KIT | KIT-Bibliothek | Impressum | Datenschutz

From object detection to semantic segmentation: Leveraging the AI4EOSC platform for UAS-based thermal image analysis

Vollmer, Elena ORCID iD icon 1
1 Institut für Industriebetriebslehre und Industrielle Produktion (IIP), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

This presentation is part of the third session of the second AI4EOSC Webinar Series "Exploring the Future of AI, Machine Learning, and Federated Learning" titled "Accelerating Research with AI4EOSC: Real Use Cases Exploiting the Platform". It discusses how we can leverage AI and thermal / multispectral (RGBT) remotely sensed data to find thermal points of interest in our urban environments. This spans from detecting thermal bridges on building rooftops for energy retrofits, over identifying all manner of common urban hot-spots, to segmenting thermal anomalies for pipeline leak detection.

Three modules have been implemented on the AI4EOSC platform that enable the training of object detection and semantic segmentation models as well as prediction with well-known CNN- and transformer-based architectures. Not only are the platform's resources leveraged to perform both these tasks but other functionalities are also made use of, such as MLFlow for experiment tracking.


Volltext §
DOI: 10.5445/IR/1000183483
Veröffentlicht am 28.07.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Industriebetriebslehre und Industrielle Produktion (IIP)
Publikationstyp Vortrag
Publikationsdatum 09.05.2025
Sprache Englisch
Identifikator KITopen-ID: 1000183483
Weitere HGF-Programme 46.21.02 (POF IV, LK 01) Cross-Domain ATMLs and Research Groups
Veranstaltung AI4EOSC Webinar Series: Exploring the Future of AI, Machine Learning, and Federated Learning (2025), Online, 14.02.2025 – 09.05.2025
Projektinformation AI4EOSC (EU, EU 9. RP, 101058593)
Schlagwörter remote sensing, UAS, thermal images, multispectral images, anomaly detection
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page