KIT | KIT-Bibliothek | Impressum | Datenschutz

A linear Schrödinger approximation for the KdV equation via IST beyond the natural NLS time scale

Hofbauer, Sarah; Schneider, Guido

Abstract:

We are interested in improving validity results for the Nonlinear Schrödinger (NLS) approximation beyond the natural time scale for completely integrable systems. As a first step, we consider this approximation for the Korteweg-de Vries (KdV) equation with initial conditions for which the scattering data contains no eigenvalues. By performing a linear Schrödinger approximation for the scattering data the error made by this approximation has only to be estimated for a purely linear problem which gives estimates beyond the natural NLS time scale. The inverse scattering transform allows us to transfer these estimates to the original variables.


Volltext §
DOI: 10.5445/IR/1000183474
Veröffentlicht am 28.07.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 07.2025
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000183474
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 29 S.
Serie CRC 1173 Preprint ; 2025/39
Projektinformation SFB 1173, 258734477 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Siehe auch
Nachgewiesen in OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page