KIT | KIT-Bibliothek | Impressum | Datenschutz

On the instabilities of naive FEM discretizations for PDEs with sign-changing coefficients

Halla, Martin 1; Oberender, Florian
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

We consider a scalar diffusion equation with a sign-changing coefficient in its principle part. The well-posedness of such problems has already been studied extensively provided that the contrast of the coefficient is non-critical. Furthermore, many different approaches have been proposed to construct stable discretizations thereof, because naive finite element discretizations are expected to be non-reliable in general. However, no explicit example proving the actual instability is known and numerical experiments often do not manifest instabilities in a conclusive manner. To this end we construct an explicit example with a broad family of meshes for which we prove that the corresponding naive finite element discretizations are unstable. On the other hand, we also provide a broad family of (non-symmetric) meshes for which we prove that the discretizations are stable. Together, these two findings explain the results observed in numerical experiments.


Volltext §
DOI: 10.5445/IR/1000183451
Veröffentlicht am 25.07.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 07.2025
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000183451
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 24 S.
Serie CRC 1173 Preprint ; 2025/36
Projektinformation SFB 1173, 258734477 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Forschungsdaten/Software
Siehe auch
Schlagwörter sign-changing coefficients, meta materials, finite element method, stability analysis
Nachgewiesen in OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page