KIT | KIT-Bibliothek | Impressum | Datenschutz

Hybrid discontinuous Galerkin discretizations for the damped time-harmonic Galbrun’s equation

Halla, Martin 1; Lehrenfeld, Christoph; Beeck, Tim van
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

In this article, we study the damped time-harmonic Galbrun’s equation which models solar and stellar oscillations. We introduce and analyze hybrid discontinuous Galerkin discretizations (HDG) that are stable and optimally convergent for all polynomial degrees greater than or equal to one. The proposed methods are robust with respect to the drastic changes in the magnitude of the coefficients that naturally occur in stars. Out analysis is based on the concept of discrete approximation schemes and weak $T$-compatibility, which exploits the weakly $T$-coercive structure of the equation. Compared to the $H^1$-conforming discretization of [Halla, Lehrenfeld, Stocker, 2022], our method offers improved stability and robustness. Furthermore, it significantly reduces the computational costs compared to the $H(\text{div})$-conforming DG discretization of [Halla, 2023], which has similar stability properties. These advantages make the proposed HDG methods well-suited for astrophysical simulations.


Volltext §
DOI: 10.5445/IR/1000183453
Veröffentlicht am 25.07.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 07.2025
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000183453
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 40 S.
Serie CRC 1173 Preprint ; 2025/37
Projektinformation SFB 1173, 258734477 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Siehe auch
Schlagwörter Galbrun’s equation, stellar oscillations, HDG methods, (weak) T-coercivity, T-compatibility, discrete approximation schemes
Nachgewiesen in OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page