a field device may acquire or lose functional-
ity through the update. Such alterations undermine the
theoretical uniformity of the field device type and neces-
sitate subsequent adaptation of the Type-IM, affecting
all instances of this type that have been manufactured
and distributed. Conversely, it is also plausible for an
instance of a field device to transition to a different type
following modifications to the instance, such as a change
of the communications module. Therefore, the modeling
of industrial assets must allow the decoupling of instances
from their original type.

Against the backdrop of this introductory explanation of
the problem, the subsequent sections explore in detail
the relationship between Asset-Type and Asset-Instance.
Based on the findings, specific proposals are presented to
optimize industrial asset modeling. The conclusion delin-
eates categorical approaches to update asset information,
illustrated with practical examples.

2. ASSET-TYPE AND ASSET-INSTANCE IN
OBJECT-ORIENTED METAMODELING

In recent years, various expert committees, such as the
Industrial Digital Twin Association (IDTA) and the Ger-
man Society for Measurement and Automation Technol-
ogy (VDI-GMA), have engaged in recurrent discussions
regarding the relationship between Asset-Type and Asset-
Instance. The interpretation of this relationship signifi-
cantly impacts modeling, tool design, and the formulation
of lifecycle-wide processes when applied to information
models, particularly when alterations to the Type-IM
are considered. In particular, the discussion surrounding
Asset-Type and Asset-Instance bears similarities to the
debates on strict metamodelling in software engineering
with UML models (Durisic et al., 2016). This alignment
is not coincidental, as both discussions revolve around the
fundamental question of how to model type instantiation
in a manner that balances flexibility and accuracy.

The fundamental question concerns the differentiation of
a strict versus a loose relationship between Asset-Type
and Asset-Instance. In the context of a strict relationship,
a device instance remains bound to its type throughout
its entire lifecycle. Modifications to the Type-IM, such as
subsequent functional or structural updates, would there-
fore present conceptual challenges. This rigidity stems
from the fundamental principles of object-oriented pro-
gramming, where altering a class definition at runtime
is not possible; it necessitates recompilation and, conse-
quently, re-instantiation of all objects based on that class
(Meyer, 1997). However, such a process is impractical in
the context of industrial systems and their information
models, where continuous operation and minimal disrup-
tion are paramount. Re-instantiation of numerous field
device instances due to a Type-IM update would be pro-
hibitively expensive and potentially unsafe. Therefore, a
flexible approach to managing the relationship between
Asset-Type and Asset-Instance is crucial for accommo-
dating evolving system requirements and maintaining op-
erational integrity. Conversely, in a loose relationship, the
instance merely references its type, enabling the possibility
of adopting a new type through a reference modification.

In practical application, however, the Type-IM is often
used as a predefined stereotype, which is copied wholly or
partially during the production of a field device instance
and augmented with instance-specific data like serial num-
bers and production dates. From this point on, Type-IM
ceases to have further relevance for Instance-IM, as the
type-specific information becomes redundantly available.
Consequently, updating the type information necessitates
replacing the Instance-IM and integrating it with the ex-
isting lifecycle information of the Asset-Instance.

The Meta Object Facility (MOF), as specified by the
Object Management Group, constitutes a foundational
framework for metamodeling, enabling the specification
of metamodels across multiple hierarchical layers (Object
Management Group, 2016). As will be shown in the follow-
ing sections, the MOF framework is particularly relevant
to the discussion of Asset-Type and Asset-Instance, as it
provides a clear and concise way to model the relation-
ships between these two concepts. The MOF framework
is characterized as a metadata management framework
that includes a minimum of two, but more typically four,
hierarchical layers for the specification of metamodels.
These hierarchical layers are categorized into the meta-
metamodel layer (M3), the metamodel layer (M2), the
model layer (M1), and the data or information layer
(MO). Figure 1 illustrates the metamodeling framework
for industrial assets, such as sensors, spanning the four
MOF layers (M0-M3), and details the progression from
model abstraction to physical reality. This representation
systematically illustrates how abstract modeling concepts
are progressively transformed across multiple layers into
concrete digital representations of physical field devices.
The example presented is based on the AAS-Metamodel,
as it facilitates the modeling of both a type and an instance
of a field device within the identical framework, thereby
providing a clearer explanation of the subject matter.

The M3 layer constitutes the MOF meta-metamodel,
which articulates the foundational language and gram-
matical constructs necessary for formulating metamodels,
thereby establishing the abstract foundation for all sub-
ordinate layers. The AAS metamodel is located in the
metamodel layer (M2), where it delineates the structural
framework of the administration shell and articulates its
essential components (IDTA, 2025). In the model layer
(M1), the application-specific concretization is provided
through the AAS template of the modeled field device, in
this case a mass flow sensor, which determines the struc-
ture for the respective IM. Various submodel templates
are incorporated into the AAS template for demonstration
purposes. The definition of a specific submodel template is
depicted on the right in M1. The information layer (MO)
contains serialized information objects that can be ex-
changed between and interpreted by engineering partners.
Therefore, the administration shells, instantiated from
the AAS template (Asset-Type AAS and Asset-Instance
AAS), are located in MO.

The relationships denoted by solid red arrows as “in-
stanceOf” signify instantiations within the context of strict
metamodeling. Each object instantiated in this manner
possesses a class (meta-object) at the M(n+1) layer, which
defines the object’s structure. It is important to note that
both the Asset-Type AAS and the Asset-Instance AAS
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Fig. 1. Metamodel classification for Asset-Types and Asset-Instances exemplified through the Asset Administration

Shell metamodel

were instantiated from their respective AAS-Template at
the M1 layer. Consequently, there is no instantiation in the
sense of object orientation between these two Asset Ad-
ministration Shells; instead, as defined in the AAS Meta-
model, a “derivedFrom” reference exists. This reference
clarifies that an Instance-AAS is conceptually derived from
the corresponding Type-AAS, though it is not a direct
instantiation from a metamodeling viewpoint. The afore-
mentioned copying and extension of the Asset-Type AAS
to the Asset-Instance AAS is facilitated through model-
ing, by defining all instance-related information within
the AAS template as optional. This information can be
incorporated later within predefined structures. Therefore,
it would be methodologically incorrect to equate prede-
fined stereotypes field device type representation with a
modeling meta-layer (Atkinson and Kiihne, 2000). This
distinction is universally essential for the comprehension
of the model hierarchy and extends beyond the context of
the Asset Administration Shell, applying to all modeling
implementations in which the instantiation process itself
is subject to modeling.

Reality itself is excluded from the model and conse-
quently depicted beneath the four modeling layers. The
conceptual-semantic understanding of a sensor type is il-
lustrated on the left, while its tangible sensor instance is
depicted on the right. The conceptual description of a field
device represents the ontological type of the field device
instance (Atkinson and Kiihne, 2001). This terminology
implies that the conceptual-semantic dependency intro-
duces an additional dimension to metamodeling. While it
may be posited that this dependency is implicitly included

within the metamodel through references such as ’de-
rivedFrom’; it is imperative, for maintaining consistency
in the handling of Asset-Types and Asset-Instances, that
these relationships are defined explicitly. An approach to
explicit modeling of conceptual-semantic dependencies will
be presented in the next section.

3. CONCEPTUAL PROFILES FOR ASSET-TYPE
AND ASSET-INSTANCE

In Section 2, a fundamental conceptual inconsistency in
the modeling of relationships between Asset-Types and
Asset-Instances was identified when predefined stereotypes
are equated with a modeling meta-layer. Comparable is-
sues have been observed in the development of object-
oriented software using UML models, and the implementa-
tion of strict modeling profiles was suggested as a potential
solution (Atkinson and Kiihne, 2000). Strict profiles are
defined as a set of predefined modeling elements that
cut across the levels in the four-layer meta-architecture.
Based on these strict UML modeling profiles in software
development, we introduce the term of conceptual model-
ing profiles for Asset-Types and Asset-Instances to refine
the metamodeling of industrial assets. Unlike strict UML
profiles, conceptual profiles do not represent a structural
predefined or abstracted model, but rather take on a se-
mantic and contextual descriptive role. Figure 2 schemati-
cally represents the separation of modeling dimensions into
structural and conceptual-semantic descriptions.

The MOF layers (M0 and M1) define the structure of infor-
mation models, arranged vertically, while the conceptual-
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semantic profile hierarchy extends horizontally. Objects in
the and Type-Profiles are located at the MO layer, repre-
senting fully-specified data objects exchangeable among
engineering partners, depicted as XML files. Instance-
Profile (C0) and Type-Profile (C1) templates at the M1
model layer define MO object structures without detailing
their values. These templates incorporate a composition of
proprietary or standardized submodel templates. Thus, in
M1, unique templates for Asset-Types and Asset-Instances
are defined, differing in submodel quantity and structure.

Similarly to the MOF structure, there are no predefined
constraints on the number of conceptual profiles that can
exist within a given layer. However, higher abstract layers
and higher-order profiles (M2+ and C2+) are excluded
from further consideration in this article, as they remain
unaffected by modifications from engineering partners.

In the context of the mass flow sensor example, the Type-
Profile (C1) encapsulates the static properties that the
manufacturer determines and thus delineates the static
conceptual attributes of the device. The systematic sep-
aration into Type-Profile (C1) and Instance-Profile (CO0)
facilitates the integration and updating of asset-related
information. This partitioning allows for the elimination of
redundancies in the object information at the M0 layer and
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enables precise modifications without inducing unintended
side effects.

In Fig. 3, the illustration of modeling Asset-Types and
Asset-Instances discussed in Section 2 is expanded to in-
corporate the notion of strict conceptual-semantic profiles.
Within the M1 layer, it is noted that the templates for
Asset-Type AAS and Asset-Instance AAS differ in the
submodels they include, as they intrinsically represent
distinct entities. This allows type- and instance-related
information to be mapped without redundancy and linked
logically. As depicted in the figure, 3D data and dimensions
are associated with the field device type, thereby obviating
the need to model these attributes for each field device
instance individually. In contrast, location information
concerning the precise installation site within the plant
is entirely independent of field device type data within
the modeling framework. The new “derivedFromType”
reference therefore does not describe a stereotypical pre-
defined set of attributes, but defines the elements of the
instance profile as a conceptual derivation of the type
profile elements.

To illustrate how conceptual profiles can be applied in
practice, their application will be explained using excerpts
from the submodel templates “Device Type Parameters”
within the Type-Profile (Cl) and “Parameter Config”
within the Instance-Profile (CO0), illustrated in Fig. 3.
Within the submodel template of the Type-Profile, per-
tinent parameters can be modeled with respect to their
intended meanings and constraints, such as specified value
intervals or options delineated by the field device type.
Conversely, the submodel template within the Instance-
Profile allows for the modeling of the specific parameter
values set on the installed field device instance. Excerpts
of the corresponding Type-Object and Instance-Object are
shown in Fig. 4. The established value (250 cd/m?) is
encompassed within the Instance-Object (on the right)
and makes reference to the interval (50-500 cd/m?) of
permissible values as delineated in the Type-Object (on
the left) as a qualifier. All changes to the display brightness
set on the device are therefore limited to the Instance-
Object, but can be checked for conformity using the Type-
Object provided by the manufacturer.
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Fig. 4. Modeling of a device parameter for display brightness adjustment. Left: Representation of the adjustable value
range in the Type-Object; right: Depiction of the device-set value in the Instance-Object.

4. UPDATES OF ASSET INFORMATION

The previous section outlined an approach to separate
Asset-Type modeling from Asset-Instances and make im-
plicit relationships explicit, facilitating asset information
updates. It is important to note that updates to the infor-
mation models are deliberate actions by the operator, who
receives updates from the manufacturer or service provider
beforehand. The plant operator maintains their own sys-
tem for administrating and maintaining the relevant infor-
mation models. Updates at the model layer (M1) or Type-
Profile (C1), beyond just changes in the Instance-Object
(MOCO) status, require engineering decisions within the
plant. Automatic or direct model updates are intentionally
avoided to prevent manufacturers from altering a certified
plant’s status via updates.

This approach provides the necessary flexibility to adapt to
changing asset characteristics while maintaining operator
control over their information system. Explicitly model-
ing dependencies among conceptual profiles enhances the
transparency and traceability of external dependencies.
This feature supports more precise change tracking and
clearer classification. The resulting information models
are used to manage process-critical devices and to con-
textualize and orchestrate the flow of information within
production. Therefore, precise change tracking is vital in
industrial settings with certified plants and regulatory
requirements, as it aids in assessing the propagation effects
of a proposed modification. Examining the unidirectional
dependencies, depicted in Fig. 2, reveals that the possible
propagation of a modification of the asset model depends
on the highest modeling layer and the highest-order profile
affected. The resulting update categories, shown in Fig.
5, are further explained in the following through prac-
tical examples. The update categories are categorized in
ascending order of their potential propagation effects from
a metamodeling perspective:

I. Instance-Object Update (MOCO0): Modification of
instance-based information at the value level. This sce-
nario arises when a field device instance undergoes re-
parameterization or when a new calibration certificate
is stored or referenced (version 1.2 within the Instance-
Profile). Before applying the change, the conformity with
the structural requirements of the Instance-Template and
the conceptual requirements of the Type-Object must be
checked.

II. Instance-Template Update (M1CO0): Alterations
to the structure of instance modeling can lead to struc-
tural impacts on the resulting Instance-Object. In the

event that a purely instance-related submodel template
is altered (for example, by introducing a new iteration of
a standardized submodel template), the relative version
of the Instance-Profile escalates to 2.1. Consistent with
the earlier scenario, a correspondingly modified Instance-
Object is subsequently generated (version 2.2). Given the
unidirectional dependency existing between the Instance-
Profile and the Type-Profile, alterations in the former do
not exert any influence on the latter.

ITI. Type-Object Update (MOC1): Modifications to
type-related information at the value level may impart
conceptual implications on the value conformity of the
Instance-Object. For example, should the manufacturer
curtail the maximum permissible parameter value for a
particular device type through a firmware update (Type-
Profile version 1.2), e.g. the maximum speed setpoint
of a pump, a corresponding adjustment of the chosen
setpoint in the Instance-Object (Instance-Profile version
1.2) may become requisite. It should be emphasized at
this point that the categories enumerated herein represent
an estimate of the potential propagation of modification.
Therefore, it remains possible that the parameter value
encapsulated within the Instance-Object continues to align
with the specifications of the Type-Object, rendering al-
terations to the Instance-Object unnecessary.

IV. Type-Template Update (M1C1): Alterations to
the Type-Template can induce structural effects on the
generated Type-Object, conceptual effects on the Instance-
Template, as well as structural and conceptual effects
on the Instance-Object. For example, should a firmware
update introduce a novel parameterizable functionality
for an field device type, it is necessary to augment the
submodel template for type-related parameters with these
new attributes in the Type-Template (resulting in an
increase of the Type-Profile’s relative version from 1.1 to
2.1). Due to the conceptual dependency of the Instance-
Template on the Type-Template, it is necessary to update
the model structure of the Instance-Template (Instance-
Profile version 2.1). Consequently, both Type-Object and
Instance-Object are generated with the corresponding
values for the new modeled functionality (attaining version
2.2 in Type-Profile and Instance-Profile).

This initial examination of the effects of modifications on
the modeling of industrial assets is not exhaustive and
serves as a preliminary assessment. The dependencies facil-
itate only an approximation of the maximum propagating
impact to which they can induce or potentially lead. A dif-
ferentiation between various discrete scenarios is possible,
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depending on the nature of the modified information and
the relevant category. The aim of systematic categorization
of updates is to enable practical implementation strategies
for industrial asset management systems. Plant operators
shall be able to establish automated conformity checking
between Type-Objects and Instance-Objects, while manu-
facturers provide structured update packages that clearly
indicate propagation requirements.

Regarding the specified version numbers, illustrated in Fig.
5, it should be noted that these versions are not aligned
with the semantic versioning standards typically applied
in software development (Preston-Werner, 2013). Rather,
the leading numeral conveys the relative version status
of the related profile template, and the following numeral
indicates the relative version status of the profile object.

I. Instance-Object Update (M0-C0)
Type-Profile C1 Type-Profile C1

new new

Il. Instance-Template Update (M1-C0)

Instance-Profile CO ° nstance-Profile CO

IV. Type-Template Update (M1-C1)

Il. Type-Object Update (MO-C1)

Type-Profile C1

Type-Profile C1

in Use 0 e n Use

Profile CO

Version numbers depicted should not be interpreted according to the principles of semantic
versioning commonly utilized in software development, but rather a relative version:

relative version of
Template (M1-Layer)
_> 1:initial version (prior to the update)

rel. version
> 2: new version (change occured during the update)

Fig. 5. Updates to the modeling of field devices categorized
according to their possible propagation effects

5. CONCLUSION AND OUTLOOK

This paper highlighted conceptual and practical challenges
encountered in the modeling of Asset-Types and Asset-
Instances within the framework of industrial informa-
tion models. The findings underscore the necessity for a
distinct differentiation between structural modeling and
conceptual-semantic modeling. This was achieved by the
introduction of distinct conceptual-semantic profiles for
Asset-Types and Asset-Instances, which expand the meta-
modeling layers of the MOF framework. The relationship
between Type-IM and Instance-IM, which is implicitly
embedded in the layers of the MOF framework, can be
explicitly modeled with this approach. A notable limi-
tation of the proposed approach is the increased initial
complexity inherent in the introduction and implemen-
tation of the prescribed modeling framework. However,
this complexity is mitigated by the enhanced semantic
clarity and thus improving the update process. The pro-
posed framework establishes a foundational basis for the
systematic categorization of modifications to information
models according to their potential propagation effects. It
provides a structured approach for the consistent modeling
of industrial assets, such as field devices, throughout their
entire lifecycle.

As articulated in Sec. 4, a thorough assessment of propa-
gation effects stemming from model modifications neces-
sitates an expansion in the classification of modifications
within both Type-Profile and Instance-Profile. Future re-
search will therefore focus on assessing techniques for
automated consistency checks between Type-Profiles and
Instance-Profiles during updates, utilizing practical appli-
cations of the metamodeling framework presented herein.
Additionally, the aim is to investigate the mapping of
updates to both Type-IM and Instance-IM in the context
of static versioning, thus improving change traceability
and allowing complete or selective rollback to previous
versions.
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