KIT | KIT-Bibliothek | Impressum | Datenschutz

Some remarks about an effective description of high-frequency wave-packet propagation

Logioti, Anna; Meng, Xin; Schneider, Guido

Abstract:

We consider systems of the form
$$\partial_{\tau}\mathcal{U}+\mathcal{A}(\partial_{\xi})\mathcal{U}+\frac{1}{\varepsilon}\mathcal{E}\mathcal{U} = \mathcal{T}_2(\mathcal{U},\mathcal{U})+\varepsilon\mathcal{T}_3(\mathcal{U},\mathcal{U},\mathcal{U}) $$
with $0 <\varepsilon \ll 1$ a small perturbation parameter. We are interested in an effective description of high-frequency wave-packet propagation associated to highly oscillatory initial conditions
$$ \mathcal{U}(\xi,0) = \mathcal{U}_{*}(\xi)e^{ik_0\xi/\varepsilon} + c.c.. $$
By classical perturbation analysis for polarized initial conditions NLS approximations up to an arbitrary order and for non-polarized initial conditions a system of decoupled NLS equations can be derived for the approximate description of the associated solutions. Under the valid-
ity of a number of non-resonance conditions we prove error estimates between these formal approximations and true solutions of the original system. The result improves results from the existing literature in at least two directions, firstly, the handling of higher order approximations in case of quadratic nonlinearities $\mathcal{T}_2(\mathcal{U},\mathcal{U})$ and secondly, the handling of non-polarized initial conditions.


Zugehörige Institution(en) am KIT Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 07.2025
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000183473
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 19 S.
Serie CRC 1173 Preprint ; 2025/38
Projektinformation SFB 1173, 258734477 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Siehe auch
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page