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A maximum insertion costs of inserting a task between the vertices with
indices i and j on the route of the agent with iterate m

AT extended maximum insertion costs of inserting a task between the vertices
with indices i and j on the route of the agent with iterate m

A* optimal insertion costs for problems of configuration Pyt 0r Phom

Afax optimal maximum insertion costs

Niax optimal extended maximum insertion costs

A™PH difference in the objective function value resulting from applying the TDH
reoptimization heuristic

6 distance

o(i, ) distance between the two vertices with indices i and j

€ parameter weighting the influence of waiting times on the objective func-
tion

Y parameter weighting the influence of task execution times on the objective
function

K parameter applied in the mutation operator of the GA; cost associated
with a route in the BnP approach

A binary variable indicating whether route 7 is chosen in the BnP approach

Heo binary decision variable in the BnP decision variable method indicating
whether operator w is fulfilled

Q set of operators in the BnP decision variable method

w AND or OR operator in the BnP decision variable method

Prc\m sum of objective function value associated with all agents in /C other than
m

Pm objective function value associated with the route of agent with iterate m

¢m(i,j) objective function value associated with the route of agent with iterate m
without the part between the vertices with indices i and j

T basic task duration

T basic duration of the task specified by iterate i

¢ delay in the BnP approach

Cij delay before the vertex with iterate j caused by a delay of the vertex with
iterate i which are both in the route of the same agent

i delay right before the vertex with iterate i in the route of the agent with

iterate m

Calligraphic and Other Symbols

Symbol

Description

IN

set of natural numbers
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Symbol Description

R set of real numbers

A set of agents’ capabilities

Be set of possible decompositions of a cluster C in the BnP cluster method

Bxv set of decompositions of a cluster C that do not form a valid minimal
decomposition of C in the BnP cluster method

B‘C’al set of valid minimal decompositions of a cluster C in the BnP cluster
method

C cluster in the BnP cluster method

Cy set of all clusters in the BnP cluster method

D set of distances between nodes

& set of direct subtasks of an operator in the BnP decision variable method

A (initial) MRTA problem instance

Tmod modified MRTA problem instance

s modified problem instance corresponding to the modification of task in-
sertion

1 modified problem instance corresponding to the modification of task dele-
tion

7t modified problem instance corresponding to the modification of agent
capability variation

7o modified problem instance corresponding to the modification of task po-
sition variation

AL modified problem instance corresponding to the modification of prece-
dence constraint insertion

Ir modified problem instance corresponding to the modification of prece-
dence constraint deletion

AN modified problem instance corresponding to the modification of synchro-
nization constraint insertion

A modified problem instance corresponding to the modification of synchro-

nization constraint deletion

s modified problem instance corresponding to the modification of task du-
ration variation

il modified problem instance corresponding to the modification of agent
velocity variation

set of agents

set of direct suboperators of an operator in the BnP decision variable
method

set of tasks

set of tasks allocated to agent k

set of depots

set of precedence constraints

set of routes in the BnP approach

set of synchronization constraints

DA
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Symbol Description

T set of tasks’ basic durations
1% set of agents’ velocities

Indices, Exponents and Operators

Symbol Description

[ number of elements in set [J

O velocity or distance L] normalized w.r.t. ™ or capability or task dura-
tion [J normalized w.r. t. ay?y

Uso set [ containing positive values

U>o set [J containing non-negative values

ot set [ belonging to the modification of task insertion

0~ set [J belonging to the modification of task deletion

i set [] belonging to the modification of agent capability variation

m set [J belonging to the modification of task position variation

O+ set L] belonging to the modification of precedence constraint insertion

0p- set [J belonging to the modification of precedence constraint deletion

0os* set [ belonging to the modification of synchronization constraint inser-
tion

Hig set U belonging to the modification of synchronization constraint deletion

mi set [ belonging to the modification of task duration variation

mid set [J belonging to the modification of agent velocity variation

ogML routing, solution or corresponding objective function value [J generated
by the application of the CMI reoptimization heuristic to solve problem
instance 7

OpH routing, solution or corresponding objective function value [J generated
by the application of the DIH reoptimization heuristic to solve problem
instance 7

[P routing, solution or corresponding objective function value [J generated
by the application of the eDIH reoptimization heuristic to solve problem
instance 7

ON routing, solution or corresponding objective function value [J generated

by the application of the INI reoptimization heuristic to solve problem

instance 7

routing, solution or corresponding objective function value [J generated

by the application of the TDH reoptimization heuristic to solve problem

instance Z

TDH
DZ










1 Introduction

Over the past years, the interest in multi-robot systems (MRSs) has grown constantly
[YJC13, SKRJ20, RAT19]. One major cause is the potential improvement in standard
of living associated with their deployment [Man13, BKAJ15, BFC*16, DBW*18]. Sup-
porting that, robotic capabilities increase rapidly [Oxf] and especially connected and
cooperating robotic systems allow for accomplishing complex tasks in various do-
mains [RAT19].

In MRSs, a group of robots, that can either be homogeneous or heterogeneous, works
together towards a common goal [KHE15]. Compared to individual robots, MRSs have
several advantages [GM12, YJC13, PRS16, VR21]: They can achieve better overall sys-
tem performance, e.g. due to task parallelization. Furthermore, they potentially are
more reliable, flexible, versatile, robust, and obviously allow for a better spatial distri-
bution than a single robot. Due to these promising advantages, the areas of applica-
tion for MRSs are manifold. They include planetary exploration [SMB120, WMS*21,
WMST22], e-commerce and automated warehouses [KYCL18, YZM 121, WC21], au-
tomated production and assembly [AAM13, DDD"17, GWS18, BPS*20], exploration
and mapping [RDW*00], agriculture [CFSR23], patrolling [FIN17], search and rescue
[HYBB20], and inspection scenarios for the onshore oil and gas industry [SK16a] as
well as in solar [MSF'14] and thermosolar power plants [MFGC21].

To successfully deploy MRSs, the problem of multi-robot task allocation (MRTA) must be
solved [GMO04]. MRTA plays an important role in multi-robot coordination, which is
essential for the application of MRSs since it highly influences the overall system per-
formance [Y]JC13, VR21]. MRTA answers the question of task allocation that determines
which tasks are performed by which robots. Depending on the application setting,
also task scheduling, i. e. the determination of the order of tasks, and task decomposition,
i.e. the choice of a set of subtasks to perform a task with different possible realizations,
are to be answered by MRTA. [GM04, KSD13, ASGM23]

However, MRTA problems are generally complex to solve. All MRTA problems that
consider both task allocation and task scheduling are strongly NP-hard [GMO04]. Due
to the complexity of MRTA, its numerous fields of application with different kinds
of constraints, and its importance for the overall MRS performance, various MRTA
approaches have already been proposed [SKRJ20].

Nevertheless, these automated MRTA algorithms can only generate solutions that are
meaningful and thus purposeful in praxis, if the model of the problem to solve repre-
sents all relevant aspects of the real world problem under consideration [MKF'15]. An
expressive model may for example consist of a definition of all tasks and robotic sys-
tems including their relevant characteristics such as, among many others, the robots’
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capabilities to perform each task and constraints on some tasks’ orders. While a
meaningful automated problem modeling may be possible in structured environments,
e.g. in an automated warehouse with clearly defined procedures, generating an expres-
sive model in unstructured environments is a challenging task. It requires situational
awareness and recognition as well as the capability of abstraction and strategic think-
ing, all of which are skills in which humans outclass computers [CSP*19, Rot22].

1.1 Towards Interactive Optimization in Multi-Robot
Task Allocation

Combining the computational strengths of the automation with the cognitive abilities
of the human by pursuing an interactive MRTA approach promises high synergy po-
tential. In the current field of research in the application of robotic systems for space
exploration for example, the robotic mission must be conducted in an a priori rather
unknown and unstructured environment. In this example, the tasks to be performed
by the robotic team are investigations that may include the mapping of regions of in-
terest, taking images of various kinds, or the sampling of soil [WMS*21, WMS*22].
Here, it is the state of the art to let experienced scientists define both the locations
and the type of investigations to be performed there [WMS*21, WMS*22]. To solve
MRTA problems of this kind both task allocation as well as task scheduling must be
determined, i.e. which tasks are to be performed by which robot and in which order.
Another current research area is the development of service robots for application in
nursing practice [Hol, LV]. In this context, robots can be applied to provide care uten-
sils or food, automatically control material stocks or to support patients while walking
[Hol, LV]. Also in such an MRS application, the capturing of all relevant tasks and
constraints, e. g. on tasks” orders, in a dynamic hospital environment can be done best
by a human operator who knows about current patients, priorities, workloads and
procedures.

While letting humans model the MRTA problem and using algorithms and computers
to solve it is a good attempt to generate synergies, modifications to the model of the
problem instance may often be necessary. One reason for this may be if the human
operator realizes that the MRTA solution generated violates some real-life constraints
that were forgotten in the initial model. For example, in the application of service
robots in nursing practice, the operator may want a robot to accompany a patient to
some check-up prior to the patient being served food. If an MRTA solution violates this
precedence constraint, it will need to be added to the problem model, i. e. the problem
is modified by a precedence constraint insertion. Besides precedence constraints also
synchonization constraints forcing the simultaneous execution of some tasks may be
added, e. g. food and medicaments being served at the same time to a patient. This cor-
responds to the modification of synchronization constraint insertion. Also in the case
the human operator realizes that an additional task should be performed, a modifica-
tion to the problem instance in the form of a task insertion is necessary. The scientist
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might for example recognize another interesting area and thus add an investigation
task to the space exploration mission. If the scientist wants to change the position
where an investigation should take place, this corresponds to the modification of task
position variation. Moreover, if the human operator considers one of the previously
defined tasks not to be needed, the corresponding task deletion modifies the problem
instance. In the nursing scenario for example, a patient might have been moved to an-
other ward and thus not need to be served food by the service robots on the old ward.
More possible problem modifications include the variation of a robot’s velocity or of
its capability to perform certain tasks, e.g. after a software or hardware update, the
variation of a task’s duration as well as the deletion of unnecessary precedence or syn-
chronization constraints. In these occasions, in order to solve the real-world problem
under consideration and due to the MRTA solution’s relevance for the overall system
performance [Y]JC13, VR21], good solutions to the modified MRTA problem instances
are required quickly. This allows the operator to evaluate the new solution in time and
to potentially make further adjustments, if required.

Consequently, not only is it promising to combine the strengths of human and automa-
tion by letting the human initially define the problem instance which is subsequently
solved by automated algorithms, but also should it be possible to allow for modifi-
cations of the problem instance. This approach of the human refining the problem
instance through modifications to the problem model which is then in turn solved
anew by the automation, yields an interactive optimization system with a problem-oriented
interaction [MKFT15]. In the context of MRTA problems, such a system is called inter-
active MRTA optimization system in this thesis. A schematic representation of such an
interactive MRTA optimization system is depicted in Figure 1.1. Not only does this
approach tackle the problem of generating expressive models of the real-world prob-
lems under consideration through the incorporation of human expertise, but also does
an active human involvement increase human trust in the automation generating the
solution to the coordination problem [MKF*15].

When it comes to solving the modified problem instances, especially in direct interac-
tion with a human operator, several aspects are relevant:

e High quality solutions are essential for the overall MRS performance [Y]C13]. A
high quality solution implies optimizing the given objective function while re-
specting all constraints in order for the solutions to be executable in praxis. Espe-
cially due to the importance of MRTA solutions for the overall MRS performance
[GMO04, VR21], performance guarantees for the applied MRTA solution approaches
are desirable [Gin17].

¢ Additionally, a fast incorporation of the modifications is necessary for user accep-
tance of the system [HGQ™ 12, MKF*15]. This aspect, referred to as responsiveness
[HGQ12], describes the computation time needed to generate a new solution af-
ter the modification to the optimization problem has been made.

e Another aspect that is especially important in an interactive setting is the recog-
nizability of the initial solution. Since human problem modifications are often
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for the MRTA problem to model the real-
world problem under consideration

Figure 1.1: Schematic representation of an interactive MRTA optimization system.

directly related to the initial solution, computing a solution that is as close as
possible to the initial one is important for user acceptance [HGQ*12, MKF*15].
This aspect is referred to as solution stability [HGQ"12].

Additionally, also in settings without direct user interaction, the necessity to react to
modifications to MRTA problem instances occurs. In an automated production hall
for example, the orders to process may either be defined by a human operator or they
might be processed automatically. In both cases, the cancellation of an order requires
modifications to the MRTA problem instance. Also in a scenario of robots inspecting
e.g. power plants, automatically activated alerts may cause additional inspections to
become necessary and thus also modify the MRTA problem instance. Also in such
settings of automatically generated modifications to the problem instance, it is essential
to generate suitable high quality solutions quickly. The criteria of responsiveness and
high quality solutions thus remain significant, independently of whether modifications
to the MRTA problem instance are generated automatically or by a human operator.

Existing MRTA solution approaches mainly consist of centralized optimization-based
approaches and decentralized market-based approaches [SKRJ20, APP22]. In the
vast majority of market-based approaches, several robots evaluate locally available in-
formation to generate a solution to the MRTA coordination problem. However, the
distribution of knowledge on the features of the overall coordination problem restrains
the capability of decentralized approaches to globally optimize the common objec-
tive [APPT22].
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In the interactive setting, where the model of the problem instance is defined and
refined by a human operator and subsequently solved by an automated MRTA algo-
rithm, it is a valid assumption that the global information of the model of the MRTA
problem under consideration is available to a central coordination entity. Thus, the hu-
man interacts and defines the model of the problem instance for a central computation
unit which generates the solution to the respective instance. Once the solution is final-
ized and approved by the human operator, it will be communicated to the robots to
execute the solution. Having access to global information is what most optimization-
based methods for MRTA problems rely on in order to solve the coordination prob-
lem [APP"22]. They search a solution space to find solutions either minimizing or
maximizing some optimization objective while respecting given problem related con-
straints. Optimization-based approaches include both exact and approximative meth-
ods [SKRJ20, APP"22]. While exact approaches solve problem instances to optimality
and thus perfectly fulfill the requirement of producing high quality solutions, they gen-
erally do not meet the criterion on responsiveness due to the computational complex-
ity of MRTA coordination problems [APP*22]. Approximative methods on the other
hand, such as heuristics and metaheuristics, are computationally much more efficient
than exact approaches [APP*22], but typically lack performance guarantees [Gin17].
Furthermore, the majority of optimization-based approaches solves each problem in-
stance independently. Thus, when solving a modified problem instance, the stability of
the solution is generally not considered, since the modified problem instance is solved
without consideration of the previous solution to the initial instance.

In contrary to solving every problem instance individually via optimization, the con-
cept of reoptimization is based on the idea of utilizing the knowledge of an optimal
solution to an optimization problem when solving a slightly modified problem in-
stance [BHMWO08, ABE09]. When applied to NP-hard optimization problems, reopti-
mization aims at finding an approximate solution to the modified instance of better
quality than what would have been possible without the knowledge of the initial so-
lution, and/or generating an approximate solution of at least the same quality but in
a computationally more efficient manner [BHMWO08, ABE09]. Thus, reoptimization
is a promising approach when it comes to finding a compromise between generating
high quality solutions in an at the same time responsive interactive MRTA optimiza-
tion system. This holds especially if performance guarantees w.r. t. the solution quality
can be given. Furthermore, if the reoptimization approach only slightly modifies the
initial solution, it is likely to increase the stability of solutions compared to classical
optimization methods [BP11].

Reoptimization methods with performance guarantees have already been success-
fully introduced for several optimization problems such as the steiner tree problem
[BBH' 08, EMP09], the knapsack problem [ABS10] and the traveling salesman prob-
lem (TSP) [ABS03, AEMP09, BFH 06, BK10]. In MRTA with task allocation and task
scheduling however, to the best of the author’s knowledge so far no reoptimization
approaches, especially ones giving performance guarantees, have been proposed.
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1.2 Research Contribution

The goal of this thesis is to develop responsive MRTA reoptimization approaches with
performance guarantees that furthermore yield stable solutions. This enables interac-
tive optimization systems for MRTA problems which incorporate problem modifica-
tions into given MRTA solutions, as described above.

In order to be suitable for the interactive setting and to allow for a variety of ap-
plications as set out in Section 1.1, the following requirements and assumptions are
imposed on the sought solution approaches:

In the interactive target setting, it is assumed that the model of the problem instance
is defined and refined by a human operator and subsequently solved by an automated
MRTA algorithm, i.e. the human interacts with a central computation unit. Therefore,
it is assumed that all information on problem data is centrally available which is why
only centralized solution approaches are considered.

Since the information on all robots as well as on all tasks to be performed is avail-
able for coordination, tasks must be allocated to robots and additionally the timing
information of the tasks, i.e. the tasks” schedule, must be determined to generate ex-
pressive solutions. Consequently, an approach that considers task allocation as well
as task scheduling is required, i.e. a so called time-extended MRTA problem! is con-
sidered.

To allow for a variety of application domains including e. g. the space example outlined
above, heterogeneous teams of robots with different capabilities to perform a set of
different kinds of tasks shall be considered. Moreover, robots may have different
transitioning velocities between tasks. Furthermore, the consideration of temporal
constraints between tasks including precedence and synchronization constraints shall
be possible.? Precedence constraints require a precedent task to be finished before the
execution of the following task can start, and synchronization constraints require some
tasks to start simultaneously. Synchronization constraints also allow for the modeling
of cooperative tasks that require direct interaction between robots.

Given these requirements, the following contributions are made within this thesis:

It is of relevance that all solutions generated by the reoptimization methods respect
all constraints of the problem instance and thus are executable in praxis. A first con-
tribution of this thesis is the definition of a feasibility criterion for solutions to MRTA
problem instances with the properties stated above.

In order to reach the goal of introducing responsive reoptimization approaches with
performance guarantees for MRTA problems which are needed for interactive opti-
mization systems as motivated in Section 1.1, the main contributions of this thesis
towards this goal are the following:

1
2

More explanation on MRTA problems with time-extended assignment is given in Section 2.2.
MRTA problems with the considered features are denoted as heterogeneous, time-extended MRTA prob-
lems with precedence and synchronization constraints in the following.
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1. Reoptimization heuristics with performance guarantees for ten different modi-
fications to heterogeneous, time-extended MRTA problem instances with prece-
dence and synchronization constraints are introduced. All of them guarantee the
resulting reoptimized solution to be feasible for the respective modified problem
instance. Furthermore, the proposed heuristics for the modifications of adding a
task to and deleting a task from such an MRTA problem instance, are the first re-
optimization heuristics for MRTA problems for which guarantees on the quality
of the resulting solutions are given. Upper bounds on how much the quality of
a solution generated by the respective reoptimization heuristic can, in the worst
case, differ from a globally optimal solution are proven.

2. A reoptimization framework that combines metaheuristic solution approaches
with the previously defined reoptimization heuristics is introduced. Metaheuris-
tic algorithms combine intensification, i.e. the process of improving solution
quality within certain limits of the search space by applying slight perturba-
tions to previous solutions, and diversification, i.e. a process that aims at search-
ing large areas of the entire search space [ZBB10, Chapter 4.3] and thus aim
at searching wider areas of the search space to potentially further improve the
heuristic solution. A specific implementation based on a genetic algorithm (GA)
is suggested. The application of the so-called elitism mechanism guarantees the
resulting solutions to be at least as good as the solutions obtained by the intro-
duced reoptimization heuristics. Hence, the performance guarantees given for
the reoptimization heuristics remain valid.

3. An extensive evaluation to analyze the performance of the proposed reoptimiza-
tion heuristics as well as of the GA-based reoptimization framework compared
to an exact solution approach and a conventional GA is conducted. All require-
ments arising from the intended interactive application, i.e. quality of the solu-
tions, responsiveness of the solution approaches and solution stability are ana-
lyzed via appropriate performance measures. The influence of various MRTA
problem features on the performance measures is inspected. These features in-
clude problem size, considered heterogeneity of the robots and tasks, and num-
ber of precedence and synchronization constraints considered. The evaluations
yield first evidence of the suitability of the proposed reoptimization approaches
for their application in interactive MRTA optimization systems. Especially the
reoptimization heuristics provide promising results w.r. t. the combination of the
criteria relevant for application in the intended interactive setting. The evalua-
tion also indicates in which cases further solution improvement via the GA-based
reoptimization framework is beneficial.

In reoptimization, guarantees on the solution quality can in general only be given if
the initial solution is globally optimal. Thus, for the evaluation of the proposed reop-
timization heuristics, an exact solution approach is required. In the current state of
the art a variety of MRTA solution approaches exist that consider both task allocation
and task scheduling and can account for various constraints, as required for the eval-
uation within this thesis. However, to the best of the author’s knowledge, no exact
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MRTA solution approach exists that additionally to task allocation and task schedul-
ing also considers the problem of task decomposition. An additional contribution of
this thesis is therefore the incorporation of the problem of task decomposition into an
exact MRTA solution approach. Three approaches are presented that, for the first time,
allow for the consideration of task decomposition additionally to task allocation and
task scheduling. The decomposition method decouples the problem of task decompo-
sition from task allocation and scheduling, while the decision variable method and the
cluster method incorporate task decomposition explicitly into the overall optimization
model. Since task decomposition is not in the focus of this thesis, the presentation
of these approaches is given in Appendix B. Also, a brief evaluation to compare the
proposed approaches and to prove their ability to solve respective MRTA problems is
given.

The resulting structure of the remaining thesis is depicted in Figure 1.2. In Chapter 2,
the current state of the art on optimization and reoptimization approaches for MRTA
problems is presented. Upon this, a more detailed formulation of the research ques-
tions and contributions of this thesis is given. A formal definition of heterogeneous,
time-extended MRTA optimization and reoptimization problems with precedence and
synchronization constraints and the introduction of a feasibility criterion for respective
solutions is given in Chapter 3. This is followed by the introduction and theoretical
analysis of reoptimization heuristics for ten different problem modifications. In Chap-
ter 4, the extension of the proposed heuristics towards a metaheuristic reoptimization
frameword is introduced. Finally, an extensive evaluation of the proposed reoptimiza-
tion approaches comparing them to two state of the art optimization methods and
investigating the influence of different problem features is presented in Chapter 5.
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2 State of the Art and Research Questions

In this chapter, an overview of the state of the research on optimization and reop-
timization methods in time-extended MRTA problems, i.e. MRTA problems consid-
ering both task allocation and scheduling as outlined in Section 1.2, is given. The
terminology used throughout the thesis as well as relevant fundamentals are given in
Section 2.1 followed by an introduction of the existing MRTA taxonomies in Section 2.2.
Problems closely related to the considered class of MRTA problems are presented in
Section 2.3. Optimization-based solution approaches for MRTA and related problems
are presented in Section 2.4. An overview of existing reoptimization methods to solve
both MRTA as well as related problems is given in Section 2.5. Based on this analysis
of the state of the art, the research gap and the research questions to be answered in
this thesis are formulated in Section 2.6.

2.1 Terminology and Fundamentals

The area of time-extended MRTA and related problems is a wide field with various
applications. In many of these domains, different formulations are used which is why
a variety of formulations exists. Therefore, the terminology used throughout this thesis
is defined in this section. Furthermore, relevant basic concepts are introduced.

Tasks and agents are the two most important terms in order to define MRTA problems.
In this thesis, a task is defined as given in Definition 2.1.

Definition 2.1 (Task)

A task is a job that can be performed by one or several agents. A task can be associated
with a location and may require certain capabilities of the executing agent(s).

Zlot [Z1006] introduces different task types suitable for MRTA problems: Decomposable
tasks can be represented as a set of subtasks out of which some subset of subtasks must
be executed. Single jobs to be performed by one agent that are not decomposable into
subtasks are denoted as elemental or atomic tasks. Decomposable tasks for which there
exists only one possible way of decomposing them into subtasks are differentiated into
decomposable simple and compound tasks. The subtasks of decomposable simple tasks
must all be performed by the same agent, while the subtasks of compound tasks may
be allocated to different agents. Tasks that cannot be split to be allocated to several
agents are called simple tasks. They comprise elemental tasks as well as decomposable
simple tasks. If there exist several possibilities how to decompose a task into subtasks
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and the subtasks of at least one decomposition can be allocated to multiple agents,
these tasks are called complex tasks. An overview of the relations between the different
task types is depicted in Figure 2.1.

Depending on the application domain, tasks can e.g. also be represented by cities or
customers in transportation or routing problems or by patients in healthcare applica-
tions.

Tasks of all types are to be performed by agents, which are defined as follows.

Definition 2.2 (Agent)

An agent is an autonomous entity that is capable of executing tasks and of transitioning
between tasks. Each agent can have individual transition velocities and capabilities to
perform different tasks.

If all agents considered in an MRTA problem have identical features, i.e. all agents
have identical capabilities for all tasks and identical transition velocities, this group of
agents is called homogeneous. 1If the agents differ in at least one of the two features,
the group of agents is denoted as heterogeneous. Depending on the application domain,
agents might e.g. be robots in general robotic applications, vehicles or salesmen in
transportation or routing problems or caretakers in healthcare applications.

To define MRTA problems, task allocation, task scheduling, and task decomposition
are relevant, which are described in Definitions 2.3, 2.4 and 2.5, respectively. The
definitions are similar to the ones given by Antonyshyn el al. [ASGM23].

Definition 2.3 (Task allocation)

Given a set of agents K and a set of simple tasks N, a task allocation (or agent-task
allocation) is an unambiguous assignment of tasks to agents. Each task n € N is assigned
to one agent k € K such that each agent k € K is allocated a (potentially empty) subset of
tasks N, C N out of the overal set of tasks.

MRTA problems always comprise the problem of task allocation [Ger03]. Depending
on the specific problem under consideration, also task scheduling is sought, which is
defined as follows.

Definition 2.4 (Task scheduling)

Given a set of simple tasks N, task scheduling defines a permutation of the tasks n € N,
i.e. a sequence of task execution.

For task allocation and task scheduling, simple tasks are required. Thus, compound
tasks must be represented by their decomposition into simple subtasks. If complex
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Figure 2.1: Relations between task types according to Zlot [Zlo06]. The dashed ellipses express a potential
valid allocation of tasks to agents. Colored circles depict elemental tasks. Colored rectangles
represent decomposable tasks with their decomposition into elemental tasks being indicated in
the same color. For the complex task, the different colors represent different possible decompo-
sitions. The image is inspired by Korsah et al. [KSD13, Fig. 2].

tasks are given, a feasible subset of simple tasks to be performed must be determined.
This corresponds to the problem of task decomposition.

Definition 2.5 (Task decomposition)

Given a compound or complex task n, task decomposition determines an unambiguous set
of simple subtasks Ny, such that task n is considered to be executed if all subtasks of N,
are executed.

The decomposition of compound tasks into simple subtasks is unambiguous. These
simple subtasks may be related by some constraints, for example requiring some sub-
tasks to be performed in a specific order. However, an equivalent representation of any
compound task using the corresponding set of simple subtasks is possible. Therefore,
in the following only simple and complex tasks are considered explicitely. Using the
previous definitions, MRTA problems® are defined as follows.

3 MRTA can be categorized as a problem of intentional coordination [Par98], i.e. an explicit and purpose-
ful cooperation between the agents. However, coordinated behavior can also arise through emergent
coordination, i.e. local interaction of individuals with each other and with the environment. Though,
the potential of heterogeneous teams can better be exploited by intentional cooperation. [GM04]
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Definition 2.6 (MRTA problem)

Let a set of agents IC, a set of simple and potentially also complex tasks N, and corre-
sponding solution constraints be given. The MRTA problem includes the problem of task
allocation (see Definition 2.3) such that all tasks are allocated to agents capable of their
execution. Depending on the problem features, the MRTA problem also tackles the problem
of task scheduling and/or task decomposition (see Definitions 2.4 and 2.5).

Remark. Solution constraints may for example include precedence or synchronization con-
straints.

Different mathematical models can be used to represent MRTA problems. These mod-
els often include some utility or cost measure, since practical applications usually do
not only seek to find just any solution to an MRTA problem, but a solution that is as
good as possible w.r.t. some criterion. The higher the utility or the lower the cost of a
solution, the more a solution is preferred over others.

Based on the problem features and the utility or cost measure, the following cases can
be differentiated w.r.t. whether task scheduling and task decomposition are consid-
ered additionally to task allocation:

MRTA problem with task allocation only:
If the task set V' contains only simple tasks and furthermore,

e the utility or cost measure only depends on the allocation of tasks to agents
and not on the tasks’ orders or

e given constraints define the task sequence for all tasks n € A or

e the task set A contains only one simple task,

the MRTA problem is to define a task allocation.

MRTA problem with task allocation and task scheduling:
If the task set NV contains only simple tasks and furthermore,

e the utility or cost measure depends on the tasks” orders and
e the sequence of all tasks n € N is not predefined by given constraints,

the MRTA problem is to define a task allocation and a task scheduling. This
implies that for all agents k € K all tasks n € N, allocated to agent k must be
sequenced.

MRTA problem with task allocation and task decomposition:
If the task set NV contains at least one complex task and furthermore,

e the utility or cost measure does not depend on the tasks’ orders or
* given constraints define the sequence of the resulting set of simple tasks for
all possible decomposition of the complex tasks contained in the task set \/,
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the MRTA problem is to define a task decomposition for all complex tasks con-
tained in the task set V' and to define a task allocation accounting for the chosen
decomposition.

MRTA problem with task allocation, task scheduling and task decomposition:

If the task set N contains more than one task out of which at least one is a
complex task and furthermore, the given constraints do not define the sequence
of the resulting set of simple tasks for all possible decomposition of the complex
tasks contained in the task set \V, the MRTA problem is to define a task allocation,
a task scheduling, and a task decomposition. This implies, that for each complex
task a possible decomposition into simple tasks must be chosen, the resulting set
of simple tasks must be allocated to the agents and for all agents k € K all tasks
n € Nj allocated to agent k must be sequenced.

When utility or cost measures are given, optimization methods are among the well
suited solution approaches. A general definition used within this thesis of optimization
in the context of MRTA problems is given in Definition 2.7. It is based on [NWO06,
Chapter 1], but has been tailored to MRTA problems.

Definition 2.7 (Optimization)

Optimization is the minimization (or maximization) of a non-negative scalar objective
function ] of X, where X represents a solution to an instance of an MRTA problem as
given in Definition 2.6 and X fulfills given constraints. Conmstraints are given in the
form of functions of X, which define certain equalities and inequalities that the unknown
solution X must satisfy.

Remark. The objective function ], the representation X of a solution to a heterogeneous, time-
extended MRTA problem instance with precedence and synchronization constraints, and the
formulation of the constraints are formally introduced for this thesis in Section 3.1.1.

Given utility or cost measures, a mathematical representation of these measures is
given by the objective function J. The domain of X together with the constraints define
the search space. A solution X is globally optimal if there does not exist any other solution
X' within the search space such that X’ has a better objective function value than X
[NWO06]. Local optimality describes a solution X to be at least as good as all other
solutions within a certain neighborhood of X [NWO06]. A neighborhood of X is a set that
contains X, which can be defined in various ways. If the objective function as well as
all constraints are given in the form of linear functions of X, the optimization model is
denoted as linear [PAN23].

In general, optimization-based MRTA approaches can be classified into exact and ap-
proximative approaches [CGLL23]. Exact approaches achieve globally optimal solu-
tions by considering the whole solution space. Approximative approaches make use
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of heuristics or metaheuristics seeking good solutions in a computationally efficient
manner. Generally, heuristics are

“popularly known as rules of thumb, educated guesses, intuitive judgments or
simply common sense. In more precise terms, heuristics stand for strategies us-
ing readily accessible though loosely applicable information to control problem-
solving processes in human beings and machine(s).” [Pea84] as cited in [ZBB10,
Chapter 1]

In the context of MRTA problems, in this thesis, Definition 2.8 is used for heuristics.

Definition 2.8 (Heuristic)

A heuristic is an approximative solution method for optimization problems that does not
guarantee to find globally optimal solutions but seeks to find in a certain sense good solu-
tions in a computationally efficient manner.

Besides problem specific heuristics, also metaheuristics are approximative optimization
approaches. There does not exist a standardized definition of the term metaheuris-
tic [ZBB10, Chapter 4.3]. What most metaheuristics have in common, however, is
that they are defined independently of a specific optimization problem and that they
furthermore seek to find a balance between intensification and diversification [ZBB10,
Chapter 4.3]. Intensification describes the feature of a heuristic to generate and inves-
tigate new potential solutions by exploiting at least some properties of already visited
(good) solutions [ZBB10, Chapter 4.1]. Diversification means the feature of a heuristic
to explore different regions of the search space [ZBB10, Chapter 4.1]. The definition of
the term metaheuristic as given in Definition 2.9 is based on the definitions given in
[BM17] and [OL96] as cited by Zapfel et al. [ZBB10].

Definition 2.9 (Metaheuristic)

A metaheuristic is a general algorithmic framework that can be applied to a variety of
different optimization problems with relatively few modifications to define heuristics for
the specific optimization problem under consideration. A metaheuristic combines concepts
for exploring the search space (diversification) and strategies for intensification in order to
efficiently find good solutions.

In general, optimization methods use the information about the specific problem in-
stance and on the general structure of the problem to solve an instance of an optimiza-
tion problem. For the application of reoptimization methods, an initial problem instance 7
and a globally optimal solution X} to the initial problem instance 7 must be known.
Reoptimization seeks to solve a problem instance Z,,q which can be generated by
applying a slight modification to the initial problem instance Z. A schematic repre-
sentation of the procedures and the connection between the information available to
reoptimization methods in comparison to optimization methods is depicted in Fig-
ure 2.2. The depicted optimization is assumed to be an exact method. Based on the
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Figure 2.2: Schematic representation of the procedures and the information available to optimization and
reoptimization methods.

explanations given in [BHMWO08] and [ABEQ9], reoptimization in the context of MRTA
in this thesis is generally defined as follows.

Definition 2.10 (Reoptimization)

Reoptimization solves an instance L4 to an MRTA optimization problem (as defined in
Definition 2.7) that is distinguished from a known initial problem instance L by a known
modification applied to Z. To solve the problem instance I,,,q, reoptimization makes use of
the knowledge of

e q globally optimal solution 5(} to the initial problem instance and
e the modification applied to T to generate I,,p4

in order to provide a reoptimized solution f(%"  to the modified problem instance Zyo4.

Reoptimization methods are heuristic approaches and thus cannot guarantee to yield
globally optimal solutions [BHMW08, ABE(09].

The quality of both approximative optimization as well as of reoptimization approaches
can be evaluated by the approximation ratio, if the globally optimal solution to the
same problem instance is known. The following definition of the approximation ratio
is based on the explanations given by Ausiello et al. [ABE(09].
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Definition 2.11 (Approximation ratio)

The approximation ratio « of an approximative optimization approach applied to an in-
stance L of an optimization problem is defined as the ratio between the objective function
value of the approximate solution ]()_f%p ") and the objective function value of a globally
optimal solution ](X3) to the same problem instance, i. e.

aAprx
=) (2.1)

J(X3)
For optimization problems according to Definition 2.7 that aim at minimizing (maximiz-
ing) a positive valued objective function, the approximation ratio is in [1,00) ([0,1]).

For the application of some approximative optimization approaches to specific mini-
mization (maximization) problems, guarantees on the quality of the resulting solutions
are given in the form of upper (lower) bounds on the corresponding approximation ra-
tios. If these bounds are the smallest (largest) bounds possible, they are denoted as
tight.

The terminology and fundamentals introduced in this section will be used in the fol-
lowing to present the state of the art on relevant MRTA problems, optimization and
reoptimization methods. To begin with, an overview of common classifications of
MRTA problems is given.

2.2 Classification of Multi-Robot Task Allocation
Problems

As given in Definition 2.6, MRTA solves the problem of determining which task(s)
should be executed by which agent(s) in order to achieve an overall system objec-
tive [GMO04, KSD13]. Such coordination problems arise in various application domains
and show multiple different characteristics. To classify MRTA problems, several tax-
onomies have been proposed. An overview of the relevant ones is given in this sec-
tion.

Gerkey [Ger03] and Gerkey and Matari¢ [GM04] are the first to introduce a domain-
independent taxonomy. Their taxonomy differentiates MRTA problems on three axes:

Single-task robots* (ST) versus multi-task robots (MT):
The first axis concerns the nature of the agents’ ability to parallelize tasks. In ST
problems, each agent can execute one task at a time, while in MT problems some
agents are capable of executing multiple tasks simultaneously.

4 In their taxonomy, Gerkey and Matari¢ [GMO04] use the term robot for what is called agent (see Defini-

tion 2.2) in this thesis.
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Single-robot tasks (SR) versus multi-robot tasks (MR):
The second axis differentiates MRTA problems according to the nature of the
tasks. MRTA problem instances with SR consider only tasks that require exactly
one agent for their execution, while MR problem instances take into considera-
tion some tasks that need more than one agent to be executed.

Instantaneous assignment (lIA) versus time-extended assignment (TA):

The third axis distinguishes MRTA instances according to the temporal availabil-
ity of information of the agents, tasks and their environment. In MRTA instances
with IA, the allocation of tasks to the agents is done instantaneously since no
information that allows for planning future allocations is available. In contrary,
in MRTA problems with TA, also a planning of future allocations is done. This
requires information on the set of all tasks to be performed by the agents to be
available.

To denote the nature of an MRTA problem, Gerkey and Matari¢ use a triplet of the
introduced abbreviations. For example, ST-MR-TA describes a problem with single-
robot tasks, multi-task robots and time-extended assignment. In their taxonomy, tasks
are not categorized but understood as a "subgoal that is necessary for achieving the
overall goal of the system, and that can be achieved independently of other subgoals
(i.e. tasks)" [GMO04]. In accordance with this assumption of tasks being independent
of each other, they define the utility of a solution to only dependent on the sum of
individual agent-task assignments and not on scheduling, i.e. the order of the tasks.
Thus, both problems with interrelated utilities, i. e. utilities that depend on the overall
allocation of tasks to agents, as well as problems with temporal constraints among
tasks, such as constraints on sequential or parallel task execution, are not captured by
the taxonomy.

To overcome these limitations, Korsah, Stentz and Dias [KSD13] present an extension
of the taxonomy of Gerkey and Matari¢ [GM04] which they call /Tax. It explicitly takes
into consideration both interrelated utilities as well as temporal task constraints and
accounts for the different types of tasks as defined by Zlot [Zl0o06] that are presented
in Section 2.1. The iTax taxonomy consists of two levels. The first level denotes the
so-called "degree of interrelatedness" [KSD13] for which four categories are defined.
The second level called, "problem configuration" [KSD13], further defines the nature
of the problem using the taxonomy of Gerkey and Matari¢ [GM04]. The four degrees
of interrelatedness are defined as:

No dependencies (ND):
For MRTA problems falling into the ND category, the utility of every agent-
task assignment is independent of all other tasks and agents. Both simple and
compound tasks can be considered as long as their utilities are not interrelated.
Schedule optimization is irrelevant, since the order of task execution does not
influence the overall utility.
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In-schedule dependencies (ID):
Problems of the ID category consider simple or compound tasks for which the
utility of assigning a task to an agent depends on the other tasks assigned to that
agent, i.e. there exist "intra-schedule" dependencies. Scheduling optimization
must be considered for these problems, but there is no coupling of the scheduling
optimization problems of the individual agents.

Cross-schedule dependencies (XD):

The XD category comprises MRTA problems in which the utility of assigning a
task to an agent depends not only on other tasks assigned to that agent but also
on the schedules of other agents, i.e. there exist "inter-schedule" dependencies.
These inter-schedule dependencies may e.g. be caused by constraints between
schedules of different agents such as precedence or synchroniation constraints
between tasks assigned to different agents. Consequently, the optimization of
the schedules of individual agents are coupled problems.

Complex dependencies (CD):
If additionally to simple and compound tasks also complex tasks are to be con-
sidered, the problem falls into the CD category. The overall utility depends not
only on the schedules of all agents, but also on the chosen decompositions of
the complex tasks, i. e. the task decomposition problem is coupled with both task
allocation and task scheduling problems.

To denote the nature of an MRTA problem, Korsah, Stentz and Dias [KSD13] use the
above defined abbreviations describing the level of interrelatedness followed by the
categorization of the second level given in square brackets. For example, XD [ST-
SR-TA] denotes a time-extended problem with cross-schedule dependencies, single-
task robots and singe-robots tasks. While ND problems can be reformulated as a
linear assignment problem and are solvable in polynomial time, the problems of the
categories ID, XD and CD are all NP-hard. [KSD13]

Another extension to the taxonomy of Gerkey and Matari¢ [GMO04], that is independent
of the iTax taxonomy of Korsah [KSD13], has been proposed by Landén et al. [LHD12].
They introduce four more axes on which to differentiate MRTA problems. Unrelated
utilities vs. interrelated utilities differentiate whether the utility function depends only on
the sum of individual agent-task-assignments or whether other task allocations influ-
ence the utility associated with an assignment. Whether constraints between tasks have
to be considered is indicated by the axis distinguishing independent tasks vs. constrained
tasks. If solving the MRTA problem is separated from task execution, they denote it as
external allocation view whereas in problems with internal allocation view, task allocation
as well as task execution are performed by an agent or several agents of the respective
multi-robot system. To account for different task allocation environments, they differ-
entiate between static allocation environment, where all relevant information is known
in advance, and dynamic allocation environment, where dynamic changes concerning
e.g. constraints or agents may occur. Despite covering many aspects, this taxonomy is
not widely used.
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Nunes et al. [NMMG17] present another extension of the taxonomy of Gerkey and
Matari¢ [GMO04]. For time-extended MRTA problems, it adds another axis to the taxon-
omy focusing on temporal and ordering constraints. The additional axis differentiates
between different types of constraints:

Time window versus synchronization and precedence: While MRTA problems with
time window constraints define a feasible time interval for task execution, syn-
chronization and precedence constraints restrain the ordering of tasks. Prece-
dence constraints usually require an individual task to be executed before the
execution of another task may start, and synchronization constraints between a
subset of tasks enforce their simultaneous start of execution.

Within these subcategories, if applicable, it is furthermore distinguished between hard
temporal constraints, which must be satisfied, and soft temporal constraints, which
allow for some violation at an expense of some penalty. Additionally, w.r.t. the con-
sideration of uncertainty®, they differentiate deterministic and stochastic models if
applicable. [NMMG17]

Gini [Ginl7] also focuses on temporal and ordering constraints within MRTA prob-
lems and denotes this class of MRTA problems as MRTA/TOC. While different tem-
poral models are considered, including time windows as well as precedence and syn-
chronization constraints, no taxonomy distinguishing different kinds of temporal and
ordering constraints is proposed.

Due to the comprehensiveness and prevalent acceptance of the iTax taxonomy of Ko-
rsah et al. [KSD13], it is applied in this thesis. As outlined in Section 1.2, this thesis
focuses on time-extended MRTA, i.e. task allocation as well as task scheduling is con-
sidered. Agents are assumed to be single-task robots. The model under consideration
(see Section 3.1.1) assumes single-robot tasks. However, the introduction of synchro-
nization constraints to bundle several tasks allows for the modeling of multi-robot
tasks. The consideration of synchronization and precedence constraints between tasks
results in cross-schedule dependencies. Thus, using the iTax taxonomy [KSD13], the
heterogeneous, time-extended MRTA problems with precedence and synchronization
constraints considered in this thesis fall into the XD [ST-MR-TA] category.

Before the presentation of the state of the art on methods to solve time-extended MRTA
problems, a short introduction to the multiple traveling salesman problem (MTSP) and
the vehicle routing problem (VRP) is given. These problems share relevant features
with time-extended MRTA [AH17, SKRJ20]. Due to these similarities, models for time-
extended MRTA problems are often based on MTSP or VRP formulations [BHK13].

5 Exemplary sources of uncertainty are e.g. durations for tasks’ completion and agents’ transitioning

between tasks. However, most MRTA models are deterministic and uncertainty is dealt with at execution
time [NMMG17].
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2.3 Related Problems: Multiple Traveling Salesman and
Vehicle Routing

Since the multiple traveling salesman (MTSP) and the vehicle routing problem (VRP) also
consider the allocation and scheduling of distributed locations to a set of mobile agents,
they are closely related to time-extended MRTA problems.

The MTSP is a generalization of the well-known traveling salesman problem (TSP). The
TSP is concerned with, given a set of cities and the costs of travel between all cities,
finding the cost optimal tour through all cities and returning to the starting point. In
the MTSP, the cities can be distributed between a given number of several salesmen
which all start and end their tours at a single depot. The TSP as well as the MTSP
optimization problem are both NP-hard. [Dav10, CK21]

Closely related to the MTSP is the vehicle routing problem (VRP). The VRP is a gen-
eralization of the MTSP [CK21]. The VRP addresses the execution of a set of trans-
portation requests by a fleet of vehicles. Given the set of vehicles and the set of cus-
tomers associated to given transportation requests, the goal is to determine a feasible
set of vehicle routes such that all (or a subset of) transportation requests are fulfilled
at minimum cost [TV02, ITV14]. The VRP, which was first introduced by Dantzig and
Ramser [DR59] in 1959, is a widely studied problem in operations research [ITV14].
The basic version of the VRP is the Capacitated VRP (CVRP), in which a homogeneous
fleet of vehicles, all starting and ending their route at one single depot, fulfill given cus-
tomer delivery demands subject to capacity constraints of the vehicles. Several prob-
lem variants of the VRP considering different kinds of constraints have been proposed
out of which some important ones include time windows, i.e. restricted time periods
for serving each customer, the consideration of both pickup and delivery requests, or
multi-depot problems with individual depots for the vehicles. [TV02, ITV14]

The MTSP has also been generalized to problems of various other application domains
apart from transportation and delivery. Examples include the home care crew scheduling
problem (HCCSP), i. e. the problem of assigning and scheduling caretakers to patients at
different locations [BF06, KLB09, RJDL12, ABLW13], or the problem of defining service
routes for technicians serving different customers, the so-called technician routing and
scheduling problem (TRSP) [KPDH12, PGM13, ZS17]. Table 2.1 gives an overview of the
terminology for agents and tasks used in the problems related to MRTA.

Table 2.1: Overview on the common terminology in MRTA and related problems.

MRTA TSP MTSP VRP HCCSP TRSP

agents  one salesman salesmen  vehicles  caretakers technicians
tasks cities cities customers  patients customers
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Time-extended MRTA problems can be modeled as generalizations of the MTSP [AH17,
CK21]. Since also VRPs are a generalization of the MTSP, VRP and MRTA problem
formulations can be similar. For example, Korsah [Korll] adapts a VRP formula-
tion to model time-extended MRTA problems considering various constraints. An
introduction to two commonly used mathematical MTSP formulations is given in Ap-
pendix A.1.

In the following section, an overview of optimization-based MRTA solution methods
is given. Both approximative and exact solution methods are investigated.

2.4 Optimization-Based Solution Approaches

Optimization-based solution approaches for time-extended MRTA problem instances
model them as discrete optimization problems and seek to find agent-task allocations
and task schedules such that a given optimization objective is optimized and the result-
ing allocations and schedules respect given constraints (see Definition 2.7). In general,
optimization-based MRTA approaches can be classified into exact and approximative
approaches [CGLL23].

Exact approaches achieve globally optimal solutions by considering the whole solution
space. Due to the strong NP-hardness of the time-extended MRTA problem [GMO04],
they become intractable with growing problem size [APP*22]. Additionally, the con-
sideration of constraints such as precedence and synchronization can significantly in-
crease the computation time [KKB*12]. Thus, even though they perfectly meet the
requirement of high quality solutions, they are not suited for application in interactive
MRTA optimization systems, since they cannot meet the requirement of responsiveness
(see Section 1.1)°. Consequently, they are not considered in the following. However,
an overview on exact approaches for time-extended MRTA and related problems with
cross-schedule dependencies is given in Appendix B.1.

Approximative approaches make use of heuristics or metaheuristics seeking good so-
lutions in a computationally efficient manner. An overview on existing approxima-
tive solution approaches for time-extended MRTA problems is given in the following.
Since approximative approaches generally do not solve to optimality, the presented ap-
proaches are classified on whether they give guarantees on the solution quality whilst
being capable of solving time-extended MRTA problems with the required features,
i.e. time-extended MRTA problems with heterogeneous teams of agents as well as
precedence and synchronization constraints.

In the evaluation conducted in this thesis, MRTA problem instances without precedence and synchro-
nization constraints with up to eight tasks and three agents could be solved within 10s by the applied
exact solution approach. For problem instances of the same size considering one or more precedence
or synchronization constraint, the exact solution approach required considerably more calculation time
(see Chapter 5).
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Both heuristic (see Definition 2.8) and metaheuristic (see Definition 2.9) approaches
have been introduced to approximately solve time-extended MRTA optimization prob-
lems. Different constructive heuristics” and improvement heuristics® have been applied.
For example, Mitiche et al. [MBG15] present three different greedy constructive heuris-
tics and an improvement heuristic which account for heterogeneous capabilities of
agents and task deadlines. However, no guarantee on the resulting solution quality is
given.

Metaheuristics can be categorized in trajectory-based and population-based methods.
Trajectory-based metaheuristics use a single solution that is modified throughout the
search process. Improvements are always accepted while impairments might be ac-
cepted with a certain probability in order to escape local optima. Population-based
metaheuristics use populations, i. e. multiple candidate solutions at a time, during the
search process. [KHE15, APP*22]

Examples for trajectory-based metaheuristics include for example tabu search’ (TS),
simulated annealing!” (SA) and large neighborhood search!! (LNS) [EA20]. Mosteo
and Motano [MMO06] apply SA to a time-extended MRTA problem for heterogeneous
agents that includes task decomposition. SA is also used by David and Rognvaldsson
[DR21] as well as Wang and Chen [WC22] to coordinate a team of agents. Also TS
has been applied to solve time-extended MRTA problems [AKHO03, ZXS14]. Booth et
al. [BNB16] use LNS to improve initially generated MRTA solution for social robots
applied in a retirement home.

Constructive heuristics build a solution step by step using defined rules [Sal17, Chapter 2].
Improvement heuristics try to improve a solution via a selected neighborhood [Sal17, Chapter 2].

The tabu search algorithm uses a short-term memory called tabu list. In every iteration, using a defined
neighborhood operator, all neighboring solutions to the current one are generated. The best solution
within this neighborhood, which is not found in the tabu list, is chosen to be the next solution and
the current solution is added to the tabu list. A move to a new solution is always executed even if the
current solution is locally optimal. This allows to escape local optima and the tabu list prevents short
term cycling. [ZBB10, Chapter 6.2]

In simulated annealing, a candidate solution out of the neighborhood of the current solution is chosen
randomly. If it improves the current solution, it is accepted. But even if it has a worse objective value
than the current solution, it is accepted with a probability greater 0 which increases the smaller the
objective value difference to the current solution is. Over time, a parameter ¢, called temperature, is
decreased, which reduces the probability of accepting worse solutions. The probability for solutions
whose objective function value is worse than the one of the current solution and differs from it by AJ, is
defined as p(A]) = e~(*//). [ZBB10, Chapter 6.4]

In large neighborhood search, a destroy and a repair method implicitly defines a solution neighborhood.
A part of the current solution is destructed by the destroy method and subsequently rebuild by a repair
method. The destroy method typically contains stochastic elements such that different parts of the
solution are destroyed with every call of the method. [PR19]

10
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Population-based metaheuristics, including genetic algorithm!? (GA), memetic algo-
rithm (MA)!3, ant colony optimization!* (ACO), and particle swarm optimization'®
(PSO), have also been applied to time-extended MRTA problems. Especially GAs are
wide-spread and applied in various application domains including for example dis-
aster response [JDS11] and thermosolar plant monitoring [MFGC21]. Padmanabhan
Panchu et al. [PRSB18] propose a GA to solve time-extended MRTA with cooperative
tasks and precedence constraints. A MA that considers tasks that need either one or
two agents to be executed is given by Liu and Kroll [LK15]. Yakici [Yak16] uses ACO to
coordinate a fleet of unmanned aerial vehicles (UAVs) with limited flight time to visit
as many target positions as possible. For solving a homogeneous time-extended MRTA
problem considering two objectives, Chen et al. [CZDL18] combine a bi-objective ACO
algorithm with a sequential variable neighborhood search (VNS)!¢. PSO is combined
with evolutionary game theory!” (EGT) by Zhu et al. [ZTY17] to solve homogeneous
time-extended MRTA problems. Wei et al. [W]C20] propose a PSO approach that con-
siders two optimization objectives in order to balance the workload between the agents
of the robotic team which has to retrieve a set of distributed objects.

Also in the area of vehicle routing, heuristics and especially metaheuristics are widely
prominent solution approaches [EAR23]. A comprehensive review thereon is given by
Elshaer and Hadeer in [EA20]. They classify 299 publications proposing metaheuristic
approaches for VRPs and analyze the frequency of the usage of the different meta-
heuristics.

Despite the large number of heuristic and metaheuristic approaches in literature, only
few approximative solution methods with performance guarantees exist. Performance
guarantees on the solution quality for approximative approaches to optimization prob-
lems seeking to minimize an objective function, are usually given in terms of upper

12 Genetic algorithms were inspired by the process of evolution. In each iteration, a selection operator is

used to choose some solutions out of the current population. A crossover operator is applied to generate
new solutions by merging properties of the selected solutions. To some percentage of the new solutions,
a random perturbation is applied, called mutation. After evaluating the newly generated solutions, a
new population is generated using a replacement operator which defines, which solutions of the newly
generated ones and the old population form the new population. [ZBB10, Chapter 7.1]

Memetic algorithms combine evolutionary algorithms like GA with local search procedures. [NC12]
The idea of ant colony optimization is derived from the behavior of ant colonies. Artificial ants construct
solutions by putting together several solution components. For each solution component, transitions
to other components are defined which determine the candidates for the next construction step. For
every solution component chosen by an ant, it leaves a pheromone trace which vanishes over time. The
probability for any ant to transition to a solution component is proportional to the pheromone trail of
the component. [ZBB10, Chapter 5.2]

In particle swarm optimization, various particles, i. e. solutions, are distributed in the search space. Each
solution evaluates its value of the objective function and furthermore has information about the own
best solution found so far, the best solution of the whole swarm and its own velocity which depends on
the two previous values. In every iteration, each particle moves with its own velocity towards the best
solution of the whole swarm and updates all information. [ZBB10, Chapter 8.2.4]

In variable neighborhood search, several neighborhood operators are alternatingly used. This procedure
aims at overcoming local optima. [GP10, Chapter 3]

Evolutionary game theory combines the mathematical models of game theory with the basic concept of
Darwinism to model time evolution of populations. [Tan15]

13
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bounds on the resulting approximation ratio (see Definition 2.11). Due to the very
limited number of approximative solution approaches giving performance guarantees
in the MRTA problem domain, also related problem domains are considered in the
following.

Yadlapalli et al. [YJRD11] consider a multiple depot hamiltonian path problem (MD-
HPP) with symmetric costs that satisfy the triangle inequality for unmanned vehicles
(UVs). In the considered MD-HPP a set of agents must visit a given set of locations
such that the overall costs are minimized. The locations can either be visited by any
agent or only by a specific one. All agents start at individual depots and do not have
to return to their depot at the end of their tour. The authors prove their approximative
algorithm to yield an approximation ratio bounded above by 11/3. For every UV, ad-
ditionally to an initial start depot also a terminal position is given. They furthermore
consider the UVs to be heterogeneous in such a way that targets can either be visited
by all UVs or only by a specific one.

Also for the multiple depot MTSP (MD-MTSP) with symmetric edge costs that satisfy
the triangle inequality some heuristics with performance guarantees have been pro-
posed. MD-MTSP refers to a variant of the MTSP in which each agent starts and ends
its tour at an individual depot. Malik et al. [MRDO07] consider the generalized MD-
MTSP. In the generalized problem considered by the authors, only a defined maximum
number of the agents can be chosen to visit the destinations. The algorithm yields an
approximation ratio bounded above by 2. Xu et al. [XXR11] propose an extension to the
Christofides algorithm!® to solve the MD-MTSP and prove a tight approximation ratio
of 2 — 1/k, k being the number of agents. Yadlapalli et al. [YRD10] investigate a special
case of the MD-MTSP considering two agents that can differ either in travel velocity or
in their capability of visiting destinations. In case of different capabilities, destinations
are split into three disjoint subsets: one subset of destinations for each agent and one
common subset of destinations which can be visited by either of the two agents. They
prove their proposed heuristic to yield approximation ratios bounded above by 3.

In the application domain of time-extended MRTA problems Zhang and Parker [ZP13c]
introduce two simple greedy constructive heuristics as well as two more complex ones
that work with reformulations of the problems as assignment problems. They con-
sider MRTA problems with tasks that require direct cooperation between agents. Up-
per bounds on the approximation ratios for three of the four approximation heuris-
tics are given. However, the upper bounds either grow linearly with the number of
tasks considered or depend on potential conflicts for agents between different agent
cooperations!? in the specific problem instance considered. If the objective function
of MRTA problems is defined such that it does not depend on task scheduling but
only on the allocation of tasks to agents, performance guarantees have also been given

18 The Christofides algorithm is an approximate approach for the TSP with metric distances. It is based

on the computation of the minimum spanning tree of the complete graph representing the TSP and
guarantees an upper bound on the resulting approximation ratio of a < 3/2. [Chr22]

19" These conflicts arise since an agent can only be part of one cooperation at a time.
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[LCS11, LCS12, LCS13, LCS15a], but these publications do not consider time-extended
MRTA problems.

An overview of the presented approximative optimization approaches is given in Ta-
ble 2.2, which depicts the solution approach, problem domain, problem features and
performance guarantees given for the publication. Most heuristic and metaheuristic
solution approaches for time-extended MTRA problems lack guarantees on the quality
of the approximate solutions generated. This holds especially if heterogeneous agents
or temporal constraints are considered [Ginl7]. For the majority of metaheuristic ap-
proaches, constant guarantees are difficult to obtain, since most metaheuristics are
non-deterministic [DRAR15]. Constant guaranteed approximation ratios are mostly
given for heuristics solving problems without temporal constraints that either consider
homogeneous agents [MRDO07], a limited number of agents [YRD10] or with tasks that
can be either only executed by one or by all agents [YJRD11]. In summary, no per-
formance guarantee can be given for an approximative optimization approach solving
heterogeneous, time-extended MRTA problems with precedence and synchronization
constraints.

Furthermore, optimization-based solution approaches typically consider each problem
instance individually. Thus, solution stability, another requirement on solution ap-
proaches for the desired interactive MRTA optimization system (see Section 1.1), is
not considered by optimization approaches if applied to slightly modified problem
instances. Contrary to this, reoptimization approaches use the knowledge of a previ-
ously generated solution when solving a slightly modified problem instance (see Def-
inition 2.10), which is a promising approach w.r.t. solution stability. An overview of
relevant existing reoptimization methods is given in the following section.
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Table 2.2: Overview of approximative solution approaches to solve time-extended MRTA or related opti-
mization problems. The depicted approaches all consider a time-extended planning horizon. For
each publication, the applied solution approach and the problem domain are given. Furthermore,
it is indicated, whether heterogeneous teams of agents (Het.), precedence constraints (Prec.) and
synchronization constraints (Sync.) are considered. Whether an upper bound on the resulting
approximation ratio « is given is indicated in the last column.

Solution Problem Upper bound
Publication — approach domain Het. Prec. Sync. onuw
[MBG15] constructive & MRTA v X X not given
improvement
heuristic
[MMO6] SA MRTA v X X not given
[DR21] SA MRTA X X X not given
[WC22] SA MRTA v X (v') notgiven
[AKHO03] TS MRTA X v X not given
[ZXS14] TS MRTA X X X not given
[BNB16] LNS MRTA v v v not given
[JDSs11] GA MRTA v (v) X not given
[LK12] GA MRTA X X X not given
[PRSB18] GA MRTA X v (v') notgiven
[MFGC21] GA MRTA v X X not given
[LK15] MA MRTA v X v not given
[Yak16] ACO MRTA X X X not given
[CZDL18] ACO with VNS MRTA X X X not given
[ZTY17] PSO with EGT  MRTA X X X not given
[W]C20] PSO MRTA X X X not given
[YJRD11] heuristic MD-HPP (v) X X 11/3
algorithm
[MRDO07] heuristic generalized X X X 2
algorithm MD-MTSP
[XXR11] extended MD-MTSP X X X 2—1/k
Christofides (k: number
algorithm of agents)
[YRD10] heuristic MD-MTSP (v) X X 3
algorithm (two agents)
[ZP13c] constructive MRTA v/ X (v') grows linearly
heuristics with problem

features
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2.5 Reoptimization Approaches

Since reoptimization approaches seem promising w.r.t. the requirement of solution
stability (see Section 2.4), an overview of existing reoptimization methods is given in
this section. To evaluate whether also the requirement of guaranteed high quality so-
lutions (see Section 1.1) can be met, the presented approaches are analyzed w.r.t. per-
formance guarantees.

Approaches dealing with problem modifications in the domain of MRTA problems are
investigated in Section 2.5.1. This investigation reveals that no centralized reoptimiza-
tion approaches for time-extended MRTA problems with performance guarantees, as
required for the intended interactive application (see Section 1.2), exist. Conrary to
this, reoptimization heuristics with guarantees on the solution quality have already
been proposed for the TSP, which corresponds to the special time-extended MRTA
of one agent having to perform all tasks. The respective approaches and their corre-
sponding guarantees are presented in Section 2.5.2.

2.5.1 Reoptimization in Time-Extended MRTA and Related Problems

Reoptimization for time-extended MRTA is a rather new field of research and to the
best of the author’s knowledge no centralized reoptimization approaches for time-
extended MRTA problems exist. However, some decentralized approaches considering
modifications to MRTA problem instances have been proposed.

For example, market-based approaches have been applied to incorporate newly ar-
riving tasks during mission execution, e.g. [STBE09, HP13, NG15, Leel$, LLWT18].
Since agent-task-allocations are evaluated locally by each individual agent in market-
based approaches, these approaches make no assumption on the heterogeneity or ho-
mogeneity of agents [Leel8]. However, these approaches do not give any performance
guarantees. Furthermore, it has been shown for some auction-based methods that their
solution quality deteriorates if dynamic allocations over time are considered compared
to static problems where all tasks are known in advance [SSPO15, GC22].

A decentralized approach to react to newly arriving tasks during mission execution
is proposed by Buckman et al. [BCH19]. They propose an extension to the distibuted
consensus-based bundle algorithm (CBBA) [CBHO09] which they call CBBA with par-
tial replanning (CBBA-PR). In CBBA, a bundle building phase in which agents it-
eratively generate their schedules by bidding on tasks, is followed by a consensus
phase in which agents resolve misunderstandings regarding the allocations of each
task [CBH09]. Upon arrival of a new task in CBBA-PR, each agent releases a part of
its allocated tasks for reallocation. Thus, parts of the initially generated solutions are
kept unchanged. This approach however, does not allow for performance guarantees
w.r.t. the quality of the solution generated.
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A slightly different problem is considered by Emam et al. [EMN120]. They consider
the case that agents’ capabilities during mission execution differ from the anticipated
ones. By constantly comparing expected execution costs against observed ones during
execution, specialization parameters representing agents’ capabilities are constantly
updated during task execution. Since they consider an instantaneous assignment prob-
lem, no task scheduling is considered.

Another method that incorporates new tasks is presented by Ghassemi and Chowd-
hury [GC22]. They consider an MRTA problem with task deadlines as well as agent
range and payload constraints to which new tasks are added during mission execution.
Their decentralized approach is based on constructing and matching bipartite graphs.
However, each agent only selects the next task to execute at a time, and therefore no
task scheduling is taken into consideration.

Also in the application domain of vehicle routing, so-called dynamic VRPs (DVRP)
deal with reacting to dynamically emerging or changing information on the problem
instance [OXM*21]. Many approaches to solve such problems have been proposed, out
of which only some use reoptimization methods [OXM*21]. Comprehensive reviews
on DVRPs are given by Pillac et al. [PGGM13] and by Ojeda Rios et al. [OXM " 21].
However, to the best of the author’s knowledge, no relevant reoptimization-based
DVRP approaches with guarantees on the solution quality exist.

Table 2.3 summarizes the publications presented in this section. For each publica-
tion, the considered modification, the mode of solution computation (centralized vs.
distributed), the considered planning horizon (IA vs. TA) as well as whether perfor-
mance guarantees are given, are depicted. Overall, no reoptimization approach for
time-extended MRTA problems exists that centrally evaluates all information on the
modified problem instance. Existing approaches for incorporating problem modifica-
tions either build upon distributed local information ([STBE09, HP13, NG15, LeelS,
LLW 18, BCH19, GC22]) or only consider instantaneous assignment problems, i.e. do
not incorporate task scheduling ([STBEQ9, LLW*18, EMN'20, GC22]). Furthermore,
no guarantees on the resulting solution quality is given for any of these approaches.

In contrast to this, for the TSP, i. e. the problem of optimally routing one agent to visit
several tasks, centralized reoptimization approaches with guarantees on the resulting
solution quality have been proposed. These are discussed in the following section.

2.5.2 Reoptimization of the Traveling Salesman Problem

If only one agent to perform all given tasks is considered in a time-extended MRTA,
this special case corresponds to the TSP. For the TSP, several reoptimization heuristics
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Table 2.3: Overview of dynamic MRTA solution approaches accounting for modifications in the problem
instance. For each publication, the applied modification is given. It is furthermore indicated,
whether the approach is based on locally distributed or centralized information and whether
time-extended (TA) or instantaneous assignments (IA) are considered. Moreover, it is indicated,
whether heterogeneous teams of agents (Het.), precedence constraints (Prec.) and synchronization
constraints (Sync.) are considered. Whether an upper bound on the resulting approximation ratio
« is given is indicated in the last column.

Solution Planning Upper bound
Publication Modification =~ computation horizon Het. Prec. Sync. onwa
[STBEQ9] environmental distributed 1A X X X  not given
changes,

task insertion,
task deletion

[HP13] task insertion  distributed = TA (v) X X not given
[ING15] task insertion  distributed = TA (v) X X  not given
[Leel8] task insertion  distributed = TA (v) X X not given
[LLWT18] agent failure  distributed 1A (v) X X not given
[BCH19] task insertion  distributed = TA (v) X X not given
[EMN'20] capability centralized IA v X X ot given
variation
[GC22] task insertion  distributed 1A v X X not given

with performance guarantees in the form of upper bounds on the resulting approxi-
mation ratio exist.?

Archetti et al. [ABS03] consider the reoptimization problem of adding a new node,
i.e. a new task, to a previously exactly solved TSP instance. They prove the corre-
sponding reoptimization problem to remain NP-hard and propose the so-called cheap-
est insertion procedure to solve the reoptimization problem. The resulting approximation
ratio is proven to be bounded above by 3/2 in the case of metric distances. This bound
is shown to be tight, i.e. no smaller bound could possibly be given for the proposed
heuristic.

The same problem is inspected by Ausiello et al. [AEMP09] who propose a combination
of the cheapest insertion procedure and Christofides algorithm [Chr22]. They prove the
resulting approximation ratio to be bounded above by 4/3. For the insertion of [ > 1,
I € N, nodes, they apply a similar algorithm that chooses the best solution between
Christofides algorithm and iterative cheapest insertion of the new nodes in ascending
order according to their proximity to existing nodes. The proposed heuristic has an
approximation ratio bounded above by 3/2 — 1/(41+2). [AEMP09]

20 In addition to the presented TSP reoptimization approaches, also reoptimization in the context of TSPs
that aim at maximizing the sum of edge weights of the chosen solution [AEMP09, BH09] and for TSPs
with deadlines [BKK09] have been investigated. Since a minimization problem without deadlines is
considered in this thesis, these approaches are not discussed in detail.
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The result of Ausiello et al. [AEMPO09] on the insertion of a single node is improved
by a reoptimization heuristic proposed by Monnot [Mon15] that also yields an upper
bound of 4/3 on the approximation ratio, but at a lower computational complexity.

The asymmetric version of the reoptimization problem of inserting a task to a TSP
is studied by Ausiello et al. in [ABE09]. In the asymmetric TSP, the distances are
only required to obey the triangle inequality, but do not have to be symmetric. They
prove a tight upper bound of 2 on the approximation ratio for a very simple insertion
heuristic.

Also the problem of deleting a node, i. e. a task, from a TSP instance has already been
studied. Archetti et al. [ABS03] prove the corresponding reoptimization problem to be
NP-hard and propose a simple task deletion heuristic that skips the deleted tasks and
keeps the order of the remaining ones. They can prove a tight upper bound of 3/2 on
the approximation ratio for metric TSPs.

The corresponding reoptimization problem of deleting a task from an asymmetric TSP
for the same deletion heuristic is studied by Aussiello et al. [ABE09] who prove the
respective heuristic to yield solutions that cannot have approximation ratios greater
than 2.

Bockenhauer et al. [BFH ™06, BHMWO08] consider the variation of a single edge cost
in a TSP?! and prove the respective reoptimization problem to be NP-hard. For the
case of metric edge costs, they provide an algorithm having an approximation ratio
bounded above by 7/5. Berg and Hempel [BH09] improve the result given by Bocken-
hauer et al. [BFH06, BHMWO08] using an algorithm that chooses the better solution
between the initial one and the approximative solution generated by Christofides al-
gorithm [Chr22] and prove the approximation ratio to have an upper bound of 4/3.

A summary on the presented TSP reoptimization results is depicted in Table 2.4. Over-
all, constant approximation ratios can be guaranteed for the modifications of task inser-
tion, task deletion and edge cost variation out of which some approximation ratios are
furthermore proven to be tight. Additionally, these approaches all have a polynomial
complexity. Consequently, they fulfill the requirements of computational efficiency
and guaranteed solution quality which are required for the intended interactive set-
ting (see Section 1.1). Furthermore, the modified solutions generated based on the
initial solution often differ from the initial solution in a deterministic manner such
that the initial and the modified solutions share many features. However, this can-
not be guaranteed for the heuristics that include the Christofides algorithm [Chr22]
since here solutions to the modified problem might be generated from scratch. Over-
all, deterministic reoptimization heuristics are promising w.r.t. the requirements for
the intended interactive setting (see Section 1.1). However, so far only TSPs, which
correspond to time-extended MRTAs with one agent performing all tasks without any
temporal constraints, have been considered.

2l In the context of the TSP this means that the time required by the salesman to travel between two specific
cities changes, e. g. due to altered traffic conditions.
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In summary, there exist promising reoptimization results for TSPs that give guarantees
on the resulting approximation ratios for the problem modifications of task insertion,
task deletion and edge cost variation. However, for time-extended MRTA problems
so far no centralized reoptimization approaches with performance guarantees exist.
In order to define solution approaches that meet the requirements of high quality
solutions, responsiveness and solution stability, as defined in Chapter 1.2, the research
questions to be answered in this thesis are presented in the following section.

Table 2.4: Reoptimization approaches with upper bounds on the resulting approximation ratios for the trav-
eling salesman problem. By definition of the TSP, these approaches consider time-extended assign-
ment for one agent and neither precedence nor synchronization constraints. For each publication,
the applied modification is given, and it is indicated whether metric or asymmetric distances are
considered. Furthermore, the upper bound on the approximation ratio « is given, and the last
column indicates whether the upper bound is tight.

Problem Upper bound
Publication =~ Modification characteristics on « Tight bound
[ABS03] task insertion metric TSP a <3/2 v
[AEMPQ9] task insertion metric TSP a < 4/3 not analyzed
[Mon15] task insertion metric TSP a < 4/3 not analyzed
[ABEQ9] task insertion asymmetric TSP a <2 v
[ABS03] task deletion metric TSP a <3/2 v
[ABE09] task deletion asymmetric TSP a <2 not analyzed
[BEHT06] edge cost variation = metric TSP a<7/5 not analyzed

[BH09] edge cost variation = metric TSP a < 4/3 not analyzed
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2.6 Research Questions

On the basis of the literature review given in the previous sections, in this section,
the research questions to be answered in this thesis and the corresponding research
contributions are presented.

As revealed by the literature overview, while there exist promising reoptimization
heuristics for different modifications of the TSP, so far no reoptimization heuristics
for time-extended MRTA problems have been proposed. The first research question is
concerned with closing this gap.

Research Question 1:

Can centralized reoptimization heuristics be defined for modifications of the heterogeneous, time-
extended MRTA problem with precedence and synchronization constraints that guarantee to
find a feasible solution to the modified problem instance? Is it furthermore possible for some
heuristics to guarantee constant upper bounds on the approximation ratios of the solutions they
generate?

Research Contribution 1:

To answer this question, several reoptimization heuristics suitable for reoptimization
problems corresponding to ten fundamental modifications of heterogeneous, time-
extended MRTA problems with precedence and synchronization constraints are in-
troduced and theoretically analyzed within this thesis. The modifications under con-
sideration comprise important modifications such as task insertion and task deletion
that have already been investigated for the TSP (see Table 2.4 in Section 2.5.2) and are
extended by modification possibilities that arise from the augmented problem state-
ment (in comparison to the TSP) of heterogeneous, time-extended MRTA problems
with precedence and synchonization constraints. Therefore, the investigated modifica-
tions include

e inserting a task to an MRTA instance,

e removing a task from an MRTA instance,

* changing the position of a task,

® changing the duration of a task,

¢ changing the capability of an agent to perform some tasks,
e changing the transition velocity of an agent,

® adding a precedence constraint between two tasks,

¢ adding a synchronization constraint between two tasks,

* removing a precedence constraint between two tasks, and

* removing a synchronization constraint between two tasks.
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All reoptimization heuristics proposed for the MRTA reoptimization problems belong-
ing to these modifications ensure the resulting solution to the modified problem in-
stance to be feasible, i. e. to respect all constraints and thus to be executable in practice.
Except for the heuristics applied to the modifications of adding a precedence or syn-
chronization constraint, all heuristics are furthermore guaranteed to find a feasible
solution if the solution set of the corresponding modified problem instance is non-
empty. Moreover, for the reoptimization heuristics for inserting and removing a task
from a heterogeneous, time-extended MRTA problem instance with precedence and
synchronization constraints, performance guarantees are given in the form of constant
upper bounds on the resulting approximation ratio. Depending on the features of the
time-extended MRTA instance, different bounds apply, ranging between 3/2 and 2.

In addition to the reoptimization heuristics, also metaheuristic reoptimization ap-
proaches are of interest. Most metaheuristic solution approaches balance intensifica-
tion and diversification [ZBB10, Chapter 4.3] and thus search larger areas of the search
space than classical heuristics. Furthermore, as outlined in the literature review, meta-
heuristic approaches are widely used to solve time-extended MRTA problems. Con-
sequently, this thesis investigates whether a combination of reoptimization heuristics
with a metaheuristic solution approach is possible and whether this reveals further
improvement potential.

Research Question 2:

Is a combination of the reoptimization heuristics with a metaheuristic solution approach pos-
sible for heterogeneous, time-extended MRTA problems with precedence and synchronization
constraints? Is such a combined approach methodically useful and does it have the potential to
further improve the solution quality?

Research Contribution 2:

The second contribution of this thesis is the introduction of a reoptimization frame-
work that combines the proposed reoptimization heuristics with metaheuristic opti-
mization approaches. The additional application of a metaheuristic solution approach
allows for a broader search of the solution space. Any metaheuristic suitable for
heterogeneous, time-extended MRTA problems with precedence and synchronization
constraints can be applied. The solution generated by the respective reoptimization
heuristic is used for the initialization of the metaheuristic, since the initialization of
metaheuristic algorithms significantly influences their performance [LLY20, SV]J23]. It
is proven, that if the metaheuristic has certain properties, the guarantees given on the
feasibility and on the approximation ratios of the respective reoptimization heuristic
remain valid. Furthermore, a specific realization of the proposed reoptimization frame-
work using a genetic algorithm (GA) is introduced. The GA is specified such that it
fulfills aforementioned properties and thus preserves all performance guarantees of
the applied reoptimization heuristics.

Besides the theoretical results, the performance of the proposed approaches on differ-
ent MRTA problem instances is of interest, which leads to the third research question
to be answered in this thesis:
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Research Question 3:

How do the proposed reoptimization approaches perform on heterogeneous, time-extended MRTA
problem instances with precedence and synchronization constraints, and how do different prob-
lem features influence their performance? What are the advantages and disadvantages of the
reoptimization heuristics compared to the GA-based metaheuristic reoptimization approach?

Research Contribution 3:

The third contribution of this thesis is an extensive evaluation to analyze the perfor-
mance of the proposed reoptimization methods compared to an exact optimization ap-
proach and a conventional GA. All requirements arising from the intended interactive
application, i. e. quality of the solutions, responsiveness of the solution approaches and
solution stability are analyzed via appropriate performance measures. The influence
of various problem features of heterogeneous, time-extended MRTA problems with
precedence and synchronization constraints on the performance measures is inspected.
These features comprise the problem size, the extent of the agents” and tasks” hetero-
geneity, and the number of precedence and synchronization constraints considered
within a problem instance. The evaluation yields evidence of the suitability of the pro-
posed reoptimization heuristics for their application in an interactive MRTA optimiza-
tion system, since the reoptimization heuristics provide promising results w.r.t. the
combination of the criteria relevant for application in interactive MRTA optimization
systems. Overall, both reoptimization approaches clearly outperform the investigated
optimization approaches w.r. t. the considered criteria.

Since reoptimization approaches rely on globally optimal initial solutions, an exact
optimization approach is necessary. Within this thesis, a branch-and-price (BnP) ap-
proach introduced by Korsah [Kor11] is applied to generate globally optimal solutions.
However, to the best of the author’s knowledge, so far no exact solution approach takes
the problem of task decomposition into consideration. Therefore, another contribution
of this thesis is the introduction of three approaches to globally optimal solve respec-
tive time-extended MRTA problems with complex dependencies, i.e. problems that
consider the correlated problems of task allocation, task scheduling and task decom-
position. Since the focus of this thesis lies on the MRTA reoptimization problem for
the intended interactive setting without complex tasks, the corresponding contribution
can be found in Appendix B.

In the following chapter, heuristic solution approaches for different problem modifica-
tions are introduced and analyzed in order to answer the first research question.
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To answer the first research question, reoptimization heuristics for ten fundamental
problem modifications (see listing in Research Contribution 1, Section 2.6) to time-
extended MRTA problems with heterogeneous teams of agents and precedence and
synchronization constraints are introduced and analyzed in this chapter.

The MRTA task insertion reoptimization problem is defined and discussed in Sec-
tion 3.2. Furthermore, a sufficient criterion for the approximation ratio (see Defini-
tion 2.11) resulting from the application of a reoptimization approach to be bounded
above by 2 is given. The cheapest maximum insertion heuristic is introduced which is
proven to always fulfill the respective criterion, thus resulting in a guaranteed worst-
case approximation ratio of 2, and to yield feasible solutions. Furthermore, smaller
upper bounds on the approximation ratio are derived for temporally unconstrained
problem configurations.

In Section 3.3, the MRTA task deletion reoptimization problem is introduced and in-
vestigated. Similarly to the task insertion reoptimization problem, it is proven that
for all reoptimization approaches that fulfill two assumptions, the resulting approxi-
mation ratio is bounded above by 2. The task deletion heuristic is introduced which is
proven to always generate feasible solutions. For a temporally unconstrained problem
configuration with homogeneous agents and a single depot, the respective heuristic is
shown to yield approximation ratios bounded above by 3/2.

A definition and analysis of the MRTA reoptimization problem of task position varia-
tion is given in Section 3.4. Two solution heuristics, called initial solution approach and
delete-insert heuristic are introduced and proven to always yield feasible solutions to the
task position variation problem. The feasibility of these two heuristics is shown to also
hold for the MRTA reoptimization problem of task duration variation, which is dis-
cussed in Section 3.5. The MRTA reoptimization problems emerging from varying the
capabilities of an agent to process the tasks and from varying the velocity of an agent
are introduced and discussed in Sections 3.6 and 3.7, respectively. For both modifica-
tions, the initial solution approach is proven to always yield feasible solutions.

Introducing an additional precedence or synchronization constraint to an MRTA prob-
lem instance results in MRTA reoptimization problems of precedence or synchro-
nization constraint insertion, respectively, which are introduced and analyzed in Sec-
tion 3.8. For solving these kinds of reoptimization problems, the extended delete-insert
heuristic is introduced, which is proven to yield feasible results for both kinds of reop-
timization problems. In Section 3.9, the MRTA reoptimization problems correspond-
ing to the modifications of deleting a precedence or synchronization constraint from
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an MRTA problem instance are introduced, and it is proven that the initial solution
approach always yields feasible solutions for both. Parts of the results on the reopti-
mization heuristics have been established in the master theses of Kohn [Koh21] and
Hahn [Hah22], both supervised by the author.

The relevant fundamentals for the aforementioned analyses are given in the following
Section 3.1.

3.1 Problem Definition and Solution Feasibility

In this section, the fundamentals relevant for the analyses of heuristic solution ap-
proaches to different MRTA reoptimization problems are given. A mathematical def-
inition of the heterogeneous, time-extended MRTA optimization problem with prece-
dence and synchronization constraints as well as the notification used throughout this
thesis are given in Section 3.1.1. A criterion to validate the feasibility of solutions
is presented in Section 3.1.2. In Section 3.1.3, a generalized reoptimization problem is
given, which corresponds to the afore introduced heterogeneous, time-extended MRTA
optimization problem with precedence and synchronization constraints.

3.1.1 Heterogeneous, Time-Extended MRTA Optimization Problem
with Precedence and Synchronization Constraints

In this section, a mathematical definition of the heterogeneous, time-extended MRTA
optimization problem with precedence and synchronization constraints, which is based
on a 3-index vehicle flow formulation (see Appendix A.1), is given. An analogical for-
mulation has been used in a journal publication by the author [BKH"24].

In a heterogeneous, time-extended MRTA problem instance with precedence and syn-
chronization constraints Z = {N,K,0,V,D,T, A, P,S}, a set of simple tasks N' =
{ny...ny}, N € N, has to be both scheduled as well as assigned to a set of agents
K ={ki...kx}, K€ N. Each agent m € K starts and ends its route at its individual
depot 0,, € O = {01...0x} and moves with a constant velocity v, € Ry, i.e. V =
{v1...vk} defines the set of agents’ velocities. The problem can be depicted using
a complete graph G = (V,E). The set of vertices V = N U O contains all tasks and
all depots, i.e. |V| = N + K. The edges E are associated with metric edge costs de-
scribed by distances § : V X V — Rsq, i.e. D = {6(i,]) |i,j € V } describes the set of
all distances. Metric distances are symmetric, positive and fulfill the triangle equal-
ity [Jun13, p. 68]. For each task, a basic task duration is defined by the set of task
durations 7 = {11... v}, i € R5o V7; € T. Together with a capability 4} € R>
that is defined for each agent-task pair, i.e. A = {u;-" lie N,meKk }, an agent de-
pendent task duration d7" results. It is given by d}' = ©/a" if a" > 0 and otherwise
set to d" = co. Analogously, an agent dependent edge cost d:’; = i)/ om, 1,j €V,
m € K, follows from the distances and the velocities defined by the problem instance
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Z. Tt resembles the time needed by agent m € K to traverse edge (i, ) associated with
the distance (i, j). Thus, the heterogeneity of the agents is described by the set of
velocities V and by the set of agent-dependent task capabilities A.

The set of precedence constraints P = {p;;|i,j € N,i # j} contains all constraints
pij € {0,1} where p;; = 1 determines that the execution of task i must be finished
before the execution of task j can start. The synchronization constraints s; ; € {0,1} are
given by the set S = {s;;|i,j € N, i # j }. They constrain the execution of tasks i and j,
for which s; ; = 1 holds, to start simultaneously. An example of a heterogeneous, time-
extended MRTA problem instance with precedence and synchronization constraints is
depicted in Figure 3.1.

0@
a%:a%:?}lzl, a2 =0,03=0d}=2,
ay =1/2 “221/3

Figure 3.1: Example of a heterogeneous, time-extended MRTA problem instance Z with precedence and
synchronization constraints. It contains two agents and four tasks, i.e. V = {o0y,02,n1,...,14}.
The agents differ w.r.t. their velocities and their capabilities for the four tasks, which are given
next to the respective depot. The basic task durations are indicated next to the task nodes. The
basic task durations together with the agents’ capabilities determine the duration needed by an
agent to perform a task. The dashed lines indicate the distances (i, j), i,j € V, between the
respective nodes. The graph is complete, but for better ascertainability only some distances are
depicted. The distances together with the agents’ velocities determine the agent-dependent edge
costs. The active precedence constraint p,; = 1 depicted by a purple arrow constrains task 71 not
to start before task 7, is finished. The active synchronization constraint s;3 = s3» = 1 depicted
by an orange arrow requires tasks 7, and 13 to start simultaneously. All other constraints are set
to pij = sij = 0.

A solution X7 to a time-extended MRTA problem instance Z contains the routing infor-
i,jeV,me IC}, xl’f} € {0, 1}, together with the timing information,

mation X7 = { x;’;
i.e. X7 = X7 U {t;|i € V},t; € Rsg. The binary decision variables x}'; are equal to one
if the edge between vertex i and vertex j lies on the route of agent m and zero other-
wise. For the task vertices j € V' C V, the real valued decision variables t; denote the
starting time of task j. For the depots 0, € O C V, the variable t,,, denotes the time
agent m € K leaves its depot.

The optimization objective is to determine a task allocation and a task scheduling
such that the solution respects all constraints and minimizes the weighted sum of task
execution, transition and waiting times. With these definitions in place, the following 3-
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index vehicle flow formulation (see Section A.1.1) represents the heterogeneous, time-
extended MRTA problem with precedence and synchronization constraints:

Problem 3.1 (MRTA optimization problem)
For a given problem instance I, the optimization problem to be solved is given by
min]zzmin{ Z Z Zd",jx:z—l—’y Z Z (d:” Zx??)
Xz Xz | meKievjev mek ieN jev
=ch(Xz) =c5(Xz) (3.1)
e Y Y (tj—ti—d?’—dZ}) }
mek icV jeV
Z:C%(Xz)
subject to
Y, Y ali=1, VieVv (3.2a)
mek icV
X =1, Vme K (3.2b)
ieV
Z Xt =0, VieN (3.20)
mek
Y X=X VieV,mek (3.2d)
% %
Y Y x>0, VieN (3.2¢)
mek ieV
x{,"]-(ti+d{”+d{f}—t]-)§0, VieV,je Nme K (3.2f)
<t+22(,zd ) ><O, VijeN (3.2g)
mekleV
Sij (tl' — i’]> =0, Vi, je N (3.2h)
xl’f‘]« € {0,1}, Vi,jeV,meK (3.21)
t € Rsg VieV. (3-2j)

According to (3.1), the objective function J7 comprises the sum of all transitioning times
c(Xz), the sum of all agent-dependent task execution times ¢%(Xz) and the sum of
waiting times c7 (X7) associated with a solution X7. This objective function extends the
objective of the TSP, which aims at minimizing transitioning times [Dav10]. In addition
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to the overall transitioning times??, also agent-dependent task execution times as well
as waiting times are associated with a solution. Therefore, also the objectives of min-
imizing the overall task execution times ceI(XI) and the sum of waiting times c%’()_('z)
are considered in (3.1). The parameters v € R>p and € € R>y can be used to weight
the influence of the execution and waiting times on the objective function value rela-
tively to the influence of the transitioning times.”> For example, this can be useful if
waiting times are associated with less energy consumption compared to transition or
task execution times. Constraint (3.2a) ensures that each vertex is visited exactly once,
constraint (3.2b) forces the routes of all agents to finally transition into their depot, con-
straint (3.2c) inhibits loops and constraint (3.2d) ensures that the agents’ routes leave
all vertices they visit. Due to constraint (3.2e), tasks must only be assigned to agents
that have the capability to perform them. Constraint (3.2f) ensures the consistency of
starting times associated with the solution’s routing and constraints (3.2g) and (3.2h)
ensure the fulfillment of the precedence and synchronization constraints, respectively.
Binary decision routing variables are ensured by constraint (3.2i) and non-negative real
valued starting times are enforced by constraint (3.2j).

Remark. A linearization of Problem 3.1 is possible. Since this is not in the focus of this thesis
on reoptimization, the linearization approach can be found in Appendix A.2.

Remark. The applied model allows for the consideration of different transition velocities of
the agents. However, edge-individual differences in the transition velocities are not considered
explicitely. These could be caused for example by inclines on single edges or by different driving
surfaces that the agents have different competences to traverse. An inclusion of edge-individual
differences in transition velocities into the model is possible by defining agent-dependent dis-
tances 6™, Vm € K. However, general metric distances are applied in Problem 3.1, since they
are necessary for some of the following analyses.”*

A globally optimal solution to a problem instance Z and the associated globally min-
imal value of the objective function are denoted by X7 := argming J7(X7) and

J; = ]I(X}), respectively.

22 In contrast to the TSP, the transitioning times are agent-dependent in the heterogeneous, time-extended

MRTA problem with precedence and synchronization constraints. This is considered by the agent-

dependent edge costs dJ'; in the transitioning times b (Xz) of (3.1).
23 Without loss of generality, the weighting of the transitioning times in the objective function (3.1) is set
to one. This is motivated by the MRTA problem being a generalization of the TSP and the TSP only
minimizing the transitioning times. The guarantees given in the following chapters are also valid for
transitioning time weightings in R~ .
The inclusion agent-dependent distances can be done without influencing the results on the feasibility
of the proposed approaches, which are presented in the following sections. Furthermore, the guarantees
given in the form of upper bounds on the resulting approximation ratio in the following Theorems 3.1
and 3.4 are not affected by this model choice. If agent-individual distances are applied such that for each
agent m € K, the individual distances 6" are metric, moreover also Theorem 3.2 and Lemma 3.9 remain
valid. For the performance guarantees given in Theorem 3.3, Corollary 3.2 and Theorem 3.5 the general,
uniform metric distances are necessary.

24
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For any solution X7 to be executable in praxis, constraints (3.2) must be fulfilled. A
respective criterion to verify a solution’s feasibility is given in the following section.

3.1.2 Feasibility Criterion

A criterion for the validation of a solution’s feasibility is introduced in this section. The
basics for these results have been established in the master thesis of Meyer [Mey19]
supervised by the author and have been published at an IEEE conference by the au-
thor [BMIH20].

As depicted in Figure 3.2, the derivation of the feasibility criterion comprises three
steps. First, the constraints (3.2) necessary to be fulfilled by any feasible solution are
aggregated and restated in Lemma 3.1. Based on this reformulation, Lemma 3.2 gives
an easy to verify criterion for the feasibility of a solution’s routing X7. Finally, it is
guaranteed by Lemma 3.3 that for any feasible routing X7, feasible timing information
can be determined to yield a solutions X7 that is feasible according to Lemma 3.1.

Lemma 3.1: Lemma 3.2: Lemma 3.3:
Aggregation and Criterion for the Extendibility of
restatement of 7| feasibility of aso- | | feasible routing X7 to
constraints (3.2) lution’s routing X7 feasible solution XZ

Figure 3.2: Structure of Section 3.1.2.

According to Problem 3.1, a solution X7 is feasible for a problem instance Z by defini-
tion, if all constraints (3.2a) to (3.2j) are fulfilled. An equivalent definition for the feasi-
bility of a solution X7 w.r.t. a problem instance Z is given by the following lemma.
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Lemma 3.1 (Feasibility of a solution)
A solution X7 to a problem instance T according to Problem 3.1 is feasible if and only if

L3.1.1 The agent m € K assigned to any task i € N by the solution Xz is capable of its
execution.

L3.1.2 The routing without the information of agents driving into a depot,
ie. X7\ {xz."om lieV,mek }, represents a topological order and all agents
m € K start and end in their route in their own depot o, € O.

L3.1.3 The positive valued, finite timing information is consistent with the routing.

L3.1.4 The precedence and synchronization constraints p;; € P and s;; € S
a) are consistent with one another and
b) are fulfilled by the solution X7.

Proof:

Aspect L3.1.1 guarantees that constraint (3.2e) is fulfilled. Constraints (3.2a), (3.2b)
(3.2c) and (3.2d) are ensured by Aspect L3.1.2. Furthermore, Aspect L3.1.3 ensures
constraints (3.2f) and (3.2j) and Aspect L3.1.4.b guarantees constraints (3.2g) and (3.2h)
to be fulfilled. Aspect L3.1.4.a is an additional requirement on the problem instance
Z, which does not introduce any limitations since it is a necessary requirement for a
problem instance to have feasible solutions. Thus, all constraints (3.2a) to (3.2j) are
fulfilled if a solution X7 fulfills Aspects 1.3.1.1 to L3.1.4. O

The fulfillment of Aspects L3.1.1 and L3.1.2 is determined solely by the routing X7 of
a solution X7. The routing furthermore determines, whether 1.3.1.4.b can be fulfilled.
In the following, a criterion is derived for efficient verification of the feasibility of a
routing X7 for a problem instance Z. It is furthermore proven that feasible timing
information and thus a feasible solution X7 can always be found if the routing X7 is
feasible.

For the criterion for efficient verification of the feasibility of the routing X7 for a prob-
lem instance Z, a graph-based routing and constraint representation is established, the
directed constraint-solution graph (CSG) G = (V, A). It allows for an efficient check of
the routing feasibility. A CSG is generated by combining a given problem instance Z
and a corresponding routing X7. To establish the CSG, synchronized vertices @ are intro-
duced which can be derived directly from a given problem instance Z. The difference
of the synchronized vertices compared to the previously used vertices is that they
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combine all tasks connected by the synchronization constraints s;; € S, i.e.

i if (ieO)V[ie NA
= BeN:(sj=1Vs,;=1)] (33)
{ieN|j=iVsjj=1Vsj; =1} otherwise.

1

Thus, each depot 0 € O corresponds to a synchronized vertex 7,. Tasks are differenti-
ated according to whether they are constrained by a synchronization constraint or not.
For each task i € NV without any synchronization constraint, i.e.s;; =s;; =0V j € N,
the synchronized vertex only contains the task itself, i. e. ; = i. For any two tasks i and
j combined by a synchronization constraint, i.e. s;; = 1V s;; = 1, the synchronized
vertices are equal, i.e. 0; = 7, and contain all tasks that i and j must be synchronized
with.

Using the synchronized vertices according to (3.3), the constraint-solution graph is
defined as follows.

Definition 3.1 (Constraint-solution graph (CSG))

A constraint-solution graph GZ,XI = (Vg, AI,XI) belongs to a problem instance
Z={N,K,OV,AT,D,P,S} and a corresponding routing Xz. Out of all synchro-
nized vertices @ of the problem instance I as given according to (3.3) a subset defines the
set of vertices V1 of the CSG. The subset is chosen such that overall all tasks and all depots
and are included exactly once in V7, i.e.

The arcs Az x, of the CSG contain arcs of two different types. The routing arcs Ay,
contain all transitions done by any agent within the routing X7 towards tasks, i.e.

mex

Ax, {(fg) Ji€vp,je(GgUN): ) ol —1}

Arcs entering depot vertices are thus not included in the routing arcs. Together with the
precedence arcs Ap that are defined by all active precedence constraints, i.e.

Afpz{(f,g)’HiEﬁf,jEﬁg:pi,j:l},

the union of the solution and precedence arcs defines the set of arcs of the CSG, i.e.

AI,XI = AXI U Ap.

An example of a CSG is depicted in Figure 3.3. Figure 3.3a depicts a problem in-
stance Z with two agents and six tasks. The active precedence constraints p,; = 1 and
ps3 = 1 are depicted by purple arrows. All other precedence constraints are equal
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to zero. An orange double arrow indicates the only active synchronization constraint
s34 = s43 = 1. A possible routing X7 fulfilling the routing requirements according
to L3.1.2 and L3.1.4 of Lemma 3.1 is depicted in Figure 3.3b. Routing information
corresponding to agent kj is given in blue and the one for agent k; is given in green,
respectively. The corresponding CSG is shown in Figure 3.3c.

The following Lemma 3.2 defines a criterion that uses the CSG to verify the feasibility
of a routing according to Lemma 3.1.

Lemma 3.2 (Routing feasibility criterion)
A routing X7 is feasible for a problem instance T if and only if

L3.2.1 Lyex Ljev xj5aj" > 0 holds for all tasks i € N,

L3.2.2 the corresponding CSG Gz, x, is acyclic and

L3.2.3 The routes of all agents m € K start and end in their individual depot 0, € O.

Proof:
By definition, L3.2.1, i.e. ¥ex Ljev X]ja]" > 0V i € N, is equivalent to Aspect L3.1.1
of Lemma 3.1. The fulfillment of the feasibility Aspect L3.1.1 is thus defined solely by

the routing information X7.

It holds that a topological ordering of a directed graph is possible if and only if the
graph is acyclic [SW12, Chapter 4.2]. Therefore, the routing X7 represents a topological
ordering, if and only if Gx, = (Vz, Ax,) is acyclic. For the same reason, the set of
precedence constaints P together with the set of synchronization constraints S fulfill
L3.1.4.a if and only if Gp = (Vz, Ap) is acyclic. In order for the routing X7 to be
feasible, it must not contradict the precedence and synchronization constraints, i. e. the
topological orders of Gx, = (Vz, Ax,) and of Gp = (V7, Ap) must not contradict each
other. This is the case if GI,XI = (Vg, AI,XI) is acyclic. Consequently, L3.2.2 ensures
the routing X7 to represent a topological ordering, the precedence and synchronization
constraints to be consistent with one another and the routing to be such that it does
not contradict the precedence and synchronization constraints. Together with L3.2.3,
Aspect L3.1.2 of Lemma 3.1 is also ensured to be fulfilled. O

Thus, given a problem instance Z and any routing X7, Lemma 3.2 can be used to ver-
ify its feasibility. Hence, by reformulating a problem instance Z and a corrresponding
routing X7 using the related CSG, the feasibility verification of the routing mainly re-
duces to the well studied problem of acyclicity checks within graphs. Any cycle search
or acyclicity check (e.g. [Kah62, BR02]) can be applied.

Lemma 3.3 states that for any feasible routing a complete feasible solution is always
attainable.
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(a) Problem instance 7. (b) Problem instance Z with routing information of an
exemplary solution X7.
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(¢) Corresponding CSG Gz x; -
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Figure 3.3: Example of a constraint-solution graph.

Lemma 3.3 (Solution feasibility for feasible routing)

For any routing Xz that is feasible for a problem instance I according to Lemma 3.2,
timing information can be determinded such that the resulting solution X7 is feasible
according to Lemma 3.1. The timing information {t;|Vi € V'} feasible for routing Xz
fulfills the following constraints:

xpi(ti+di' +di — 1)) <0, VieV,jeN,mek (3.4a)

Pij (’H > Y () _t]’> <0, VijeN (3.4b)
mek leV

sij (ti—1) =0, Vi,jeN (3.4¢)

ti € R>o, VieV (3.4d)

xjj € Xz, VieV,je N,meK. (3.4¢)

Proof:

Given the feasibility of a routing X7 and the acyclicity of the corresponding CSG Gz x,,
a topological sorting of the vertices defining a partial order is possible. Using the par-
tial order, starting times t;, Vi € V, respecting the routing X7 information can be
defined recursively. Constraints (3.4a) to (3.4e) ensure the tasks” durations and tran-
sitioning times as well as the precedence and synchronization constraints to be con-
sidered and thus the resulting solution to be feasible for the corresponding problem
instance Z. Constraint (3.4a) ensures the starting times to be consistent with the rout-
ing information since no vertex j can be started before the vertex i directly precedent
according to routing X7 is finished and the respective agent has traversed from i to
j and constraint (3.4e) enforces that the routing X7 is considered. Together with the
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feasibility of the routing X7, this ensures Aspect L3.1.3 of Lemma 3.1 to be fulfilled.
Constraints (3.4b) and (3.4c) require the precedence and synchronization constraints to
be fulfilled which ensures Aspect L3.1.4.b of Lemma 3.1. Constraint (3.4d) ensures the
starting times to be within the domain definition. Together with the feasibility of the
routing X7, feasibility according to Lemma 3.1 is ensured. O

When looking at the objective function (3.1), the transistion costs ctz()?z) and the execu-
tion costs CEI()?Z) are fully defined by the routing information X7 of the complete solu-
tion X7. The waiting costs however, are influenced by all components of the complete
solution X7. Thus, a complete solution X7 that optimizes the objective function for
a given, feasible routing X7, optimizes the resulting waiting times w.r.t. the routing.
In order to derive the corresponding timing information, the following optimization
problem needs to be solved:

i B R (5-u-ar-ap)

mek icV jev (3.5)

subject to constraints (3.4).

Corollary 3.1

A solution X7 to a problem instance T that uses a feasible routing information X7 and
defines the timing information according to the optimization problem given by (3.5), is
feasible according to Lemma 3.1.

So far, the heterogeneous, time-extended MRTA optimization problem with precedence
and synchronization constraints is defined and criteria to verify a solution’s feasibility
are introduced. In the following section, a generalized version of the corresponding
reoptimization problem is given.

3.1.3 Generalized Time-Extended MRTA Reoptimization Problem

In this section, a general definition of the reoptimization problem corresponding to the
previously defined heterogeneous, time-extended MRTA optimization problem with
precedence and synchronization constraints (see Problem 3.1) is given. It assumes
an initial problem instance Z and a globally optimal solution )_f} to the initial prob-
lem instance to be given. A modified problem instance 7.4, that differs from the
initial problem instance Z in a defined manner shall be solved using the knowledge
of the initial instance, its globally optimal solution and the modification applied to
the inital problem instance (see Figure 2.2). Problem 3.2 defines the heterogeneous,
time-extended MRTA reoptimization problem with precedence and synchronization
constraints.
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Problem 3.2 (MRTA reoptimization problem)

Let an initial MRTA problem instance Z = {N,K,O,V, A, T,D,P,S} according to
Problem 3.1 and a globally optimal solution X}, that is feasible according to Lemma 3.1, be
given. Let furthermore a modified MIRTA problem instance ZL,,,; according to Problem 3.1
be given, that differs from the initial problem instance 7 by a defined modification.

The MRTA reoptimization problem aims at finding a solution }23?0 to the modified problem
instance I,,,4 by making use of the knowledge of the applied moﬁ%cutian and the informa-
tion contained in the globally optimal solution )?} to the initial problem instance L such
that the resulting modified solution ngod fulfills all constraints according to (3.2) of the
modified problem instance I,,,4 and optimizes objective function (3.1).

The modification applied to the initial problem instance strongly influences the heuris-
tic solution approaches that can be applied to solve the corresponding reoptimization
problem. In this thesis, reoptimization heuristics for ten relevant modifications as
listed in Table 3.1 are introduced and analyzed. They include important modifications
such as task insertion and task deletion that have already been investigated for the TSP
(see Table 2.4 in Section 2.5.2) and are extended by modification possibilities that arise
from the augmented problem statement (in comparison to the TSP) of heterogeneous,
time-extended MRTA problems with precedence and synchonization constraints.

An overview of the relations between the applied reoptimization heuristics is depicted
in Figure 3.4. The cheapest maximum insertion cost heuristic (CMI), the task deletion
heuristic (TDH), and the initial solution approach (INI) are defined independently
of each other. The delete-insert heuristic (DIH) results from the combination of an
extension of the CMI called extended CMI (eCMI) and the TDH. Finally, the extended
DIH (eDIH) is an extension of the DIH.

In the following section, the task insertion reoptimization problem is analyzed w.r.t.
performance guarantees of applied solution heuristics.

CMI TDH INI
T
extension ! combination
o 1 77777 Y
3 extended CMI | DI _geffcgp_s_igp’ eDIH
L (eCMI)

Figure 3.4: Overview of the relation between the applied reoptimization heuristics.
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Table 3.1: Overview of analyzed modifications and applied heuristics.

Modification Applied reoptimization heuristics

task insertion cheapest maximum insertion cost heuristic (CMI)

task deletion task deletion heuristic (TDH)

task position variation initial solution approach (INI) and
delete-insert heuristic (DIH)

task duration variation initial solution approach (INI) and
delete-insert heuristic (DIH)

agent capability variation initial solution approach (INI)

agent velocity variation initial solution approach (INI)

precedence constraint insertion extended delete-insert heuristic (eDIH)

synchronization constraint insertion — extended delete-insert heuristic (eDIH)

precedence constraint deletion initial solution approach (INI)

synchronization constraint deletion  initial solution approach (INI)

3.2 Task Insertion

In this section, the task insertion reoptimization problem corresponding to the time-
extended MRTA optimization problem defined in Problem 3.1 is introduced and ana-
lyzed. First, two assumptions on the relation between the objective function value of
the initial and the modified problem instance as well as on the objective function incre-
ment resulting from the task insertion are introduced. Upon these, it is proven in this
thesis that for any reoptimization approach that fulfills these two assumptions, a per-
formance guarantee in the form of an upper bound of « < 2 on the approximation ratio
can be given. Subsequently, the cheapest maximum insertion cost heuristic (CMI) is intro-
duced, and it is shown that the CMI always fulfills the aforementioned assumptions.
Furthermore, it is proven that solutions found by the CMI are always feasible. To give
even smaller upper bounds on the approximation ratios, three problem configurations
are introduced, differing in whether heterogeneous groups of agents and temporal task
constraints are considered. For temporally unconstrained problem instances smaller
upper bounds on the approximation ratios are derived, the smallest one being o < 3/2
for homogeneous groups of agents. The bounds are proven to be tight, meaning that
no smaller upper bounds for the CMI exist. The following more detailed presentation
of these results is based on a journal publication of the author [BKH*24].

3.2.1 Task Insertion Reoptimization Problem

The MRTA task insertion modification extends an initial problem instance Z by an ad-
ditional task 151 which yields the modified problem instance Z*. The corresponding
MRTA task insertion reoptimization problem aims at finding a feasible solution to the
modified problem instance Z by making use of the knowledge of a globally optimal
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solution X} to the initial problem instance Z. A comprehensive formal definition is
given in Problem 3.3.

Problem 3.3 (MRTA task insertion reoptimization problem)
The MRTA task insertion reoptimization problem is an MRTA reoptimization problem
according to Problem 3.2, where the modified problem instance T is given by I+ =
{N*K,0,V, A", T*,D*, P*,S*} with the modified sets
* N*=NuU{nn},
At = Aud{af, |Vm e K},
T =TU{m}
D* =DU{6(i,nn+1),6(nn+1,1) [Vie V},
Pt =PU{pin+1 =pn+1,i =0[Vi €N} and
ST=SU{sint1 =5Nn4+1i =0Vie N}

Thus, the modified problem instance T contains an additional temporarily unconstrained
task ny 1 compared to the initial problem instance 1.

On the basis of this definition of the MRTA task insertion reoptimization problem as
given in Problem 3.3, the following section derives a guarantee on the solution quality
that holds independently of the applied reoptimization approach.

3.2.2 Reoptimization Approach Independent Guarantee on the
Approximation Ratio

In this section, it is shown that any solution approach to solve the MRTA task inser-
tion reoptimization problem (Problem 3.3), under certain assumptions, cannot yield a
reoptimization ratio greater than 2.

The first assumption considers the relation the of optima of the objective function
values of the initial and the modified problem instance of the MRTA reoptimization
problem.

Assumption 3.1. Let
J7+ =1 (3.6)

be fulfilled for the modified problem instance I and the initial problem instance T of the MRTA
task insertion reoptimization Problem 3.3.

The following lemma provides two conditions that ensure Assumption 3.1 to be ful-
filled.
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Lemma 3.4
If

1. the weights vy, € of the objective function (3.1) of the underlying optimization Prob-
lem 3.1 of the MRTA task insertion reoptimization Problem 3.3 fulfill

e <min{l,v} (3.7)
or

2. within the MRTA task insertion reoptimization problem instance (see Problem 3.3)
neither precedence nor synchronization constraints must be considered,

Assumption 3.1 is fulfilled.

Proof:

The modified problem instance Z* differs from the initial problem instance Z only
in comprising the additional task #nx41. The objective function 3.1 consists of the
weighted sum of transition times ¢/, task execution times ¢¢, and waiting times ¢*. By
introducing the additional task 7y 1, the transition times ¢! and task execution times c*
can only increase or remain constant. The waiting times ¢ can both increase or de-
crease. However, the decrease of waiting times is limited to be of the same magnitude
as the sum of the increases in transition and task execution times. This is the case, if
the additional transition and task execution times replace former waiting times. By
denoting the differences in transition, task execution and waiting times as A+ € R>,
Ae € Rsgand Aw € R, Aw > —(Ayt + A ), respectively, it thus holds for the differ-
ence in optimal objecitve function values

J7+ = J7 = Dot + 7D + €A
> (1—€)As+ (7 —€)Ax (3.8)

Hence, condition (3.7) is sufficient for the fulfillment of Assumption 3.1.

If neither precedence nor synchronization constraints are contained in the MRTA task
insertion reoptimization problem instance, no waiting times occur in the optimal solu-
tions )_f% and XE. Consequently, it holds that A = 0 and Assumption 3.1 is fulfilled
independently of the choice of € and < in these cases. O

Furthermore, any MRTA task insertion reoptimization approach that uses the initial
solution X’ to solve the modified problem instance Z*, yields a reoptimized solution
}_fg?f that adds an increment in the objective function AT € R to the optimal objec-
tive function value [4 of the initial problem instance.”® Thus, the resulting objective

25 Under Assumption 3.1, the increment AT in the objective function is ensured to be non-negative.
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function value of the reoptimized solution J7%° equals the sum of the initial optimal
objective function value J; and the increment in the objective function AT, i.e.

J0 = J; + A*. (3.9)

Depending on the specific problem instance and on the reoptimization method used to
solve the task insertion reoptimization problem, the increment in the objective function
value AT resulting from the application of the respective reoptimization approach to
a task insertion problem instance may differ. For the following analysis, the increment
AT is conservatively assumed to have a value at most as high as the objective function
value J7, of the optimal solution to the modified problem instance.

Assumption 3.2. Let the increment A in the value of the objective function resulting from
solving the MRTA task insertion reoptimization problem according to Problem 3.3 be bounded
above by the value of the objective function J7. of a globally optimal solution to the modified
problem instance I, i.e.

AT <5 (3.10)

For any reoptimization solution approach solving an instance of the MRTA task inser-
tion problem such that Assumptions 3.1 and 3.2 hold, a performance guarantee can be
given according to the following theorem.

Theorem 3.1

For every MRTA task insertion reoptimization approach solving an instance of Problem 3.3
such that Assumptions 3.1 and 3.2 hold, the resulting approximation ratio a = J7%/J;., is

bounded above by 2, i. e.
I
=L <2 (3.11)
i

Proof:
Using (3.6) from Assumtion 3.1 together with (3.10) from Assumption 3.2, it follows
for the approximation ratio

reo * A+ (3_10) * * (3.6)
=2t = IIt < ]Itjf* < 2. (3.12)
e T I

O

Remark. The performance guarantee given by Theorem 3.1 in the form of upper bounds on
the approximation ratio for the task insertion reoptimization problem (Problem 3.3) holds in-
dependent of the specific reoptimization approach used to solve an MRTA task insertion reop-
timization problem instance I, as long as Assumptions 3.1 and 3.2 are fulfilled. While the
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fulfillment of Assumption 3.2 depends on the applied reoptimization approach, the fulfillment
of Assumption 3.1 is influenced by the specific task insertion reoptimization problem instance
under consideration.

According to Lemma 3.4, Assumption 3.1 is guaranteed to be fulfilled, if either the objecitve
function (3.1) weights waiting times at most as much as task execution and transitioning times,
or if no waiting times can occur since no temporal constraints are to be considered within the
problem instance. Thus, the choice of the weights of the objective function according to (3.7)
together with any reoptimization approach that fulfills Assumption 3.1, guarantees that the
reoptimized solution }?rfi cannot have an objective function value J’f? of more than twice
the value of the objective function J7, of a globally optimal solution to the modified problem
instance .

Since the conditions given in Lemma 3.4 are sufficient, Assumption 3.1 still holds in many cases
that do not fulfill either of the conditions. For example, if the objective function (3.1) weights
waiting times more than task execution or transition times, Assumption 3.1 is still fulfilled for
each problem instance in which the additional task exectution and transition times caused by
the insertion of the additional task nnq does not replace former waiting times. However, the
upper bound on the approximation ratio of & < 2 is not guaranteed in general for such a choice
of weights €, v within the objective function (3.1) if temporal constraints can be contained
within the problem instances.

In the following, the cheapest maximum cost insertion heuristic, a specific reoptimization
heuristic for Problem 3.3, is introduced.

3.2.3 Cheapest Maximum Insertion Cost Heuristic

In this section, a heuristic solution called the cheapest maximum cost insertion heuristic
(CMI) to solve the MRTA task insertion reoptimization problem (Problem 3.3) is intro-
duced. It is inspired by the "cheapest insertion heuristic" (CI) which was proposed by
Archetti et al. [ABS03] for the TSP. The CI chooses to insert the new task to the initial
solution such that the resulting cost increment, i. e. the increment in the value of the
objective function, is minimized. While the CI is based on the determination of the ex-
act cost increment, the CMI uses an overapproximation of the increase of the objective
function value associated with inserting the new task ny.1 on an edge of an agent’s
route of the initial solution. This is due to the fact that precedence and synchronization
constraints present within a time-extended MRTA problem instance can cause waiting
times cZ # 0 that influence the objective function (3.1). These waiting times must
therefore be considered when determining the cost increment. Even though the new
task nx41 is not associated with any temporal constraint, the tasks following within
the same route might have to consider precedence or synchronization constraints and
their temporal shifts can therefore cause an increase in waiting times in the routes of
other agents. In the same manner, the temporal shifts caused by the additional wait-
ing times of these tasks might cause further additional waiting times and associated
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shifts in task starting times within the routes of even more agents. This effect makes
the determination of exact insertion costs much more challenging which is why a less
complex overestimation of the insertion costs called the maximum insertion costs A
is proposed. The maximum insertion costs use the exact additional task execution and
transition times and a possible overestimation of the additional waiting times resulting

from inserting the additional task ny 1 in the route of agent m on the edge (i, ]).2°

To derive the maximum possible increase in waiting times, 8; € {1,...,K} describes
the maximum number of agents” routes that might be affected of a temporal shift of
vertex j € V within the initial solution }?% This implies that the temporal shift of
vertex j might, in the worst case, cause additional waiting times of the same amount
as the initial temporal shift of vertex j in the routes of f; — 1 agents other than the
one vertex j is assigned to. Consequently, the maximum insertion cost resulting from
inserting task .1 between the vertices 7 and j in the route of agent m € K is given
by the additional transition and task execution times for agent m which are associated
with this insertion plus the waiting times of the same amount in at most j i~ 1 routes,
ie.

Ai,j,m

max

Atfans + 751 e (B — 1) (Ai}]ézs + d%-ﬁ-l) ifai >0
o) ifay;,, =0

_ Air]arrr:s + ’YZ%E +e€ (,3] — 1) (Air]a?:s + ;ﬁ{]i) if afj,, >0
o if afj,, =0
V(i j,m):xfy € XpAx =1 (3.13)
with

Lim _ gm m m
Atrans = diny1 T AN 1) — 4

trans
(i, N+1)  S(N+1j) (i)
Um Om Um

(3.14)

Using the maximum insertion costs, the CMI applied to MRTA task insertion problem
instances according to Problem 3.3 is defined as given by the following algorithm.

Remark. To determine the maximal number B; of agents’ routes within which temporal shifts
of vertices may occur due to a temporal shift of vertex i € V, the CSG GI,X; corresponding to
the globally optimal solution X} of the initial problem instance 7 can be used. Given the CSG
GI,X? Bi is for all vertices i € V given by the number of agents’ depots 0,, € O for which

% The overestimation of additional waiting times differentiates the CMI from the CI applied by
Archetti [ABS03] for the TSP.
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Algorithm 1 Cheapest maximum insertion cost heuristic (CMI)

1: For each edge (i,j) that is part of the route of any agent m € K in the rout-
ing X7 of the optimal solution X7 of the initial problem instance Z, i.e. for all

(i,j,m) : (x;"] € X7 A x;"] = 1), calculate the maximum insertion costs Aflay ac-
cording to (3.13).

2: Insert the added task ny; in the route of agent 771 between the vertices { and |
that correspond to the finite minimum of the above determined maximum inser-
tion costs Agax. This yields the reoptimized routing X%MI. The resulting optimal
maximum insertion cost A}, € R> is given by

% o f,f,m o . ijm
Amax - Amax - min AIl’l(:l)(/ (315)

{ G |xpyexzaxp=1}

3: Solve optimization problem (3.5) to determine the complete CMI solution corre-
sponding to routing Xg}’ﬂ, i.e. to complement the routing with the timing infor-

mation to complete the solution X%MI

fhere exists a path from vertex i to the corresponding depot within the directed graph Gz x,
i.e.
B = Hom €O :3path (i,...,0) in GIXIH (3.16)

Hence, B; can be determined using e.g. a backwards breadth-first search within the CSG
Gz xs [Koh21].

Since the CMI chooses the edge on which to insert the new task ny41 based on a
potential overestimation of the actual increment in the objective function value, i. e.

*
Amax

> AT, (3.17)

the value of the objective function ]%E/H = J5 4+ AT (see (3.9)) of the solution )?%MI
generated by the CMI is bounded above by

JR < 7+ Ay (3.18)

max-

In the following section, the feasibility of the solutions generated by the CMI is ana-
lyzed.

3.2.4 Feasibility of the Solutions Generated by the Cheapest
Maximum Insertion Cost Heuristic

According to Lemma 3.5, if feasible solutions to the modified problem instance Z+
exist, the CMI is ensured to yield a feasible solution.
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Lemma 3.5 (Solution feasibility for CMI)

Let an MRTA task insertion reoptimization problem according to Problem 3.3 be given
such that the solution set of the modified problem instance I is non-empty. The CMI
(see Algorithm 1) always finds a solution }?%VH to the modified problem instance I that
is feasible according to Lemma 3.1.

Proof:

According to the definition of Problem 3.3, the initial solution X} is feasible. Fur-
thermore, the optimal maximum insertion cost A}, must be finite (see Algorithm 1).
According to the definition of the optimum maximum insertion costs (see (3.13), (3.14)
and (3.15)) this is exactly the case if there exists at least one agent m € K with a ca-
pability ay;, ; > 0 to perform the inserted task nyy1. The existence of at least one
such agent is ensured for any modified problem instance with a non-empty solution
set since otherwise constraint (3.2e) could not be fulfilled for the optimization Prob-
lem 3.1 associated with Z,,,4. Consequently, Aspect L3.2.1 of the routing feasibility
criterion (Lemma 3.2) is alway fulfilled for a routing defined by the CMI. Also, since
the initial solution is feasible it has an acyclic CSG. Since by Definition 3.3, the inserted
task nx41 is not constrained by any precedence or synchronization constraint, insert-
ing the task ny,1 on any edge of the initial routing cannot introduce a cycle to the
resulting CSG. Consequently, the routing generated by the CMI always fulfills L3.2.2.
Furthermore, inserting task rnj4+1 on only one edge of the initial routing does not alter
start and end nodes of the routing of any agent. Since the initial solution is feasible,
the CMI routing is furthermore ensured to fulfill L3.2.3, i. e. the agents start and end
their routes at their individual depot. Consequently, since all aspects of Lemma 3.2 are
ensured to be fulfilled by the routing generated by the CMI, the respective routing is
always feasible. By definition of the CMI (see Algorithm 1), the timing information to
complete the CMI solution X%MI is determined by solving optimization problem (3.5).

According to Corollary 3.1, this approach ensures the solution X%/H to be feasible. [

An analysis of the approximation ratios resulting from the application of the CMI is
presented in the following.

3.2.5 Upper Bounds on the Approximation Ratio for the Cheapest
Maximum Insertion Cost Heuristic

As presented above, a solution generated by the CMI (see Lemma 3.5) is ensured to be
feasible according to Lemma 3.2. Extending this, performance guarantees in the form
of upper bounds on the approximation ratios are given in this section.

The following lemma holds for metric distances when inserting a vertex to a graph.
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Lemma 3.6
When a vertex ny1 is inserted on an edge (i, j) € E, it holds for metric distances that

S(i,nn+1) +0(nnga,j) — (i, 7) < 28(nnt1,j)- (3.19)

Proof:

Since the distances are metric, the triangle inequality 6(i, nn+1) < 6(i,j) + 6(nN+1,7)
holds. Together with the symmetry of distances, i.e. d(nn+1,j) = 6(j, nn+1), the asser-
tion follows:

O(i,nNt1) < 0(i,j) +0(j,nny1) = 6(i,j) +d(nn1,])
& 0(i,nny1) +0(nNsr,j) —0(i,f) < 20(nNy1,f)

Using Lemma 3.6, the following lemma shows that a solution generated by the CMI
always fulfills Assumption 3.2.

Lemma 3.7

For a solution Xgﬂyﬂ to the MRTA task insertion reoptimization problem (Problem 3.3)

generated by the application of the CMI (see Algorithm 1), it always holds that

At <5, (3.20)

Proof:
Consider an unknown globally optimal solution )?% of the modified problem in-

stance Z*. Within the solution X%, the task ny41 is assumed to be allocated to an

agent m* € K. Then the value of the ojective function J7, of the solution )?% can be
written as

T = bic\me + P (3.21)

where ¢+ denotes the objective function value associated with the route of agent m*
(i. e. the weighted sum of task execution, transitioning and waiting times of agent m*,
see objective function (3.1)) and ¢y« denotes the sum of the objective function val-
ues associated with the routes of all other agents m € K\ m*. It is known that the
route of agent m* starts and ends at the depot 0,+ and contains at least task ny1.
Consequently, its objective function value at least contains the task execution time for
executing task npy1 plus the times needed for the transition from its depot o+ to
task nyy1 and back. Using the triangle inequality and the symmetry of distances it
follows for the objective function value associated with the unknown route of agent m*
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that
0(0,%, 1 +d(n , O T 26(n , O+ T
e > (0m*, nN+1) + 0(nN+1,0m+) g\ C5 (NN41,0m*) LI (3)
Om* IN+1 Om* IN+1

In addition to the underapproximation (3.22) of the objective function value associated
with the unknown route of agent m*, an overapproximation of the optimal maximum
insertion cost is derived. To this end, (3.19) from Lemma 3.6 as well as the definition of
the optimal maximum insertion cost which is given by inserting (3.13) into (3.15) are
used. The overapproximation of the optimal maximum insertion cost follows, which
holds for inserting task #ny.1 on any edge (i, ) of the route of any agent m € K that is
chosen in the routing X7 of the initial solution X}

. B _s(nny,j TN+1 O(nN+41,7) | TN+1

Apax < 2 ( v:n_ ])+’Yam+ +€(ﬁ]‘—1) 2 ( '0:,,_ ])+am+

N+1 N+1
V{(j,m)lﬂxﬁ}eXE:xz;zl}. (3.23)

Since (3.23) holds for inserting task ny.1 on any edge (i,) of the route of any agent
m € K within the initial routing X7, it is also fulfilled for inserting task 7y,1 on the
last edge of the route of agent m*, i.e. for j = 0,+ and m = m*. Inserting task ny_1
on the last edge of the route of agent m* cannot introduce any additional waiting
times since there is no subsequent task in agent m*’s route and thus also no task with
potential precedence or synchronization constraints can be temporally shifted, which
is why B, . = 1 holds. Inserting these values in (3.23) yields

(41, O
Aax <2 (HN; 1:0n) oL (3.24)
m* AN+1

From (3.22) and (3.24), if follows that A} .. < ¢m=. As given by (3.17), the optimal
maximum insertion costs A}, are always an upper bound for the real increment in
the objective function A™. Furthermore, ¢y« < J7+ follows from (3.21). Thus,

AT < Dax < e < 7+ (3.25)

results. O
Using Lemma 3.7, the following guarantee can be given for the CMI:

Theorem 3.2

Solving an MRTA task insertion reoptimization problem (Problem 3.3), for which Assump-
tion 3.1 holds, by the application of the CMI (see Algorithm 1) leads to an approximation

ratio
]CQ/H
=L <2 (3.26)
J7+
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Proof:

According to Lemma 3.7, Assumption 3.2 is always fulfilled for a solution to the MRTA
task insertion reoptimization problem generated by the CMI. Thus, by applying Theo-
rem 3.1, the assertion follows. O

Furthermore, the upper bound on the approximation ratio of & < 2 is the smallest
bound possible as given by the following proposition.

Proposition 3.1
For the application of the CMI as defined in Algorithm 1 to the task insertion reoptimiza-

tion problem (Problem 3.3), the bound on the approximation ratio of & < 2 is tight, i.e. no
lower upper bound on the approximation ratio exists.

Proof:

To prove that « < 2 is the smallest upper bound possible on the approximation ra-
tio resulting from the application of the CMI to MRTA task insertion reoptimization
problems, it is shown that an MRTA task insertion reoptimization problem instance
with an approximation ratio converging towards a = 2 resulting from the application
of the CMI exists. It is depicted in Figure 3.5. An initial MRTA problem instance 7 is
given which consists of two agents having a transition velocity of v = 1 and v, = 1/2.
The agents’ depots are located in a distance of 6(01,11) = 1 and d(0p,n1) = 1/2—17,
0 <5 < 1/2 from the task 1y, for which both have a capability of a% = a% =1.

Both possible routings to this instance, i.e. either allocating task 7; to agent k; or to
agent ky, have the same task execution time. For # > 0, the transition time required
by agent k, is smaller than the one required by agent k;. Since furthermore, both
possible solutions corresponding to these routings have no waiting times, the globally
optimal solution is given by routing agent ky to task 77 which results in an objective
function value of J; = 2 — 4. In the modified instance Z, task n, is added at the
same position as task 7. Since only agent k; is capable of executing task ny, i.e. a} = 1
and a3 = 0, task n;, is assigned to agent k; in the solution generated by the CMI which
corresponds to an objective function value of ]gyu = 4 — 4. The optimal solution
however would assign both tasks to agent kq, which would lead to an optimal objective
function value of |7, = 2, i.e. the resulting approximation ratio equals a = 2 — 27
which converges towards &« — 2 for y — 0. Given that a problem instance exists,
for which the approximation ratio converges towards 2 from below, no smaller upper
bound can be given for the CMLI. O

The approximation ratio guaranteed for the CMI so far holds for MRTA task insertion
reoptimization problems according to Problem 3.3 in which the initial problem instance
Z can have all features as introduced in Section 3.1.1. Thus, agents can have different
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2+ V2—1 .
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Figure 3.5: Example of an MRTA task insertion reoptimization problem instance with an approximation
ratio of « — 2 for 7 — 0 for the application of the CMI. The figure is based on the author’s
publication [BKHT24].

capabilities and transition velocities and precedence and synchronization constraints
can be considered. If temporally unconstrained problem instances or even homoge-
neous groups of agents are considered, even smaller upper bounds on the approxi-
mation ratio can be guaranteed. Before starting this analysis, the considered problem
configurations are introduced in the following.

Considered problem configurations

To reveal the difference in guaranteed approximation ratios for the MRTA task inser-
tion reoptimization problem (Problem 3.3) dependent on the properties of the MRTA
problem instance Z*, three problem configurations are introduced. They differ w.r.t.
the features of the corresponding MRTA problems. The problem configuration intro-
duced in Section 3.1.1 that has been considered so far is denoted as Pp s pet- It allows
for the consideration of fully heterogeneous teams of agents as well as both types of
temporal constraints, i.e. precedence and synchronization constraints, and therefore
imposes no additional restrictions on the MRTA task insertion reoptimization problem
defined in Problem 3.3. In contrast to this, the configurations Ppe; and Py assume all
tasks i € N to be temporally unconstrained. Thus, all precedence and synchroniza-
tion constraints are assumed to be zero, i.e. pij = 0, Vpi,j € P, pij € P* and Sij = 0,
Vs;j € S,s;j € ST. The problem configuration with heterogeneous teams of agents P
allows for agents that differ both in transition velocities and in task execution capabil-
ities. In homogeneous problem instances of configuration P, however, all agents are
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assumed to have transition velocities of one and task execution capabilities equal to
one for all tasks. An overview of the problem configurations is depicted in Table 3.2.

Remark. Within the problem configuration Py, setting the homogeneous velocities and ca-
pabilities each to the value of one can be done without loss of generality, since any problem
instance with homogeneous transition velocities and task execution capabilities can be trans-
formed to this form by normalization.

CMI for temporally unconstrained MRTA task insertion reoptimization problems

In the problem configurations P, and Py neither precedence nor synchronization
constraints are considered. Consequently, no waiting times can occur within a solu-

tion. The maximum insertion costs Ajlay calculated within the CMI (see Algorithm 1)
therefore equal the actual increase in the objective function A" associated with the
insertion of the new task ny.1 on edge (i,]) of the route of agent m. In other words,
without any precedence and synchronization constraints, the maximum number of
agents’ routes affected by a temporal shift of any task i € N is always equal to one,
i.e. Bi =1,Vie N (see (3.16)). From (3.13) it therefore follows for the CMI applied to
problems of the configurations Phe and Phom

y N ifam, >0
AT = Al = N+

i,jm m _ AL IN+1
PP Agrans + YN 11 = Drans T Tam
hets £hom - +

oo ifay,, =0
V(i jm) i € XpAxli =1 (3.27)

Since no overestimation of the maximum insertion costs takes place for problems of

configurations Pt and P, the optimal maximum insertion costs Af ., determined

by the CMI are equivalent to the actual increase in the objective function A™ of the

Table 3.2: Problem configurations considered for reoptimization.

Assumptions on
Problem task precedence synchronization
configuration | velocities V capabilities A constraints P constraints &
Pp s het — — — —
DPhet — — pij=0, sij =0,
Vp,‘,]' ePUPH Vsi,j eSuUS*

phom Om = 1, a;.“ = 1, Pi,j = 0, Si,]' = 0,

Yo, € V V{Zlm eAuA* Vp,‘,]' ePUPH VSi,]' eSuUS*
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solution generated by the CMI compared to the objective function value of the initial
solution, i.e.

Phets Phom © Aoy = min AWM = A* = AT, (3.28)
{(z‘,j,m) X AR = }

Remark. For an unambiguous notation, the following distinction is made: A denotes the
actual increase in the objective function, independent of the configuration of the problem in-
stance and of the reoptimization approach applied. For the application of the CMI, the potential
overestimate of the increase in the objective function of the CMI, when applied to a general
problem instance of configuration Pp g 1, that might contain precedence and synchronization
constraints, is denoted by Ay, (see (3.13)). If the CMI is known to be applied to a problem
instance of configurations Py, or Py, for which (3.27) and (3.28) hold, the increase in the
objective function resulting from the application of the CMI is denoted as A*, which is known
to equal the actual cost increment AT

Remark. Since problem instances of configurations Ppe; and Py, are special cases of the gen-
eral Problem 3.3 of configuration Pp s pet, the solutions determined by the CMI for problems of
configurations Py and Py, are also guaranteed to be feasible according to Lemma 3.5.

In the following, the approximation ratios resulting from applying the CMI to tempo-
rally unconstrained task insertion reoptimization problems of configurations Py and
Pyom are analyzed.

Analysis of temporally unconstrained MRTA task insertion reoptimization
problems

To analyze performance guarantees in the form of upper bounds on the approximation
ratio for the CMI when applied to temporally unconstrained but heterogeneous prob-
lem instances according to configuration P, the maximum and minimum velocity
of the agents in the considered problem instance are of interest. They are denoted by
oM = max{,cyy (v) and pmin = ming,cyy (0), respectively. Furthermore, the maxi-
mum and the minimum of the agents’ real valued capabilities to perform the task np71
are denoted by al? := maxy,cxy (a),,) and af'?y := ming,cicy (aff, ;). Using this
notation, the following theorem for upper bounds on the approximation ratio holds.
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Theorem 3.3

Solving an MRTA task insertion reoptimization problem (Problem 3.3) of problem con-
figuaration Py (see Table 3.2) by the application of the CMI (see Algorithm 1), leads to an
approximation ratio

]Cﬁ/ﬂ 3pmax max
Pret: o= ]Z <ming 2 (- (3:29)
7+ AN

Proof:
The set of problem instances of configuration Py is a subset of the set of problem
instances of the general configuration Pp s pet- Since neither precedence nor synchro-
nization are contained within problem instances of configuration Py, Assumption 3.1
is always fulfilled according to Lemma 3.4. Consequently, Theorem 3.2 holds for all
heterogeneous task insertion reoptimization problems without precedence and syn-
chronization constraints of configuration Pye;. Furthermore, in the following

p < AN

Zomnagthy

is proven to hold for problems of configuration Pt

Without loss of generality, the agents” velocities and their capabilities for task ny; as
well as all distances and basic task durations can be normalized, i. e.

min
(%

_ [ . i
O i= —0 = T =1, ™" = (3.30)
Umax Umax
o(i,j) :== omax (3.31)
am ) min
—m . "N+1 —max __ —min __ " N+1
ani1 = —max_ = ano1 =1, aNi = _max (3.32)
N+1 N+1
= IN+1
TN+1 = Zmax (333)
N+1

Using the CMI insertion costs A* that apply for problems of configuration Py as given
by (3.27) and (3.28) as well as (3.19) from Lemma 3.6, it follows

o(i,nN41) +0(nn+1,7) —0(i,j) | T
. o=
Um IN+1

V(i j,m):xj; € X7 Ax; =1

A <

(3.19) 25(; T
= (l,leH) +’YTNH (i, m) : (3] €V:xj e X Axj; = 1)

B Um 41
25(i, T ‘
< lmng) | TN ey (3.34)
,Umm min

AN+1
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Let i* be the vertex precedent to task 741 within an unknown globally optimal so-
lution )?% of the modified instance Z* and j* the vertex following task npy.1, re-
specitvely. The vertices i*, j* and nx41 are assumed to be allocated to agent m* in the
routing X7, of solution X%. Evaluating (3.34) for vertices i* and j* and summing up
both inequalities yields

6(i%, 6(j%, T
an* < 2°U jﬁﬁ“) +2 (]7’;51“) + 2y AL
0 0 a
N+1
0(i*, nny1) | O(nNy1,j*) | TN+l
& A = pmin pmin Zmin (3:35)
N+1

Within the optimal solution )_f%, let ¢y (i*,j*) denote the value of the objective func-
tion associated with the route of agent m* without the part between the vertices i*
and j*, i.e. without the execution of task nyy; and without the transition from i* to
nn+1 and from nyyq1 to j*. Then the objective function (3.1) of the unknown optimal
solution J7, can be written as

. e o O(i%,m S(nna, it T
7+ = b\ + @ue (5, 7) + (% mna) | Ot /) oyt (3.36)

Using the knowledge of agent m* being allocated at least to vertices i*, j* and to
task n1 within the globally optimal solution )?%, it follows that ¢, (i*, j*) contains
at least the tranistioning of agent m* from its depot 0,+ to i* and from j* to oy:-.
Together with the triangle inequality,

(i, 77) > 3(Om*fi*) +5(]'*/0m*)

Om*

3@* ") (3.37)

Omp*

Y

follows. Furthermore, just skipping task 7)1 within the routing X7, of the unknown
solution )_f% to the modified problem instance Z* yields a routing that together with
corresponding optimized timing information (see (3.5)) yields a solution to the initial
problem instance Z, that by definition cannot have a smaller objective function value
than the globally optimal one. Thus, the following overestimation of the objective
function value [ of the globally optimal initial solution holds:

(1*,j*) 6

J7 < Prc\m + Pme (i*, ) + 7 < Prc\me + 2+ (i, ")

<2 (‘PIC\m* + e (i, j*)) (3.38)

Equation (3.36) together with (3.38) yields

* g -*, 0 , ik T
I§+ > %14_ (i 7”N+1) + (”Trl i) —i—’yfgfl. (3.39)
Om Om AN+1
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Two cases are considered to finish the proof that a < (3vmaxa‘ﬁ}1xl) / (20™ingin ) holds:

Case 1: S(l*, nN+1) +3(nN+1,j*) +YTN41 = %I

i+ A" (3563) J7 + i (6(%, 1) +0(nna, ) + ’Yﬁ?N+l

* — * — . — - —
Jz+ ]71 + ﬁ (6(i*, nns1) +0(nnga, j*)) + 75%1* TN+
+

vmax =1 — .
(amﬁ - )]} + = (60, nNy1) +

d(nny1, 7)) + Wﬁfl\]+l
]I + (0(i*, nng1) + 0(nn
)+

N+1,7%)) + TN
- 1 J7 +6(i*, nn4a 3(”N+1,] )+ TN+
A Vb ]71 +6(i*, nny1) +0(nng1, JF) + VTN
(Caie 1 3 1 §vmaxa§1"1
To2ominaRly 2ominagy

Case 2: S(l*, nN+1) +$(ﬂN+1,j*) + TN < ]71

Ji + A* (3:6),3.35) T3 + = (0%, nN41) +0(nN+1, /7)) + ¥ i TN+
= < N+1

]I+ N ]%
1 J3+ (00", nni1) +(nni1, 7)) + YT
B A Iz
(Case2) 3 1 3 oM

7~ =min =min min ,min
2omnagy  2omnagy

Since both, a < (30™>al? )/ (20minamin ) as well as a < 2 must hold, (3.29) follows. O

Proposition 3.2

For the application of the CMI as defined in Algorithm 1 to the task insertion reoptimiza-
tion problem (Problem 3.3) of problem configuaration Py, (see Table 3.2), the bound on
the approximation ratio of « < 2 is tight, i.e. no lower upper bound on the approximation
ratio exists.

Proof:

The task insertion reoptimization problem instance depicted in Figure 3.5 is of config-
uration P, since no precedence or synchronization constraints are considered. Con-
sequently, following the proof of Proposition 3.1, & < 2 is a tight bound for the ap-
proximation ratio of adding a task to a problem instance of configuration Pjet. O
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Using the result obtained for MRTA task insertion reoptimization problem instances
of configuration level Py, a smaller upper bound on the approximation ratio result-
ing from the application of the CMI to homogeneous problem instances of configura-
tion Pyop, is given in the following.

Corollary 3.2

Solving an MRTA task insertion reoptimization problem (Problem 3.3) of problem con-
figuaration Py, (see Table 3.2) by the application of the CMI as defined in Algorithm 1,
leads to an approximation ratio

CQ/H

. _ 7

Phom : N = I* S
I+

. (3.40)

N W

Proof:

Since problem instances of configuration Py, are a subset of the problem instances
of configuration Py (see Table 3.2), Theorem 3.3 holds for homogeneous MRTA task
insertion reoptimization instances of problem configuration Py, . By definition of con-
figuration P, the velocities and task execution capabilities of all agents are equal,
i.e. oMin = p™MA and arﬁifl = a}%q- By inserting this into (3.29) of Theorem 3.3, the
assertion follows. O

For homogeneous MRTA task insertion reoptimization problems, the upper bound on
the approximation ratio proven for the CMI is furthermore tight.

Proposition 3.3

For the application of the CMI as defined in Algorithm 1 to the task insertion reoptimiza-
tion problem (Problem 3.3) of problem configuaration Py, (see Table 3.2), the bound on
the approximation ratio of a < 3 is tight, i. e. no lower upper bound on the approximation
ratio exists.

Proof:

To prove that & < 3/2 is the smallest upper bound possible on the approximation ratio
resulting from the application of the CMI to homogeneous MRTA task insertion reop-
timization problems of configuration Py, a homogeneous MRTA task insertion reop-
timization problem instance with an approximation ratio converging towards a« — 3/2
for y = 0, 7 > 0, resulting from the application of the CMI is depicted in Figure 3.6.
Since the depicted problem instance is of configuration P, the velocities and ca-
pabilities are given by v; = v, = 1 and a} = a2 = a} = a3 = 1. An initial MRTA
problem instance Z is depicted which consists of two agents being located with their
depots in a distance of d(01,11) = 2 and 6(02, 1) = 2 — 1 for 5 > 0 of the task n;.
Due to the slightly shorter distance from depot 0y, task 7, is allocated to agent ky in
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the initial solution X}, which has an objective function value of |7 = 4 —27. In the
modified instance ZT, task 7, is added between task 17 and depot 0;. As depicted in
Figures 3.6 e) and in Figures 3.6 f), two CMI solutions of the same objective function
value of ]%MI = 6 — 25 exist. The optimal solution however would be to assign both
tasks to agent k1, which would lead to an optimal objective function value of |7, = 4.
Thus, for 7 — 0, the approximation ratio converges towards 3/2,i.e. « — 3/2forny — 0
and consequently no upper bound on the approximation ratio smaller than 3/2 exists
for homogeneous MRTA task insertion reoptimization problem instances of configura-

tion Ppom. U

Summary of the performance guarantees for the CMI

The CMI (see Algorithm 1), introduced to solve the MRTA task insertion reoptimiza-
tion problem (Problem 3.3), overapproximates the additional waiting times when in-
serting a task ny41 to an initial solution f(} Any solution found by the CMI to an
MRTA task insertion reoptimization problem is guaranteed to be feasible as proven by
Theorem 3.5.

Furthermore, despite the overapproximation of the additional waiting times resulting
from inserting an additional task ny; to an initial solution X}, tight bounds on the
approximation ratio can be given. Thus, the CMI is the first task insertion reoptimiza-
tion heuristic for heterogeneous, time-extended MRTA problems with precedence and
synchronization constraints for which performance guarantees in the form of upper
bounds on the approximation ratio can be given. Depending on the problem con-
figuration of the problem instances considered, these bounds are even smaller than
the general upper bound of @ < 2 which is proven in Section 3.2.2. These results
are summarized in Table 3.3. For the full problem configuration Pp s pet that allows
for precedence and synchronization constraints as well as for heterogeneous agents, a
tight upper bound of « < 2 is guaranteed by Theorem 3.2 and Proposition 3.1. If no
precedence and synchronization constraints are considered as in problem configura-
tion Py, according to Theorem 3.3 the guaranteed upper bound on the approximation
ratio varies between « < 3/2 and « < 2 and depends on the velocity differences of
the agents as well as on the differences in their capabilities to perform the inserted
task nyy1. For problem instances with homogeneous groups of agents and without
precedence and synchronization constraints, a tight upper bound of & < 3/2 is guaran-
teed by Theorem 3.2 and Proposition 3.3.

In the following section, the reoptimization problem of deleting a task from an MRTA
problem instance is defined and analyzed.
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2
} ! f ! f ! { a) Distances
01 n (%)
() [ ) b) Initial problem instance 7
T = 0
01 ny 02
° @< 5@ ¢ Initial optimal solution: J; =4 — 27
01 np m 02
[ ) ) ® d) Modified problem instance Z*
=0 11 =0
01 np m 02
o ®<__—@< 5 ¢ Reoptimized solution: JSME =6 — 2y
01 1) n 02
o=—e @+ e f) Alternative reoptimized solution: ]%VH =6-21
01 1) n 02
o<— o 0 ® g Optimal solution: [}, =4

Figure 3.6: Example of a homogeneous MRTA task insertion reoptimization problem instance of configura-
tion Ppom With an approximation ratio of # — 3/2 for 7 — 0 for the application of the CMI. Since
the depicted problem instance is of configuration Py, the velocities and capabilities are given

by v1 = v = 1 and al = a2 = a} = a3 = 1, respectively. The figure is based on the author’s
publication [BKHT24].

Table 3.3: Guaranteed upper bounds on the approximation ratios for the application of the CMI to MRTA
task insertion reoptimization problems.

Problem configuration ‘ Approximation ratio « ‘ Tight bound

Pp 8 het <2 yes
. 3 max ,max .
Phet < min { ﬁﬂ} tight for @ <2
N+1
3
Phom < 2 yes

3.3 Task Deletion

In this section, the task deletion reoptimization problem corresponding to the time-
extended MRTA optimization problem defined in Problem 3.1 is both introduced and
analyzed. A performance guarantee in the form of an upper bound of 2 on the ap-
proximation ratio is given which holds for any reoptimization approach fulfilling two
assumptions on the resulting difference in objective function value between the initial
and the reoptimized solution. Subsequently, the task deletion heuristic (TDH) is intro-
duced, and it is shown, that the TDH fulfills the respective assumptions for the vast
majority of problem instances. Furthermore, a tight upper bound of a < 3/2 is proven
for temporally unconstrained, homogeneous MRTA task deletion reoptimization prob-
lems in which the agents originate from one common depot. The results presented in
the following are based on the author’s journal publication [BKH"24].
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3.3.1 Task Deletion Reoptimization Problem

The MRTA task deletion reoptimization problem is, given a globally optimal solu-
tion Xé to an initial problem instance Z, how to use this solution to solve a related
problem instance Z~ which differs from the initial instance Z by one task n, that has
been deleted from the initial problem instance. A comprehensive formal problem def-
inition is given in the following.

Problem 3.4 (MRTA task deletion reoptimization problem)

The MRTA task deletion reoptimization problem is an MRTA reoptimization problem
according to Problem 3.2, where the modified problem instance I~ is given by 1= =
{N7,K,0,V, A", T, D, P,S } with the modified sets

o N-=N\{ng},
o A=A\ {ap¥m e K},
s T-=T\{w}

« D" =D\ {8(i,n,),8(ng,i) |Vie V},
C P = P\ {pigpy Vi € A} and
e 5§ = 8\ {Si,q,sq’i |Vl S N}

Thus, the modified problem instance I~ misses one task ng and all corresponding prece-
dence and synchronization constraints compared to the initial problem instance 1.

A reoptimization approach independent guarantee on the solution quality for the
MRTA task deletion reoptimization problem (Problem 3.4) is given in the following
section.

3.3.2 Reoptimization Approach Independent Guarantee on the
Approximation Ratio

In this section, it is shown that any solution approach that solves the MRTA task
deletion reoptimization problem (Problem 3.4) and that fulfills two assumptions on the
resulting difference in objective function value between the initial and the reoptimized
solution, cannot yield a reoptimization ratio greater than 2.

To analyze the approximation ratio, the following considerations are relevant: When
solving a task deletion reoptimization problem, an optimal solution )_f% of the initial
problem instance Z is used to derive a heuristic solution to the modified problem
instance Z~ which differs from the initial instance by the task set not containing task 7,
as defined in Problem 3.4. The objective function value of the generated reoptimized
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solution of the modified problem instance [72° and the value of the objective function
of the initial solution J7 differ by a cost difference A™, i.e.

JEO = JE— A”. (3.41)

Depending on the specific reoptimization method used to solve the task deletion reop-
timization problem (Problem 3.4), the difference in objective function value A™ result-
ing from the application of the respective method to an instance of the task deletion
reoptimization problem may differ. The following assumption is made on A™:

Assumption 3.3. Let the task deletion reoptimization approach, the initial problem instance
and the modified problem instance 1~ be defined such that the reduction A~ of the objective
function value of the reoptimized solution J’£° compared to the objective function value of the
initial solution |7 is non-negative, i.e.

A~ > 0. (3.42)

Remark. Since any task deletion reoptimization approach removes a task from the initial so-
lution, Assumption 3.3 holds for the vast majority of reasonable task deletion reoptimization
approaches.

Furthermore, another assumption is relevant for giving an upper bound on the ap-
proximation ratio. Consider the modified problem instance Z~ and a globally optimal
solution J7_ to be known. By adding task n, to the problem instance Z~, the initial
problem instance 7 results. Solving this MRTA task insertion reoptimization prob-
lem (Problem 3.3) with Z~ being the initial problem instance and Z being the modified
one, using any suitable reoptimization approach (e. g. the CMI defined in Algorithm 1),
adds an increment A in the objective function value to the initial value of the objective
function, i.e.

JO = h_+ AT (3.43)

Building upon this relation, the following assumption is made:

Assumption 3.4. Let the following hold for the initial problem instance I, the modified task
deletion problem instance I~ and the task deletion reoptimization approach: There exists a task
insertion reoptimization approach such that the difference between the increment of the objective
function AT of the task insertion reoptimization approach applied to T~ and the decrease in the
objective function value A~ of the task deletion reoptimization approach applied to I does not
exceed the optimal costs of the modified task deletion problem instance I, i.e.

AT —A <5 (3.44)

Numerous examples and problem instances investigated?” have shown that Assump-
tion 3.4 does not impose strong limitations and can be fulfilled for most problem

27 These include the problem instances of the evaluation conducted in Chapter 5.
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instances and reasonable task deletion approaches. For example, the CMI is a task
insertion reoptimization approach that already fulfills AT < J5_ for most instances
containing several tasks when adding task 7, to the modified task deletion problem in-
stance Z~. Together with Assumption 3.3, Assumption 3.4 is ensured for these cases.

Moreover, even if AT > ]}, holds and the worst case task insertion approximation ratio
of @ = 2 is reached, it can be shown that if the task insertion reoptimization approach
fulfills Assumption 3.2%, as it is proven to be the case for the CMI by Lemma 3.7,
Assumption 3.4 is fulfilled. In these cases it holds for the respective task insertion
problem
. P
_ ]%7 + AT Assump<tzon 3.2 ]%7 L AT A 2]1— 5
5 = ATT

Thus, AT = J;. = J; must hold if an approximation ratio of « = 2 shall result for
the task insertion reoptimization problem for an instance in which A* > J%_ holds.
Consequently, Assumption 3.4 is fulfilled in this case, too.

Under the previous assumptions, it is guaranteed by the following theorem that for
any task deletion reoptimization approach that fulfills Assumptions 3.3 and 3.4 the
resulting approximation ratio is bounded above.

Theorem 3.4

For every MRTA task deletion reoptimization approach solving an instance of Problem 3.4
such that Assumptions 3.3 and 3.4 hold, the resulting approximation ratio « = J7°/J: is
bounded above by 2, i.e.

g2

N =
J7-

<2 (3.45)

Proof:
The reoptimized solutions cannot have smaller objective function values than the glob-
ally optimal solutions to the respective problem instance. Together with (3.41) and (3.42),

J7- <2 < J3r < JF° (3.46)

follows. Using this relation together with (3.44) from Assumption 3.4 yields

IR Ay Jr— AT
Jz- Jz-
(346) JEO _ AT (3, AT — AT AT — A~
§II* (3;3)]1+* 48
J7- J7- J7-
(3.44)
<

28 Please note that for the consideration of inserting task 1, to problem instance Z~, instance Z corresponds
to Z in the notation used for the task insertion reoptimization problem. Thus, using the notation of the
task deletion reoptimization problem, Assumption 3.2 is given by AT < 7
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O

A specific heuristic for solving the MRTA task deletion reoptimization problem, the
task deletion heuristic (TDH) is introduced in the following.

3.3.3 Task Deletion Heuristic

In this section, a heuristic solution called the task deletion heuristic (TDH) to solve the
MRTA task deletion reoptimization problem (Problem 3.4) is introduced. The heuristic
is derived from the deletion procedure for the TSP of Archetti et al. [ABS03]. It erases
the deleted task 1, from the route of the agent it is assigned to by the routing X7 of

the initial solution }_(é

In the following, the agent, task n, is assigned to by the initial solution, is denoted
as m*, vertex precedent to task ng within the initial solution is denoted by i* and the
vertex subsequent to task 1, is denoted by j*, i.e. within the routing X7 of the initial
solution X% it holds that x;ffq
MRTA task deletion problem instances according to Problem 3.3 is defined as given by
the following algorithm.

= x"ﬁ* = 1. Using this notation, the TDH applied to

Algorithm 2 Task deletion heuristic (TDH)

1: Let the initial solution )_f% with the routing X7 be given. Within the route of
agent m”, i.e. the agent task 7, is assigned to by the routing X7, remove x:-lf*q and
x;”]«* from the solution, i.e. remove the edges (i*, 1) and (14, j*) connecting task n,
to its precedent and subsequent vertices i* and j* within the route of agent m*.

2: Insert edge (i*, j*) to the route of agent m*, i.e. set xl",f*j* =1

3: Solve optimization problem (3.5) to determine the complete TDH solution
corresponding to the routing X7°" generated by the first two steps.

*

' TDH
XL

The decrease in the objective function value AT™PH caused by the TDH includes the re-
duction in transition times A, the reduction of task execution times A in the amount
of execution time needed by agent m* to perform task n,, as well as a potential waiting
time deviation Aw, i.e.

J7PH =5 — A™H (3.47)

with ATPH = @ pdit, —di oy ) 4eAco. (3.48)
~—

A t ACE

C
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In the following section, the feasibility of solutions generated by the application of the
TDH is analyzed.

3.3.4 Feasibility of the Solutions Generated by the Task Deletion
Heuristic

After having introduced the TSH to solve the task deletion reoptimization problem
according to Problem 3.4, its performance w.r.t. the feasibility of solutions generated
is analyzed. According to the following Lemma 3.8, the feasibility of a solution of the
TDH is guaranteed.

Lemma 3.8 (Solution feasibility for TDH)

Let an MRTA task deletion reoptimization problem according to Problem 3.4 be given
such that the solution set of the modified problem instance Z~ is non-empty. The TDH
(see Algorithm 2) always finds a sulution XIPM for the modified problem instance T~ that
is feasible according to Lemma 3.1.

Proof:
To prove the feasibility of the routing X7°" generated by the TDH, Lemma 3.2 is ap-
plied.

By definition, the initial solution )_('} and consequently also its routing X7 is feasible
according to Problem 3.4. Since all agent-task allocations remain unaltered for the
TDH routing X7°" compared to the initial routing X, Aspect L3.2.1 is guaranteed to
be fulfilled by XIPH for all tasks within the modified instance Z~.

Furthermore, the feasibility of the initial routing for the inital problem instance guaran-
tees the corresponding CSG Gz,x; to be acyclic according to Aspect L.3.2.2 of Lemma 3.2.

The CSG of the TDH routing GI- «1on differs from Gz, x; by three aspects:
rAT—

1. In contrast to the CSP of the initial routing GI,X}/ the CSG of the TDH rout-
ing GI_ x1oH does not contain the arcs corresponding to the precedence con-
1T

straints related to task 7, that are included in the initial instance. Furthermore,

m*
. . LR . . q,]* .

both equal to one in the initial routing, but are set to zero in the TDH routing.

However, deleting arcs from an acyclic graph cannot add any cycles to the graph.

it does not contain the arcs corresponding to the routing x?f*q and x”"., which are

2. The vertices of the CSG of the TDH routing GI* «IDH differ from the ones of the
s AT—

CSG of the initial routing Gz, x; by no longer containing task 7,:

e If synchronization constraints for task n, are part of the initial instance Z,
the synchronized vertex 0, that contained task 7, in the initial CSG does no
longer contain task 7, in the CSG of the TDH solution. This does not add a
cycle to the CSG.
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e If the task n4 is not constrained by any synchronization constraint in the
initial instance Z, 7, is deleted from the CSG of the initial instance. Since in
this case, all arcs to 7, are also deleted, the graph remains acyclic.

3. The arc (9;+,7;-) from the synchronized vertex 9;« to the synchronized vertex &«
is added to the graph. No other arc is added. The CSG of the initial routing Gz, X5
is ensured to be acyclic and also contains a directed connection from ¥« to 7
via the arcs (9;+,9,) and (3, 0+ ). (}onsequently, the insertion of the arc (;+,9;+)
cannot cause a cycle in the graph G, y1pH.
1 AT=

Moreover, the deletion of task 7, from the initial routing does not influence the start
and end vertices of the agents’ routes. Together with the feasibility of the initial rout-
ing, the fulfillment of Aspect L3.2.3 follows.

Consequently, all aspects of Lemma 3.2 are ensured to be fulfilled for the TDH rout-
ing XTP" and thus, XIPH is guaranteed to be feasible according to Lemma 3.1.

According to Corollary 3.1, completing the solution X}PH by solving optimization
problem (3.5) yields a feasible solution. O

An analysis of the approximation ratios resulting from the application of the TDS is
presented in the following.

3.3.5 Upper Bounds on the Approximation Ratio for the Task
Deletion Heuristic

As presented in the previous section, a solution generated by the TDH (see Algo-
rithm 2) is ensured to be feasible (see Lemma 3.8). In this section, performance guar-
antees in the form of upper bounds on the approximation ratios are analyzed.

Analysis of the fulfillment of Assumptions 3.3 and 3.4

According to Theorem 3.4, the approximation ratio resulting from the application of
the TDH is bounded above by a < 2 for every task deletion reoptimization instance
in which the TDH fulfills Assumptions 3.3 and 3.4. As analyzed previously, Assump-
tion 3.4 is fulfilled for a vast majority of problem instances and can be guaranteed to be
fulfilled even for problem instances in which a reoptimized solution to the respective
task insertion problem would yield the worst possible approximation ratio of & = 2.

The following lemma focuses on sufficient conditions for Assumption 3.3.
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Lemma 3.9
If

1. the weights vy, € of the objective function (3.1) of the underlying optimization
Problem 3.1 of the MRTA task deletion reoptimization Problem 3.3 fulfill (3.7)
(i.e. e <min{1,v})or

2. within the MRTA task deletion reoptimization problem instance (see Problem 3.4)
neither precedence nor synchronization constraints must be considered (i.e. the in-
stance is of configuration P or Py,

Assumption 3.3 is fulfilled.

Proof:
The proof can be done analogously to the proof of Lemma 3.4 w. 1. t. deleting a task. [J

Remark. The conditions given in Lemma 3.9 are sufficient. Hence, Assumption 3.3 still holds
in many cases that do not fulfill either of the conditions. For example, positive waiting time
deviations, i.e. the total amount of waiting time within the reoptimized solution )?%_DH being
smaller than the sum of waiting times within the initial solution X2, might occur. In these
cases, the reduction of waiting time is caused by agents having to wait less time due to the
task following the deleted task ng in the initial solution (and potentially following tasks) being
reached earlier in the modified solution.

In summary, an approximation ratio of & = J7?/;. < 2 can be guaranteed for the
vast majority of task deletion reoptimization instances since Assumptions 3.3 and 3.4
are most commonly fulfilled by the TDH. With the following proposition, the approx-
imation ratio of « < 2 is furthermore proven to be a tight bound for these instances.

Proposition 3.4

For the application of the TDH as defined in Algorithm 2 to instances of the MRTA task
deletion reoptimization problem (Problem 3.4) for which Assumptions 3.3 and 3.4 are
fulfilled, the bound on the approximation ratio of « < 2 is tight, i. e. no lower upper bound
on the approximation ratio exists.

Proof:

To prove that «# < 2 is the smallest upper bound possible on the approximation ra-
tio resulting from the application of the TDH to MRTA task deletion reoptimization
instances in which Assumptions 3.3 and 3.4 are fulfilled, an exemplay instance that
fulfills both assumptions and for which the approximation ratio converges towards
« — 2 forn — 0,7 > 0, for the application of the TDH is depicted in Figure 3.7. In the
initial problem instance two agents with different depots have to execute two tasks.
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The agents differ in their transition velocity, i.e. v1 = /2 and v; = 1. Both agents
are fully capable to execute both tasks, i.e. af = a2 = 1 and a} = a3 = 1. For any
7 > 0, the globally optimal solution of the initial problem instance is unambigous and
is given by assigning both tasks to agent k» which results in an objective function value
of J7 = 4 —275. In the modified problem instance, task 7, is deleted. The resulting
TDH solution has an objective function value of JIPH = 4 — 25. The total deviation
in objective function value thus equals A™H = JIPH _ = — ( and Assumption 3.3 is
fulfilled. The globally optimal solution to the modified problem instance would be to
assign task 77 to agent k; which would yield an objective function value of 7. = 2.
Consequently, for 7 — 0 the approximation ratio converges towards a« — 2. Inserting
the deleted task 7, to the modified probem instance and using the CMI to insert 1, to
the globally optimal solution 7_ would result in assigning task 7, to agent k,. Hence,
it holds for the objective function differences of the task insertion and task deletion
that AT — A~ = A* —ATPH =2 2 <2 = J%  i.e. also Assumption 3.4 is fulfilled.

O

After analyzing the upper bound on the approximation ratio of the TDH for the gen-
eral case with problem instances of configuration Pp s pet, in the following a smaller
upper bound is given for homogeneous problem instances of configuration Py, that
furthermore have one common depot.

Analysis of temporally unconstrained MRTA task deletion reoptimization
problems with one common depot

For MRTA task deletion reoptimization problems without temporal constraints and
with homogeneous teams of agents which moreover all start and end their route at the
same position, i.e. problems of configuration Py, for which additionally 01 = 0y =
-+ = ok := 0k holds, an upper bound of a < 3/2 can be guaranteed for the TDH.

Theorem 3.5
Solving an MRTA task deletion reoptimization problem (Problem 3.4) of configuration Py,
(see Table 3.2), for which additionally 01 = 0y = --- = ok = ox holds, by applying the

TDH as defined in Algorithm 2, leads to an approximation ratio

. (3.49)

N W

Pyom with single depot:  a <

Proof:
This proof is inspired by the proof on the upper bound of the approximation ratio
when deleting a vertex in the TSP by Archetti et al. [ABS03]. According to the problem
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Figure 3.7: Example of an MRTA task deletion reoptimization problem instance with an approximation ratio

of « — 2 for 7 — 0 for the application of the TDH. The capabilities of both agents for both

tasks are equal to one, i.e. a% = a% =1 and a% = a% = 1. The figure is based on the author’s

publication [BKH™24].

configuration, all velocities as well as all capabilities are equal to one and no prece-
dence and synchronization constraints are considered. The objective function value of
the TDH solution is therefore given by

TDH _ x _ogm*t_ gm* m* m*
]I_ == ]I dl*,l] dq,]* + dl*,]* ’)/dq

*
v =alt =1

= 5 —0(i*,ng) — 6(ng, j*) +6(i%,j*) — v15. (3.50)

It furthermore holds that the value of the objective function of a globally optimal
solution to the initial problem instance Z is at least as high as the objective function
value of the modified problem instance 7~ augmented by inserting the task 7, to the
route of any agent by tranistioning from any vertex to task 7, and back. Considering
the velocities and capabilities all being equal to one, this relation is given by

Jz < Jz-+ 00, ng) +8(ng i) + 77 = J7- +20(i,ng) + 77, Vie V. (3.51)

Evaluating (3.51) for the precedent and subsequent vertex i* and j* of the deleted
task 1, and adding it up yields

2]7 <2]7+ 2§(i*,nq) + 2(5(j*,nq) +297,
& Jr < -+, ng) + (%, ng) + 975 (3.52)

By inserting (3.52) into (3.50)

JPH < J3+ 6%, 1) (3.53)
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follows. Since at least the vertices i* and j* are part of the modified problem instance,
the agents share a common depot o and the triangle inequality holds for the distances,
the following inequality holds for the optimal objective function value of the modified
problem instance:

J7- > 6(ox,i*) + 6(i*,j*) + 6(ox, j*)
> 26(i", ) (3.54)

Using (3.53) and (3.54), it follows for the approximation ratio

IDH (353) T* * g g
0(:]1; < ]I-+i(l /]):1_‘_‘5(1*’])
J7- J1- J7-
(3.54) koK
20 00 3 (3.55)

25(i%, %) 2

Proposition 3.5

For the application of the TDH (Algorithm 2) to the task deletion reoptimization problem

(Problem 3.4) of configuration Py, (see Table 3.2), for which additionally 01 = 0, =
- = ok holds, the bound on the approximation ratio of & < % is tight, i.e. no lower

upper bound on the approximation ratio exists.

Proof:

If only one agent is considered, the homogeneous MRTA task deletion reoptimization
problem corresponds to a TSP. Furthermore, if only one agent is considered, the TDH
corresponds to the vertex deletion heuristic applied by Archetti et al. [ABS03]. For the
TSP, Archetti et al. [ABS03] prove the corresponding bound on the approximation ratio
of « <3/2 to be tight [ABS03, Remark 2]. Since the TSP vertex deletion problem corre-
sponds to a special case of the MRTA task deletion problem of configuration Py, with
one common depot, & < 3/2is a tight bound for the respective MRTA task deletion re-
optimization problem. The problem instance proposed by Archetti et al. [ABS03] to
prove the tight bound is depicted in Figure 3.8. O

In summary, the TDH (see Algorithm 2) is proven to always yield a feasible solution to
the modified problem instance Z~. Furthermore, it is shown to yield an approximation
ratio bounded above by a < 2 for the vast majority of problem instances. For problem
instances of the configuration P,y in which the agents share a common depot, a
smaller and tight upper bound of & < 3/2 is guaranteed.

In the following section, the reoptimization problem of varying the distances from one
task to the other vertices within an MRTA problem instance is defined and analyzed.
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a) Initial problem instance 7 with distances and
U1 :1,Ti=0,\V/iEN

b) Initial optimal solution: [7 = 6,0 <7 <2

0] @ ------ i ffffff o1 ¢) Modified problem instance Z~
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@ 112 d) Reoptimized solution: |
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Figure 3.8: Example of an MRTA task deletion reoptimization problem instance of configuration Ppp, with
a common depot with an approximation ratio of & — 3/2 for # — 0 for the application of the
TDH (Example based on [ABS03, Fig. 3]). In this example one agent has to perform five tasks
which all have a basic duration of 71 = - - - = 175 = 0. Consequently, only transitioning times are
represented in the objective function value.
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3.4 Task Position Variation

This section investigates the reoptimization problem of varying a task position in an
instance of a heterogeneous, time-extended MRTA problem with precedence and syn-
chronization constraints. Two solution approaches are introduced and the feasibility
of the solutions they generate is shown to be guaranteed.

3.4.1 Reoptimization Problem of Task Position Variation

The reoptimization problem of task position variation is, given a globally optimal so-

lution X} to an initial problem instance Z, how to solve a related problem instance 7
in which the distances to and from one task n, differ compared to the initial problem
instance.

Problem 3.5 (MRTA reoptimization problem of task position variation)

The MRTA reoptimization problem of task position variation is an MRTA reoptimization
problem according to Problem 3.2, where the modified problem instance 7% is given by
70 = {/\f, KK,0,V,AT, D‘Si, P,S} with the modified set

o D% = {8(i,j),0j,i) € D|Vi,j € N,i,j # ng } U+
{(51(i,nq),5$(nq,i) |Vi € ./\/}

Thus, in the modified problem instance 7" the distances to and from task ng are different
compared to the initial problem instance I.

Remark. By definition of MRTA reoptimization problems (see Problem 3.2), the modified prob-
lem instance T°" is an MRTA problem instance according to Problem 3.1 which is why also the
modified distances D are required to be metric.

Remark. If tasks and depots are locally distributed in a plane, the modification of varying the
distances to one task corresponds to changing the position of the respective task and interpreting
the distances between vertices 6(i, ), i,j € V, as euclidean distances between their positions.
The naming of this modification is based on this descriptive analogy.

Two solution heuristics to the MRTA reoptimization problem of task position variation
are given and analyzed w.r. t. their solutions’ feasibility in the following sections. First,
the simple yet efficient initial solution approach is introduced, followed by the more
sophisticated delete-insert heuristic.



3.4 Task Position Variation 81

3.4.2 Initial Solution Approach

Given an instance of the MRTA reoptimization problem of task position variation
(Problem 3.5), the initial solution approach (INI) is introduced in this section. Since INI
can also be applied to different MRTA reoptimization problems resulting from other
modifications (see Sections 3.5, 3.6, 3.7 and 3.9), it is introduced in a general manner
without direct reference to the MRTA reoptimization problem of task position varia-
tion. The initial solution approach keeps the initial solution, as given in the following
algorithm.

Algorithm 3 Initial solution approach (INI)

1: Given an globally optimal solution X7 and a modified problem instance 7,4, set
the routing X7 of the reoptimized solution XN , to be equal to the routing X7
mo« mo

of the initial solution X%, i.e.
XL = X7 (3.56)
. . . . . . INI .
2: Solve optimization problem (3.5) corresponding to routing XT .4 to determine the

complete the solution XIN'
Imod

To denote the specific modification INI is applied to, the subscript "Z,,q" is replaced
by the respective reoptimization problem instance notation under consideration. Thus,
XIII\O% denotes the solution generated by INI to an MRTA reoptimization problem of

task position variation.

For the reoptimization problem of task position variation, INI generates a feasible
solution as shown in the following section.

3.4.3 Feasibility of the Solutions Generated by the Initial Solution
Approach

The feasibility of the solutions generated by the application of INI to solve an MRTA
reoptimization problem of task position variation according to Problem 3.5 is analyzed
in this section. According to Lemma 3.10, the feasibility of the solution is guaranteed.
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Lemma 3.10 (Solution feasibility of INI for the MRTA task position variation
reoptimization probem)

Let an MRRTA reoptimization problem of task position variation according to Problem 3.5
be given. INI (see Algorithm 3) always finds a solution X'\ for the modified problem
o

instance T° that is feasible according to Lemma 3.1.

Proof:
To prove the feasibility of the solution )?;ﬁ generated by INI, Lemma 3.2 is applied. By

definition, the initial solution f(} is feasible for the initial problem instance Z according
to Problem 3.5. Since all agent-task allocations remain unaltered for the routing XIII;%

of the INI solution XIII:% compared to the routing X3 of the initial solution X%, and also

the agent capabilities A are equal in both problem instances 7 and I‘SI, Aspect L3.2.1
is guaranteed to be fulfilled by the routing ng for all tasks within the modified in-

stance I‘si.

Furthermore, the feasibility of the initial solution for the inital problem instance guar-

antees the corresponding CSG GI,X} to be acyclic according to Aspect L3.2.2 of

Lemma 3.2. Since neither does any agent-task allocation change, nor are any routing

arcs, precedence arcs or synchronization constraints added, the CSG of the INI solu-

tion Gzﬂ,XINI does not differ from GI,X%. Consequently, also Aspect L3.2.2 is ensured
76

to remain fulfilled.

Moreover, since all agents” routes are unaltered compared to the initial routing, As-

pect L3.2.3 must also remain fulfilled for the routing generated by INI. Thus, the INI
routing XIII:% fulfills all aspects of Lemma 3.2 and is feasible.

According to Corollary 3.1, completing the solution )?III\O% by solving optimization Prob-
lem (3.5) yields a feasible solution. O

Remark. By definition of Problem 3.5, the initial problem instance 1L is required to have a
non-empty solution set as a globally optimal initial solution X7 is given. Consequently, the
modified problem instance 7% has a non-empty solution set, as well. This is because modifying
the distances does not influence the feasibility of the routings corresponding to the solutions in
the initial solution set, since, according to Lemma 3.2, routing feasibility does not depend on
the distances. As given by Lemma 3.3, a feasible solution can always be found given a feasible

routing. Thus, the solution set of the modified problem instance 7% is always non-empty, which
is why INI is quaranteed to always find a feasible solution XIII\J%
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3.4.4 Delete-Insert Heuristic

The second approach to solve an MRTA reoptimization problem of task position vari-
ation (Problem 3.5), called delete-insert heuristic (DIH), is introduced in this section.
Similar to the INI heuristic introduced in Section 3.4.2, the DIH can also be applied to
several MRTA reoptimization problems (see Section 3.5), which is why it is introduced
in a general manner without direct reference to the MRTA reoptimization problem of
task position variation.

The general idea of the DIH is to delete a task from an initial solution X7 using the
TDH and then to reinsert it using the CMI. However, if the task is associated with
precedence or synchronization constraints, the CMI is not suited to insert a constrained
task. Thus, an extension to the CMI, called extended cheapest maximum insertion cost
heuristic (eCMI) is also introduced.

The eCMI can be applied to add a task 1)1 to a solution X7 of an MRTA problem
instance Z. When the task to be added 71 is constrained by precedence and/or syn-
chronization constraints, it is not ensured that inserting the additional task on all edges
of the routing X7 of solution X7 yields a feasible routing. For example, the task 12y 1
cannot be inserted on a precedent edge of a task, that is required to be a precedent
task of ny1. Consequently, before evaluating a potential increase in objective function
value, the feasibility of the routing resulting from the task insertion on the respective
edge must be verified for each edge of the routing X7 by the application of Lemma 3.2.
For this examination, the capability of the respective agent to perform task ny.1 is
ensured and the CSG resulting from the task insertion on the respective edge is gen-
erated and checked for acyclicity. Since the vertices in which the agents start and end
their routes are not altered by inserting task 711 on an edge of the initial solution,
this aspect must not be verified (see routing feasibility criterion in Lemma 3.2).

For every edge for which the task insertion would yield a feasible routing, the max-
imum increase in objective function value resulting from this insertion, is evaluated.
However, due to the additional precedence and/or synchronization constraints on the
inserted task 71, more waiting times might result than considered by the maximum
insertion costs A} ., (see (3.13)). This happens for example, if the inserted task ny1
is assigned such that it has to wait for precedent tasks to finish or for synchronized
tasks to be ready to be executed. Also, other tasks related by a synchronization or
precedence constraint to task nyy4; that have to spend extra waiting time for task ny1
due to these constraints are not represented by the maximum insertion costs.

To overcome these limitations, the extended maximum insertion costs are introduced
which also consider additional waiting times resulting from the precedence and syn-
chronization constraints associated with the inserted task ny1. The extended maxi-
mum insertion costs also overapproximate the resulting waiting times by considering
their maximum effect on all agents possibly affected by a temporal shift of tasks. For
any feasible possible insertion edge, let tx1(i,j, m) denote the earliest possible start-
ing time of the inserted task np in the solution resulting from inserting it between
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vertices i and j in the route of agent m. Using this notation, the extended maximum
insertion costs A of inserting an additional task ny_1 with precedence and/or syn-

chronization constraints between the vertices i € V and j € V on the route of agent
m € K in the solution X7 are given by

Afefr:;lx = A’ltr]a:s + 7d%+1 + 6{ (tN+1(i,j,m) —t—dj" — d?NH)
waiting part A
+ (tN+1(i,j,m) N N -] d?}) (Bi—1)
waiting part B
+ ), max {0, pny1 (Enga (i j,m) +dlgq — 1) Br}

leN
waiting part C
+ Z max {0, SN+1,] (fN+1(l',]., m) — i) .Bl} } (3.57)
leN

waiting part D

The extended maximum insertion costs comprise several parts. The first two sum-
mands describe the difference in transition and task execution times with A/ being
defined as given in (3.14). The other summands describe the maximum additional
waiting times that might occur. Potential waiting times before the start of the execu-
tion of task nyy1 caused by precedence or synchronization constraints are considered
by part A of the waiting times, which calculates the difference between the earliest
possible starting time of task nx1 without any waiting time and the earliest possi-
ble starting time £y (i, j,m) considering precedence and synchronization constraints.
Waiting part B describes how much the insertion of task 7)1 between the vertices
i and j in the route of agent m delays the start of vertex j compared to the initial
solution X7 without task nN+1. As in the maximum insertion costs (see (3.13)), B;
describes the number of agents’ routes that can be affected by a temporal shift of ver-
tex j. Thus, the delay of vertex j can at most cause waiting times of the same amount
as its own delay in (ﬁ] —1) routes of other agents that need to wait for vertex j or
other vertices following in the same route. The waiting part C describes the maximum
waiting times caused by temporal shifts of tasks | € N that by a precedence constraint
are required to start their execution only after task ny; has been executed. In the
same manner, waiting part D describes the maximum amount of waiting times caused
by synchronization constraints of task ny.1 causing delays for other tasks I € NV.

Remark. The earliest possible starting time of a task nn 41 that is inserted between the vertices
i and j in the route of agent m, depends on the time vertex i is finished and agent m is traversed
to task ny 1. It can possibly be delayed by one or more tasks | € N having to be finished before
the start of the execution of task ny 1 according to precedence constraints or by synchronized
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tasks 1 € N that are ready for execution later that task nyq. Thus, the earliest possible
starting time of task ny 1 is given by

tn1(i,j,m) = max § maxe {pl,NJrl Yimek LmeN (tz + d?lx?fm> } :

e
(3.58)

maxjen {81,n 11t}

Using the extended maximum insertion costs, the eCMI applied to add a task ny1
to a solution X7 of an MRTA problem instance Z is defined as given by the following
algorithm.

Algorithm 4 Extended cheapest maximum insertion costs heuristic (eCMI)

1: if Task nx41 is not related to any precedence or synchronization constraints then

2:
3:
4.

7:

Apply the CMI according to Algorithm 1.

else

For each edge (i,j) that is part of the route of any agent m € K in the
optimal solution X; of the initial problem instanse, i.e. for all (i,j,m) :
(xzmj € Xz A xz’”] = 1), verify if inserting task 741 on that edge yields a fea-
sible routing according to Lemma 3.2, i.e.

1. verity that a}j,; > 0 and

2. ensure that the CSG resulting from the respective insertion is acyclic.
For every edge on which inserting task 71 yields a feasible routing accord-

ing to step 4, calculate the extended maximum insertion costs At accord-
ing to (3.57).

To determine the reoptimized routing X*“™!, insert task 7y in the route of
agent 771 between the vertices i and j that correspond to the finite minimum of
the above determined extended maximum insertion costs Acny. This gives
the reoptimized routing X*“M!. The resulting optimal extended maximum
insertion cost Al .y is given by

x_ Abja . ijm
Agmax = Demax = min Admaxs (3.59)
{(i,j,m) AHEXGAR]=1 }

AZ;rnax € Rx>o. (3.60)

Solve optimization problem (3.5) corresponding to routing X*“M! to deter-
mine the complete solution X*“ML,

8: end if
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Remark. If the task to add ny.q is associated with precedence and/or synchronization con-
straints, the eCMI verifies the feasibility of the generated solution. However, since only the
solutions that can be generated by inserting task ny 1 to the initial solution X1 are considered,
it is not ensured that the eCMI always finds a feasible solution, even if feasible solutions to the
modified problem instance exist.

Remark. Since the vertices in which the agents start and end their routes are not altered by
inserting task nn4q on an edge of the initial solution, this aspect of the routing feasibility
(see Lemma 3.2) must not be verified as the initial solution is guaranteed to be feasible.

Using the eCMI, the delete-insert heuristic applied to a task 1, within a solution X7 of
an MRTA problem instance 7 is defined as given by the following algorithm.

Algorithm 5 Delete-insert heuristic (DIH)

1: Apply the TDH as defined in Algorithm 2 to remove task 7, and all related prece-

dence and synchronization constraints from solution X7 to generate the interme-
diate solution X7.

2: Insert task n,; considering all related precedence and synchronization constraints
to the intermediate solution 555 using the eCMI (see Algorithm 4).

For the MRTA reoptimization problem of task position variation, the DIH is ensured
to generate a feasible solution as demonstrated in the following section.

3.4.5 Feasibility of the Solutions Generated by the Delete-Insert
Heuristic

The feasibility of the solutions generated by the application of the DIH to solve an
MRTA reoptimization problem of task position variation according to Problem 3.5 is
analyzed in this section. According to Lemma 3.10, the DIH is guaranteed to find a
feasible solution.

Lemma 3.11 (Solution feasibility of the DIH for the MRTA task position varia-
tion reoptimization probem)

Let an MRTA reoptimization problem of task position variation according to Problem 3.5
be given. The application of the DIH (see Algorithm 5) to task n, always finds a solu-

tion Xé’gi for the modified problem instance T° that is feasible according to Lemma 3.1.
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Proof:

According to Lemma 3.8, the intermediate solution X7 generated by the TDH in the
first step of the DIH is guaranteed to be feasible. In the second step of the TDH, task 1,
is reinserted using the CMI, if task 1, is not associated with any precedence or synchro-
nization constraints. According to Lemma 3.5, the resulting solution is guaranteed to
be feasible. If task 7, is constrained by precedence and/or synchronization constraints,
steps 4 and 5 of the eCMI ensures that only feasible solutions can be generated. Since
the initial solution X7 always is a possible solution that can be generated by the TDH,
which furthermore is ensured to be feasible for the modified problem instance 7% ac-
cording to Lemma 3.10, the application of the DIH to task 1, is guaranteed to find a

feasible solution to the modified problem instance 7", O

Remark. As laid out in Section 3.4.3, the modified problem instance 7" (see Problem 3.5) al-
ways has a non-empty solution set such that INI always finds a feasible solution to the modified

problem instance 7o,

Thus, both INI and DIH are suited to generate a feasible solution for the reoptimiza-
tion problem of task position variation. INI has the potential to generate reoptimiza-
tion solutions fast without considering alternative routing options. In contrast, DIH
investigates several routing options with higher expected computation time. The mod-
ification of varying the duration of a task is investigated in the following section.

3.5 Task Duration Variation

The task duration variation reoptimization problem is introduced in this section and
the feasibility of solutions generated by the previously introduced INI heuristic (see Al-
gorithm 3) and by the DIH (see Algorithm 5) are analyzed.

3.5.1 Reoptimization Problem of Task Duration Variation

The definition of the MRTA reoptimization problem of task duration variation is given
by Problem 3.6.
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Problem 3.6 (MRTA reoptimization problem of task duration variation)

The MRTA reoptimization problem of task duration variation is an MRTA reoptimization
problem according to Problem 3.2, where the modified problem instance ™ is given by
7% = {N,K,0,V, A T, D, P, 8} with the modified set

o« TT — {7 eT‘ViEJ\/’,i#nq}U{Tg},withT}GIRZO.

Thus, in the modified problem instance T, the basic task duration of task ng is different
compared to the initial problem instance I.

To solve the MRTA reoptimization problem of task duration variation, INI and the
application of DIH to task n; with the modified duration are suitable. Both reopti-
mization approaches are analyzed w.r. t. the feasibility of the resulting solutions in the
following.

3.5.2 Feasibility of the Solutions Generated by the Initial Solution
Approach

The application of INI (see Algorithm 3) yields a feasible solution to the task duration
variation reoptimization problem as given by Lemma 3.12.

Lemma 3.12 (Solution feasibility of INI for the MRTA task duration variation
reoptimization probem)

Let an MRTA reoptimization problem of task duration variation according to Problem 3.6
be given. The application of INI (see Algorithm 3) always yields a solution XH\”i for the
IT

modified problem instance I that is feasible according to Lemma 3.1.

Proof:
The proof of the feasibility of the solution 55;\3 to the task duration variation problem

instance Z" is identical to the proof of Lemma 3.10. O

Remark. The modified problem instance T is ensured to always have a non-empty solution
set, which is why INI is guaranteed to always find a feasible solution X’ZI\Z This is because

modifying the task durations does not affect the feasibility of the corresponding routings since,
according to Lemma 3.2, routing feasibility does not depend on task durations. By definition,
the initial problem instance 1 has a non-empty solution set (see Problem 3.6). Together with
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Lemma 3.3 ensuring that feasible solutions can be determined for feasible routings, it follows
that the solution-set of the modified problem instance % in non-empty.

Also the DIH applied to task ng is ensured to always yield a feasible solution as given
by Lemma 3.13 as shown in the following section.

3.5.3 Feasibility of the Solutions Generated by the Delete-Insert
Heuristic

Solving an MRTA reoptimization problem of task duration variation by the application
of DIH (see Algorithm 5) always yields a feasible solution as given by Lemma 3.13.

Lemma 3.13 (Solution feasibility of the DIH for the MRTA task duration vari-
ation reoptimization probem)

Let an MRTA reoptimization problem of task duration variation according to Problem 3.6
be given. The application of the DIH (see Algorithm 5) to task n, always finds a solu-

tion X?fg for the modified problem instance ™ that is feasible according to Lemma 3.1.

Proof:
Since INI is guaranteed to yield a feasible solution according to Lemma 3.12, the proof
of Lemma 3.13 can be done analogously to the proof of Lemma 3.11. O

Remark. As outlined in Section 3.5.2, the modified problem instance ™ always has a non-
empty solution set. Consequently, a feasible solution can always be found by the application of
the DIH.

As given by Lemmas 3.12 and 3.13, both INI and the DIH are suited to generate a
feasible solution for the MRTA task duration variation problem.

In the following sections, the modifications of varying the capability or the velocity
of an agent are investigated. For the corresponding reoptimization problems, INI is a
suitable solution approach.

3.6 Agent Capability Variation

This section investigates variations in an agent’s capabilities to perform tasks in the
context of heterogeneous, time-extended MRTA problems with precedence and syn-
chronization constraints. The corresponding reoptimization problem is defined and it
is shown that the previously introduced INI heuristic (see Algorithm 3) always yields
a feasible solution.
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3.6.1 Reoptimization Problem of Agent Capability Variation

The definition of the MRTA reoptimization problem of agent capability variation is
given by Problem 3.7.

Problem 3.7 (MRTA reoptimization problem of agent capability variation)

The MRTA reoptimization problem of agent capability variation is an MRTA reoptimiza-
tion problem according to Problem 3.2, where the modified problem instance 7o s given
by 7 = {N, K,0,V, A", T,D,P, S} with the modified set

e At ={are Alvie N mekm#k yufalt, alt)
qi{elR>O ifal >0foral € A

with a; . 4 p
€Rxo ifaj =0fora; € A

Thus, in the modified problem instance Iai, the capabilities of agent kq to perform at least
one of the tasks i € N are different compared to the initial problem instance I.

To solve instances of the MRTA reoptimization problem of agent capability variation,
INI can be applied. The feasibility of the solutions generated is analyzed in the follow-

mng.
3.6.2 Feasibility of the Solutions Generated by the Initial Solution
Approach

The application of the INI heuristic as defined by Algorithm 3 yields a feasible solution
to the reoptimization problem of agent capability variation as given by Lemma 3.14.

Lemma 3.14 (Solution feasibility of INI for the MRTA reoptimization problem
of agent capability variation probem)

Let an MRTA reoptimization problem of agent capability variation according to Prob-
lem 3.7 be given. The application of INI (see Algorithm 3) always yields a solution Xgﬁ

for the modified problem instance 79" that is feasible according to Lemma 3.1.

Proof:
The proof of the feasibility of the solution )_("Izl\a% to the agent capability variation prob-

lem instance Z% is similar to the proof of Lemma 3.10. Since according to Problem 3.7
the capabilities of agent k; are altered such that the agent is ensured to remain capa-
ble of executing all tasks it was capable of executing in the initial problem instance,
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the task allocation defined by the initial routing remains feasible. No other aspect of
the problem instance that could influence the feasibility of the initial routing for the
modified problem instance is modified in problem instance 7ot compared to the initial
instance Z. Consequently, INI yields a routing XIII:E that is feasible for the modified

problem instance Z%'. According to Corollary 3.1, completing the solution }?III\E by

solving optimization Problem (3.5) yields a feasible solution. O

Remark. By definition of Problem 3.7, the initial problem instance 1 has a non-empty solution

set. Since it is furthermore required that within the modified problem instance I”i, agent k,
has a positive capability for all tasks for which its capabilities are positive in the initial problem

instance I, the solution set of the modified problem instance 77 is non-empty by definition.
The requirement of positive capabilities remaining positive in the modified problem instance
ensures that the routings of all solutions in the initial solution set remain feasible routings for
the modified problem instance. This is due to the agent-task allocations remaining feasible and
the other aspects of Lemma 3.2 being unaffected. According to Lemma 3.3, feasible solutions
can be determined for feasible routings. Consequently, the solution set of 7o is non-empty
by definition and INI finds a feasible solution to any MRTA reoptimization problem of agent
capability variation.

The reoptimization problem resulting from varying the transition velocity of an agent

is discussed in the following section.

3.7 Agent Velocity Variation

The reoptimization problem resulting from varying the transition velocity of an agent
is introduced. The INI heuristic (see Algorithm 3) is applied to generate a solution to
the modified problem instance which is shown to yield a feasible solution.

3.7.1 Reoptimization Problem of Agent Velocity Variation

The MRTA reoptimization problem of agent velocity variation is defined as given in
Problem 3.8.
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Problem 3.8 (MRTA reoptimization problem of agent velocity variation)

The MRTA reoptimization problem of agent velocity variation is an MRTA reoptimization
problem according to Problem 3.2, where the modified problem instance 7 s given by
7o = {N, K,0,V", A,T,D,P, S} with the modified set

o VO — {omeV|Vme K,m#ky}U {vqi} with vq$ € Ryy.

Thus, in the modified problem instance T%, the transition velocity of agent ky is different
compared to the initial problem instance I.

INI can be applied to solve the MRTA reoptimization problem of agent velocity varia-
tion. An analysis w.r.t. the feasibility of the solutions generated is given in the follow-

ing.
3.7.2 Feasibility of the Solutions Generated by the Initial Solution
Approach

To solve the velocity variation reoptimization problem, INI (see Algorithm 3) is suit-
able. As given by Lemma 3.15, INI is guaranteed to always yield a feasible solution.

Lemma 3.15 (Solution feasibility of INI for the MRTA agent velocity variation
reoptimization probem)

Let an MIRTA reoptimization problem of agent velocity variation according to Problem 3.8
be given. The application of INI (see Algorithm 3) always yields a solution X;ﬁ for the

modified problem instance T% that is feasible according to Lemma 3.1.

Proof:
The proof of the feasibility of the solution }?IN% to the agent velocity variation problem
s

instance Z°" can be done analogously to the proof of Lemma 3.10. O

Remark. The modified velocity vqi > 0 does not influence the feasibility of the routings of the
solutions in the non-empty solution set of the initial problem instance, which remain feasible
for the modified problem instance 7%, Since according to Lemma 3.3 feasible solutions can
be determined for feasible routings, the solution set of the modified problem instance 7% is
guaranteed to be non-empty and INI finds a feasible solution to any MRTA reoptimization
problem of agent velocity variation.
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Several modifications varying properties of tasks or agents have been introduced and
analyzed so far. In the following sections, the insertion and deletion of temporal con-
straints are considered.

3.8 Insertion of a Precedence or Synchronization
Constraint

In this section, the modifications of inserting an additional precedence or synchro-
nization constraint to the problem instance are analyzed. To solve these two kinds of
reoptimization problems, the extended delete-insert heuristic (eDIH) is introduced. The
results generated by the eDIH are furthermore proven to be feasible.

3.8.1 Reoptimization Problems of Precedence or Synchronization
Constraint Insertion

The corresponding MRTA reoptimization problems of precedence constraint insertion
and of synchronization constraint insertion are given in Problems 3.9 and 3.10, respec-
tively.

Problem 3.9 (MRTA reoptimization problem precedence constraint insertion)

The MRTA reoptimization problem of precedence constraint insertion is an MRTA reop-
timization problem according to Problem 3.2, where the modified problem instance IP* is
given by IP* = {N,K,O,V, A, T, D, PP*,S} with the modified set
— +
s Pre=P\ {pif o {er)
with p;; =0, p;z € P and p: =1, p:r] € PP,

Thus, in the modified problem instance IP*, one additional precedence constraint between
task i € N and task j € N has to be considered compared to the initial problem instance Z.
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Problem 3.10 (MRTA reoptimization problem of synchronization constraint in-
sertion)
The MRTA reoptimization problem of synchronization constraint insertion is an MRTA

reoptimization problem according to Problem 3.2, where the modified problem instance Z°*
is given by I° = {N, K, 0, V, A, T, D, P,S8"} with the modified set

=5 i) )
0,577 € Sandsi: 1, swe S5+,
Thus, in the modified problem instance I°*, one additional synchronization constraint

between task i € N and task j € N has to be considered compared to the initial problem
instance I.

It is likely, that the additional precedence or synchronization constraint added to the
problem instance is not respected by the initial solution, which is why INI is not suited,
neither for the reoptimization problem of precedence constraint insertion nor for the
reoptimization problem of synchronization constraint insertion. To generate a feasible
solution, a reallocation of a task might be required in many cases, for which the DIH
is suitable. However, any precedence or synchronization constraint added relates two
tasks, and the DIH (see Algorithm 5) only reallocates one task. Since it is not prede-
termined, for which task the reallocation yields the better solution, an extension to the
DIH called extended delete-insert heuristic is introduced.

3.8.2 Extended Delete-Insert Heuristic

The extended delete-insert heuristic (eDIH) builds upon the same idea as the DIH (see Al-
gorithm 5), which compares the extended maximum insertion costs (see (3.57)) for all
possible allocations of one task. Extending this, the eDIH takes into consideration the
extended maximum insertion costs resulting from the individual reallocation of one
of the two newly constrained tasks and chooses the allocation corresponding to the
lowest overapproximated objective function value. The eDIH applied to two tasks 7,
and n; within a solution X7 of an MRTA problem instance Z is defined as given by the
following algorithm.

The eDIH can be applied to the two tasks that are newly related by a precedence
or synchronization constraint, to solve the reoptimization problem of precedence or
synchronization constraint insertion. This approach is analyzed w.r. t. the feasibility of
the solutions generated in the following section.
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Algorithm 6 Extended delete-insert heuristic (eDIH)

1: for tasks n; and n; do
2: Apply the TDH according to Algorithm 2 to remove the task and all related
precedence and synchronization constraints from solution Xz to generate the
intermediate solution }_@.
for each edge of the routing X7 of the intermediate solution do
Evaluate the feasibilty of inserting the task together with its related prece-
dence and synchronization constraints on the respective edge as defined

in step 4 of the eCMI.
5: end for
6: for each edge on which inserting the task yields a feasible routing do
7: Calculate the extended maximum insertion costs Aglin, according to (3.57).
8: end for
9: end for

10: To determine the reoptimized routing X°P'Y!, perform the task deletion and inser-
tion of either tasks 1, or task n;, such that it corresponds to the finite minimum of

the determined extended maximum insertion costs Az, .
11: Solve optimization problem (3.5) corresponding to routing X°P™ to determine the
complete solution XP™H.

3.8.3 Feasibility of the Solutions Generated by the Extended
Delete-Insert Heuristic

In this section, the feasibility of solutions generated by the eDIH for reoptimization
problems of precedence or synchronization constraint insertion is analyzed. According
to Lemma 3.16, an eDIH solution generated for a reoptimization problem of precedence
constraint insertion is ensured to be feasible.

Lemma 3.16 (Solution feasibility of the eDIH for the MRTA reoptimization
probem of precedence constraint insertion)

Let an MRTA reoptimization problem of precedence constraint insertion according to Prob-
lem 3.9 be given. A solution XD generated by the application of the eDIH (see Defini-
tion 6) applied to the two tasks i and j that are newly constrained by a precedence constraint
in the modified problem instance IP*, is feasible according to Lemma 3.1 for the modified
problem instance IP*.

Proof:

By definition, the eDIH only evaluates routings in line 7 that were proven to be fea-
sible for the modified problem instance ZP* in line 4. Since only evaluated routings
are considered in the final choice of the reoptimized routing in step 10, the routing of

the reoptimized solution X$P!" is guaranteed to be feasible for the modified problem

instance ZP*. From Corollary 3.1 the feasibility of the solution X$2!" generated by
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solving optimization Problem (3.5) for the feasible routing XS follows. O

Not only is the solution generated by the eDIH guaranteed to be feasible for reopti-
mization problem of precedence constraint insertions, but also for the reoptimization
problem of synchronization constraint insertions as given by Lemma 3.17.

Lemma 3.17 (Solution feasibility of the eDIH for the MRTA synchronization
constraint insertion reoptimization probem)

Let an MRTA reoptimization problem of synchronization constraint insertion according to
Problem 3.10 be given. A a solution XK1 to the modified problem instance I°* generated
by the application of the eDIH (see Definition 6) to the two tasks i and | that are newly
constrained by a synchronization constraint in the modified problem instance I°* is feasible
according to Lemma 3.1.

Proof:
The proof of Lemma 3.17 follows analogously to the proof of Lemma 3.16. O

Remark. Since only the solutions that can be generated by deleting and re-inserting one of the
two the newly constrained tasks i or task j in the initial solution X1 are considered, it is not
ensured that the eDIH always finds a feasible solution, even if feasible solutions to the modified
problem instance exist. However, if a solution is found by the eDIH, it is quaranteed to be
feasible according to Lemmas 3.16 and 3.17.

Besides inserting an additional precedence or synchronization constraint to an MRTA
problem instance, also the deletion of a precedence or synchronization constraint is a
possible modification. It is analyzed in the subsequent section.

3.9 Deletion of a Precedence or Synchronization
Constraint

The last modifications investigated in this chapter are the modifications of deleting
a precedence or synchronization constraint from an MRTA problem instance. The
corresponding reoptimization problems are defined in the following and an analysis
of the feasibility of the solutions generated by the INI heuristic is conducted.
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3.9.1 Reoptimization Problems of a Precedence or Synchronization
Constraint Deletion

The MRTA reoptimization problem of precedence constraint deletion is defined in
Problem 3.11.

Problem 3.11 (MRTA reoptimization problem of precedence constraint dele-
tion)

The MRTA reoptimization problem of precedence constraint deletion is an MRTA reopti-
mization problem according to Problem 3.2, where the modified problem instance IF- is
given by IF- = {N,K,O,V, A, T, D, PP, S} with the modified set

7=} )

with pii=1lp;;eP and pl_] =0, pl_] € Pr.

Thus, the precedence constraint between task i and task | that has to be considered in the
initial problem instance I, is ignored in the modified problem instance Z¥.

Similarly, the reoptimization problem of synchronization constraint deletion is given
in Problem 3.12.

Problem 3.12 (MRTA reoptimization problem of synchronization constraint
deletion)

The MRTA reoptimization problem of synchronization constraint deletion is an MRTA re-
optimization problem according to Problem 3.2, where the modified problem instance 1°
is given by 7% = {N,K,0,V, A, T, D, P,S% } with the modified set

=\ fsu)

wzths~~— ;feSandsme S~~€Ss'

Thus, the synchronization constraint between task i and task j, which equal to one in the
initial problem instance L, is deleted, i.e. set to zero, in the modified modified problem
instance 1%,

INI (see Algorithm 3) can be applied to solve the MRTA reoptimization problems of
precedence or synchronization constraint deletion. An analysis w.r.t. the feasibility of
the solutions generated is given in the following.
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3.9.2 Feasibility of the Solutions Generated by the Initial Solution
Approach

To solve the MRTA reoptimization problems of precedence or synchronization con-
straint deletion, INI (see Algorithm 3) is suited to generate feasible solutions. As given
by the following Lemma 3.18, INI is guaranteed to always yield a feasible solution for
any MRTA reoptimization problem of precedence constraint deletion.

Lemma 3.18 (Solution feasibility of INI for the MRTA reoptimization probem
of precedence constraint deletion)

Let an MRTA reoptimization problem of precedence constraint deletion according to Prob-
lem 3.11 be given. The INI heuristic (see Algorithm 3) always yields a solution X%{ to the
modified problem instance IP" that is feasible according to Lemma 3.1.

Proof:

To prove the feasibility of the solution XIII}H generated by INI, Lemma 3.2 is applied. By
definition, the initial solution )?} is feasible for the initial problem instance Z (see Prob-
lem 3.11). Since all agent-task allocations remain unaltered for the routing X! of the
INT solution X\ compared to the routing X’ of the initial solution X3, and also the
agent capabilities 4 are equal in both problem instances Z and ZP", Aspect L3.2.1 is
guaranteed to be fulfilled by the routing X'} Since the initial routing is not altered,
Aspect L3.2.3, which requires the route of each agent to start and end at its individual
depot, remains fulfilled as well. Furthermore, the feasibility of the initial solution for
the inital problem instance guarantees the corresponding CSG GZ,X} to be acyclic ac-
cording to Aspect L3.2.2 of Lemma 3.2. The CSG of the INI solution only differs from
the CSG of the initial solution by the removal of the arc corresponding to the deleted
precedence constraint. Thus, also the CSG of the INI solution is ensured to be acyclic.
Consequently, all aspects of Lemma 3.2 are fulfilled and the routing X'} is ensured
to be feasible. According to Corollary 3.1, completing the solution X!\! by solving
optimization Problem (3.5) yields a feasible solution. O

Remark. As explained in the previous proof, removing a precedence constraint from a feasible
routing does not influence the routing’s feasibility. Consequently, the routings of the solutions
contained in the solution set of the initial problem instance I remain feasible for the modified
problem instance ZP-. Since the solution set of the initial problem instance 1L is non-empty by
definition, and furthermore it is ensured by Lemma 3.3 that feasible solutions can be determined
for feasible routings, the solution set of the modified problem instance IP is guaranteed to be
non-empty. Consequently, a feasible solution to an MRTA reoptimization problem of precedence
constraint deletion can always be determined by the application of INL

Similarly, also for the reoptimization problem of synchronization constraint deletion,
INI is proven to yield a feasible solution by Lemma 3.19.



3.10 Summarizing Remarks on the Introduced Reoptimization Heuristics 99

Lemma 3.19 (Solution feasibility of INI for the MRTA reoptimization probem
of synchronization constraint deletion)

Let an MRTA reoptimization problem of synchronization constraint deletion according to
Problem 3.12 be given. The INI heuristic (see Algorithm 3) always yields a solution 5{121\311
to the modified problem instance 1% that is feasible according to Definition 3.1.

Proof:

To prove the feasibility of the solution X%§ generated by INI, again Lemma 3.2 is ap-
plied. Analogously to the proof of Theorem 3.18, Aspects L3.2.1 and L3.2.3 are guar-
anteed to be fulfilled by the routing X!\!. Again, the CSG corresponding to the initial
solution GI,X; is acyclic. The deletion of the synchronization constraint modifies the

CSG of the modified solution GIS_ i1 compared to the CSG of the initial solution GI,X};
14N TS-

in such a way that the synchronized vertex containing task 7 and task j of the initial

CSG GZ,X} is split into two synchronized vertices in the reoptimized CSG GIS-,X%II'

The initial solution being feasible implies that different agents are allocated to task 7
and task f in the initial solution and furthermore, that no precedence constraint exists
between those tasks. Consequently, the splitting of the corresponding synchronized
vertices results in the splitted vertices 07 and 7; not being connected by an arc in

the CSG anymore. Since no additional arcs are added, the resulting CSG G, KINI is
743 TS

guaranteed to be acyclic and the corresponding routing X\ is ensured to be feasible.
According to Corollary 3.1, completing the solution X'\ by solving optimization Prob-
lem (3.5) yields a feasible solution. O

Remark. As explained in the previous proof, removing a synchronization constraint from a
feasible routing does not influence the routing’s feasibility. Following the same reasoning as in
the previous remark, this ensures the solution set of the modified problem instance % to be non-
empty. Therefore, a feasible solution to an MRTA reoptimization problem of synchronization
constraint deletion can always be determined by the application of INL

3.10 Summarizing Remarks on the Introduced
Reoptimization Heuristics

Reoptimization heuristics for MRTA reoptimization problems belonging to different
modifications have been introduced in this chapter. They are the first reoptimization
heuristics proposed for heterogeneous, time-extended MRTA problems with prece-
dence and synchronization constraints. Additionally, they allow for solving MRTA re-
optimization problems corresponding to previously unconsidered modifications such
as task duration variation, agent velocity variation and the insertion or deletion of a
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precedence or synchronization constraint (see Table 2.3). For the first time, also guaran-
tees on the solutions they generate are given. These guarantees are listed in Table 3.4.
The CMI, TDH, INI and DIH heuristic are guaranteed to always find a feasible solu-
tion for the respective reoptimization problem. Also for the eDIH, the feasibility of the
solution is ensured, if a solution to the corresponding precedence or synchronization
constraint insertion reoptimization problem is found. Moreover, upper bounds on the
approximation ratios have been given for the modifications and corresponding heuris-
tics of adding or deleting a task from a heterogeneous, time-extended MRTA problem
instance with precedence and synchronization constraints.

If more than one modification is applied at a time, these modifications can be split
into the individual modifications and the corresponding reoptimization heuristics can
be applied consecutively. For example, to handle the insertion of two tasks, the CMI
can be applied consecutively for each of the two tasks. This approach does not in-
fluence the feasibility guarantees given for the individual reoptimization heuristics,
i.e. the resulting solutions are guaranteed to be feasible. The guarantees given on the
upper bounds of the approximation ratios for the modifications of task deletion and
task insertion (see Sections 3.2 and 3.3) grow exponentially with repeated application.
However, the order in which the individual modifications are adressed, may influence
the objective function value of the resulting solution.?? Thus, permuting the applied
reoptimization heuristics and choosing the best result may be an approach to further
optimize the reoptimization result.

With the goal of further improving the results of the reoptimization heuristics by
searching a broader area of the solution space, the following chapter introduces a
combination of the previously introduced reoptimization heuristics with metaheuristic
solution approaches.

29 This holds for any other reoptimization heuristic than INI, since INI does not alter the routing of the
initial solution.
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Table 3.4: Overview of analyzed modifications, applied heuristics and guaranteed results.

Existence ~ Solution  Approximation

Modification Heuristic  of solution feasibility ~ ratio bounded
task insertion CMI v v v
task deletion TDH v v 4
task position variation INI v v -
DIH v v/ -
task duration variation INI v v -
DIH v v -
agent capability variation INI v v -
agent velocity variation INI v v -
precedence constraint insertion eDIH - v -
synchronization constr. insertion = eDIH v -
precedence constraint deletion INI v v -
synchronization constr. deletion ~ INI v v -







4 Metaheuristic Reoptimization of
Time-Extended MRTA Problems

The second research question to be answered in this thesis is whether the solutions
generated by the reoptimization heuristics introduced in Chapter 3 can possibly be
improved by additionally applying metaheuristic approaches (see Section 2.6). Meta-
heuristics, which are usually defined independently of a specific optimization prob-
lem, aim at balancing intensification and diversification. Thus, they generate new
solutions with at least some properties of already investigated (good) solutions and
allow for a broader search of the solution space in order to potentially escape local op-
tima (see Definition 2.9). The problem-specific reoptimization heuristics introduced in
Chapter 3 are all guaranteed to yield feasible solutions. For the modifications of insert-
ing and deleting a task to a time-extended MRTA problem instance, furthermore up-
per bounds on the resulting approximation ratio have been given. These performance
guarantees can be given despite the low computational effort they can be expected
to require. In order to combine the advantages of both approaches and to answer
the second research question, a combination of the previously defined heuristics with
metaheuristic solution approaches is introduced in this chapter. After introducing the
general approach for combining the previously introduced reoptimization heuristics
with metaheuristic solution methods in Section 4.1, a realization based on a genetic
algorithm (GA) is given in Section 4.2. This is followed by the details on the imple-
mentation of the GA in Section 4.3.

4.1 General Reoptimization Framework

In this section, the general idea of combining metaheuristic solution approaches with
reoptimization heuristics to generate a metaheuristic reoptimization framework is pre-
sented.

As introduced in Section 2.4, metaheuristics can be classified into trajectory-based
methods, using a single solution that is modified throughout the optimization pro-
cedure, and population-based methods that require multiple candidate solutions at a
time. An initialization step is required by all metaheuristic optimization approaches
and it is usually conducted randomly [LLY20]. However, since all solutions gener-
ated during the execution of the metaheuristic depend to some extent on the initial
solution or solutions, the initialization of metaheuristics is known to have a relevant
influence on the algorithms’ performance [LLY20, AEA*23, SV]23]. Bearing this in
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mind, the initialization of metaheuristics seems to be a good way to combine heuris-
tic and metaheuristic approaches. The application of heuristics to generate initial
solution(s) for metaheuristics has already been shown to lead to improved perfor-
mance [GXCW20, MGDVEF21, AAS22]. Hence, using the reoptimization heuristics
introduced in Chapter 3 to initialize metaheuristic solution approaches for hetero-
geneous, time-extended MRTA problems with precedence and synchronization con-
straints yields a metaheuristic reoptimization framework for respective MRTA prob-
lems. An overview of the general procedure of a resulting metaheuristic reoptimization
framework for heterogeneous, time-extended MRTA problems with precedence and
synchronization constraints is depicted in Figure 4.1 The first step of the metaheuristic
reoptimization is the application of a reoptimization heuristic that uses the informa-
tion of the initial solution )?% and the applied modification to generate a reoptimized

solution X;'?O’heur

to the modified problem instance. Subsequently, a metaheuristic is
applied to solve the modified problem instance Z,,4. The deployed metaheuristic is
initialized using the heuristically generated reoptimized solution X;e‘:;?eur. In case of a
trajectory-based metaheuristic, the heuristically reoptimized solution is utilized as ini-
tial solution for the metaheuristic solution method. In the case of a population-based
metaheuristic, the heuristically reoptimized solution becomes part of the initial pop-
ulation. Subsequently, the metaheuristic optimization procedure is applied and the
metaheuristic reoptimization solution )_frzeni)o'mﬁa results. In comparison to solely apply-
ing the previously introduced reoptimization heuristics, this approach offers a broader
search of the solution space which comes at the cost of additional calculation time

required for the metaheuristic.

Any metaheuristic optimization approach suitable for heterogeneous, time-extended
MRTA problems with precedence and synchronization constraints can be applied with-
in this framework to generate a specific metaheuristic reoptimization method. If the
applied metaheuristic guarantees to retain the best solution generated throughout the
search process, the initialization using the heuristically reoptimized solution allows
for an anytime interruption of the search process still yielding a feasible solution. This
does not hold for a random initialization, since initially no feasible solution might
be generated. Consequently, the heuristic initialization is beneficial w.r.t. calculation
time. In contrast to randomly initialized metaheuristics, moreover also the perfor-
mance guarantees on the respective reoptimization heuristics (see Chapter 3) remain
valid.
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Figure 4.1: Overview of the metaheuristic reoptimization framework combining the reoptimization heuris-
tics introduced in Chapter 3 with a metaheuristic solution approach.

Lemma 4.1 (Guarantees on the solutions generated by a metaheuristic MRTA
reoptimization framework)

Let the specific metaheuristic applied in the metaheuristic reoptimization framework have
the properties of

1. yielding (as final solution) the best solution found throughout the metaheuristic
search process and

2. infeasible solutions being evaluated worse than feasible solutions.

Then, the application of this framework to any of the MRTA reoptimization problem defined
in Chapter 3, i.e. Problems 3.3 to 3.12, ensures the guarantees on the feasibility of the
applied heuristic solutions, i.e. Lemmas 3.5, 3.8 and 3.10 to 3.19, to remain valid for
the solutions generated by the MRTA reoptimization framework. Furthermore, the upper
bounds of the approximation rations for the CMI and TDH, i.e. Theorems 3.2 to 3.5, are
preserved.
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Proof:

The solutions generated by the heuristics introduced in Chapter 3 are utilized to ini-
tialize the metaheuristic search. These solutions are guaranteed to be feasible by Lem-
mas 3.5, 3.8 and 3.10 to 3.19. Consequently, for trajectory-based metaheuristics the
initial solution is ensured to be feasible and for population-based metaheuristics at
least one feasible solution is ensured to be contained in the initial population. Thus,
if infeasible solutions are ensured to be evaluated worse than feasible solutions and
the metaheuristic is defined such that it yields the best solution found throughout the
search process, the guarantees given on the feasibility of the solutions of the reopti-
mization heuristics remain valid. The same argumentation holds for the upper bounds
on the approximation ratio. O

The presented reoptimization framework allows for the combination of heuristic and
metaheuristic solution approaches for heterogeneous, time extended MRTA reopti-
mization problems with precedence and synchronization constraints. If the respective
reoptimization framework fulfills Lemma 4.1, the potential of making use of the ad-
vantages of both heuristic and metaheuristic approaches is given.

A realization of the introduced metaheuristic reoptimization framework using a ge-
netic algorithm is presented in the following section.

4.2 MRTA Reoptimization Framework with Genetic
Algorithm

In this section, a specific realization of the metaheuristic reoptimization framework is
introduced.

The literature overview of approximative optimization methods for time-extended
MRTA problems presented in Section 2.4 illustrates the great variety of metaheuristics
applied to time-extended MRTA problems. However, the metaheuristic approach cho-
sen for application in the reoptimization framework must be suitable to generate good
results and to consider heterogeneous teams of robots, precedence as well as synchro-
nization constraints. To find a metaheuristic approach that fulfills these requirements,
an extensive investigation of solution approaches for time-extended MRTA problems,
VRPs and related problems has been conducted in a bachelor thesis by Teufel [Teu20]
that has been supervised by the author of this thesis. A GA-based approach for the
HCCSP by Entezari and Mahootchi [EM20] was considered to best fulfill these require-
ments while at the same time allowing for application-specific modifications. The GA
was implemented and adapted to the MRTA application. For the results presented
in the bachelor thesis, an optimization considering different parameters, e. g. different
population sizes, mutation and crossover probabilities, and different parent selection
operators, was conducted to improve the performance of the respective GA on the
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heterogeneous, time-extended MRTA problems with precedence and synchronization
constraints under consideration. This customized GA approach is combined with the
reoptimization heuristics introduced in the previous Chapter 3 to generate a specific
GA-based metaheuristic reoptimization framework. To evaluate the idea of combin-
ing heuristics with a GA for reoptimization, a preliminary examination with different
heuristics without performance guarantees has been conducted. The promising results
as well as the details of the implementation of the GA have been published by the
author at an IEEE conference [BTIH21].

The general idea of GAs is to employ ideas originating from the theory of evolution,
which leads to a special wording in this context [ZBB10]. A population describes a set of
solutions. Within a GA, two solution representations, called phenotype and genotype are
used. The phenotype describes a certain solution with all its features, i. e. a solution X7
for an MRTA problem instance Z. The solution representation used within the evolu-
tionary process is called genotype. Thus, in order to insert the heuristically generated
reoptimization solution into the initial population of the GA, it is first translated into
its genotype representation.’ The fitness of an individual solution, which is usually
determined using the phenotype representation, describes its quality [Kral7, Chapter
2] and is thus closely related to the objective function value given by (3.1).

In every iteration of the evolutionary cycle, solutions out of the current population
are selected to become parent solutions which generate offspring solutions. A fitness-
based selection procedure determines how the parent solutions are chosen. To converge
towards optimal solutions, solutions with good fitness values should be preferred.
However, it is reasonable for each solution to have a non-zero probability of being
selected, since choosing suboptimal solutions out of the current population as parent
solutions allows for overcoming local optima. To determine the offspring population,
crossover and mutation are applied. The crossover operator implements a mechanism
that mixes the features of the genotypes of (generally two) parents to generate new
offspring solutions. With a certain probability, a mutation operator is applied to in-
dividual solutions, which changes a single genotype based on random alterations. A
replacement operator determines which solutions out of previous population together
with the offspring solutions generated in the current evolutionary cycle are chosen to
form the new population for the next evolutionary cycle. The evolutionary loop is re-
peated until a termination condition, often given by a predefined number of iterations,
is met. [Kral7, Chapter 2]

The corresponding procedure of the GA, including the initialization with the heuristi-
cally reoptimized solution, is depicted in Figure 4.2. The solution resulting from the
GA-based reoptimization framework is denoted as }_('2:2 Details on the realization of
the GA are given in the following Section.

30" Details on the genotype representation applied in the GA-based reoptimization framework are given in
the following Section 4.3.
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Figure 4.2: Overview of the evolutionary loop within the GA initialized with the solution of the reoptimiza-
tion heuristic.

4.3 Genetic Algorithm Realization

After introducing the general idea of combining the reoptimization heuristics with a
GA optimization and the GA evolutionary loop, details on the GA applied within this
thesis for heterogeneous, time-extended MRTA problems with precedence and syn-
chronization constraints are presented in this section. Some aspects are taken from
the GA implementation for the HCCSP by Entezari and Mahootchi [EM20], while
some aspects have been adapted to best fit the time-extended MRTA application un-
der consideration in this thesis. This adaption, conducted for the bachelor thesis of
Teufel [Teu20] which was supervised by the author of this thesis, is presented in the
following.
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Genotype representation

The genotype, i.e. the solution representation used within the GA, is defined equiva-
lently as proposed by Entezari and Mahootchi [EM20]. The genotype consists of two
matrices, an assignment matrix A and a scheduling matrix S. Both matrices are of di-
mension 1 X N. The assignment matrix A determines which task is executed by which
agent. It contains the agent indices m with A (1,7) = m indicating that agent k;, € K is
assigned to task n; € N. The order of task execution is contained within the schedul-
ing matrix S. It contains a permutation of the task indices i € {1,..., N} which defines
the sequence in which the tasks are performed.

For example, let a problem instance Z with three agents I = {kq,k;, k3} and eight
tasks V' = {ny,...,ng} be given. The genotype consisting of the two matrices

A=[2 23112 2 3],
S=[4 57 2 8 6 3 1]

determines the routing X7 of the corresponding solution. It is set to agent k; con-
ducting the route {o01,14, 15,01}, agent kp having the route {o,,ny,n,n6,11,02} and
route {03, 13, 13,03} being performed by agent k3. Assuming the feasibility of the rout-
ing corresponding to a genotype, the timing information required for the complete
solution representation is determined using (3.5).

Crossover and mutation operators

Apposite to the genotype representation, also the crossover and mutation operators
are the same as proposed by Entezari and Mahootchi [EM20]. They are described in
the following.

Both crossover operators for assignment and scheduling matrices generate two off-
spring matrices each. To crossover two assignment matrices, a randomly generated
binary mask of the size 1 x N determines which matrix entries are inherited from
which parent to the offsprings. For one offspring, the entries of the first parent are
taken for those entries in which the mask contains a 0 and the entries of the other
parent are taken for entries in which the mask is equal to 1. This logic is vice versa
for the other offspring. For the scheduling matrices, a single point crossover operator
is chosen. It randomly chooses a point at which the parent chromosomes are split.
For each offspring, the scheduling matrix before that point is equal to the parent. The
remaining elements are filled up in the order they appear in the other parent. To il-
lustrate these crossover operators, an example of the crossover operators applied to
two parent genotypes P1 and P2 generating two offsprings O1 and O2 is depicted in
Figure 4.3.

For the mutation of an assignment matrix A, a (1 x N)-matrix with random entries uni-
formly distributed between 0 and 1 is generated. Given a predefined value « € [0,1],
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Figure 4.3: Example of crossover operators on assignment and scheduling matrices. In this example, three
agents and six tasks are considered. For the assignment matrix, a randomly generated bi-
nary mask determines for each offspring, which entry is inherited from which parent. For the
crossover of the scheduling matrix, the randomly determined crossover point is marked by a
black triangle. It determines until which point the order of the entries is inherited from which
parent. The Figure is based on the author’s publication [BTIH21] (©2021 IEEE).

all entries of the assignment matrix for which the value of the ramdomized matrix is
greater or equal to ¥ remain unaltered while the others are modified. The modification
is realized by randomly choosing an agent that is capable of performing the corre-
sponding task. To mutate a scheduling matrix S, one out of three two-point operators,
i.e. swap, reversion and insertion, is chosen randomly. The swap operator exchanges
the values of the two randomly chosen positions. The order of all entries between the
two chosen positions is reversed, if the reversion operator is applied. The insertion
operator deletes the entry at the second position and inserts it after the first position,
while shifting all other entries in between one position to the right. An example of
the mutation operators both for an assignment and a scheduling matrix is depicted in
Figure 4.4.

Fitness evaluation

As in the publication of Entezari and Mahootchi [EM20], the goal of the GA optimiza-
tion is to minimize fitness values, i. e. solutions with lower fitness values are preferred.
Since Entezari and Mahootchi [EM20] consider a HCCSP, the fitness function has been
adapted to suit the MRTA application.3!

Since feasible solutions should be preferred over infeasible ones and furthermore no
timing information can be determined for infeasible routings, the fitness determini-
ation differentiates between feasible and feasible solutions. As explained earlier, a
genotype determines the routing X7 of a solution. For any genotype for which the cor-
responding routing is feasible according to Lemma 3.2, the missing timing information

31 In the HCCSP considered by Entezari and Mahootchi [EM20], the objective function comprises aspects

such as minimization of total overtime of staff members and continuity of care, which are not considered
in the MRTA application. Furthermore, neither do Entezari and Mahootchi consider multiple depots nor
agent-dependent task execution times.
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Figure 4.4: Example of mutation operators on assignment and scheduling matrices. Entries highlighted
in yellow indicate differences compared to the initial matrix. For the mutation of an assignment
matrix, a randomly generated mask and value for x determine that the assignments for all entries,
having a smaller value than x in the mask, are randomly changed. For the mutation of the
scheduling matrix the black triangles symbolize the random choice of two indices. Depending
on whether the swap, reversion of insertion operator are chosen, a different mutated scheduling
matrix results. The Figure is based on the author’s publication [BTIH21] (©2021 IEEE).

is determined using (3.5) to complete the solution, which, according to Corollary 3.1,
yields a feasible solution. For any feasible solution, the fitness value is equivalent to
the objective function value J7 (see (3.1)) of the solution.

If the genotypes corresponds to an infeasible routing however, no complete timing
information can be determined. In these cases, a penalty function

f(Xz) = cstat + fr32.1 (Xz) + fraz2 (Xz) (4.1)

is applied to determine the fitness of the solution. A static penalty component is given
by cstat € R~o, which is chosen such that it ensures the fitness values of infeasible
solutions to be worse than the one of feasible solutions. In order to additionally include
a measurement of the degree of infeasibility of a solution, the components f;3,7 and
fr322 are introduced. They depend on the cause of the routing’s infeasibility. If the
assignments of tasks to robots are feasible, i.e. L3.2.1 of Lemma 3.2 is fulfilled, f;321
equals zero. Otherwise, it is given by

fr321(Xz) = caynnrs21(Xz) (4.2)

with n7351 being the number of tasks that are assigned to an incapable robot and
cdyn € Rxp being a constant greater zero. Similarly, f1322 is equal to zero if the CSG
corresponding to the routing X7 is acyclic, i.e. L3.2.2 of Lemma 3.2 is fulfilled. If this
is not the case,

f322(Xz) = caynniz22(Xz1) (4.3)

determines the additional penalty factor with ny3,, being the number of cycles within
the corresponding CSG. This fitness definition allows both feasible and infeasible so-
lutions to be meaningfully considered within the evolutionary loop of the GA.
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Selection procedure

The selection procedure used within this thesis differs from the one used by Entezari
and Mahootchi [EM20]. Different selection procedures have been investigated and
compared within the bachelor thesis of Teufel [Teu20]: Tournament selection showed
the best performance w.r. t. solution fitness as well as solution feasibility. Tournament
selection is a fitness-based selection operator. For the selection of each parent solution,
a defined number of solutions is selected randomly out of the current population. The
number of solutions selected is called tournament size. Out of the solution subset,
the solution with the best fitness value is chosen to become a parent solution. [KralZ,
Chapter 2.7]

Furthermore, the tournament size of solutions has been investigated and a size of
three was found to yield the best results. An example of a tournament selection with
a tournament size of three is depicted in Figure 4.5. Out of the initial population three
solutions are randomly chosen and the best individual out of these three becomes the
selected one.

Elitism

The GA proposed by Entezari and Mahootchi [EM20] applies a replacement strategy
in which a population is fully replaced by the newly generated offspring population
in each iteration. In the GA applied in this thesis, this strategy is extended by the
principle of elitism [ES15, Chapter 5.3.2]: In every evolutionary loop, the amount of
offspring solutions generated equals the population size. In order to prevent the loss of
the best solution out of the previous population, the best solution of the previous pop-
ulation is migrated into the new population and replaces the worst offspring generated
in the current evolutionary loop. An example of the principle of elitism is depicted in
Figure 4.6.

Due to the application of the principle of elitism together with the solutions’ fitness
evaluation, Lemma 4.1 applies to this specification of the GA-based MRTA reoptimiza-
tion framework.

o = Ca D
random best
selection
Population Tourn-ament . Se.leFted
of size 3 individual

Figure 4.5: Tournament selection with a tournament size of three. Out of the current population, three
solutions are chosen randomly. Out of these, the best solution w.r.t. the indicated fitness value
is the selected individual.
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Population of parent solutions Offspring solutions generated
in evolutionary loop

Resulting offspring population

Figure 4.6: Replacement strategy with elitism. The population of parent solutions is depicted in yellow, the
offspring solutions generated during the evolutionary loop are depicted in orange. To generate
the resulting offspring population, the principle of elitism is applied, and the worst offspring
solution is replaced by the best parent solution.

Lemma 4.2 (Guaranees on the solutions generated by the MRTA reoptimiza-
tion framework with GA)

For any of the MRTA reoptimization problems defined in Chapter 3, i.e. Problems 3.3 to
3.12, the MRTA reoptimization framework with GA in combination with the respective
heuristics introduced in Chapter 3 can be applied. This approach ensures the guaran-
tees on the feasibility of the applied heuristic solutions, i.e. Lemmas 3.5, 3.8 and 3.10
to 3.19, to remain valid for the solutions generated by the MRTA reoptimization frame-
work. Furthermore, the upper bounds of the approximation rations for the CMI and TDH,
i.e. Theorems 3.2 to 3.5, are preserved.

Proof:

Due to the application of the principle of elitism, the fitness values of the best solution
within a population cannot worsen between the evolutionary loops. This ensures the
first aspect of Lemma 4.1 to be fulfilled. Since the fitness value is defined such that
infeasible solutions always have worse fitness values than feasible solutions (see (4.1)),
also the second aspect of Lemma 4.1 is fulfilled, such that Lemma 4.1 applies to the
MRTA reoptimization framework with GA as defined in this section. O
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The introduced GA-based reoptimization framework combines the heuristic reopti-
mization approaches of Chapter 3 with a GA suitable for heterogeneous, time-extended
MRTA problems with precedence and synchronization constraints. It allows for a
broader search of the solution space and thus for a possible improvement of the heuris-
tic solutions. By the application of the principle of elitism together with an appropriate
choice of the fitness function, the performance guarantees given for the reoptimization
heuristics remain valid for the solutions generated by the GA-based reoptimization
framework.

In the following Chapter, a comprehensive evaluation both of the reoptimization heuris-
tics of Chapter 3 and of the GA-based reoptimization framework is given. The pro-
posed reoptimization approaches are furthermore compared to an exact solution ap-
proach and to a conventional, randomly initialized, GA.



5 Evaluation and Analysis of the
Reoptimization Approaches

An evaluation of the reoptimization heuristics introduced in Chapter 3 and of the GA-
based reoptimization framework introduced in Chapter 4 is conducted and the results
are presented in this chapter. The evaluation aims at answering the third research ques-
tion (see Section 2.6) on advantages and disadvantages of the previously introduced
reoptimization approaches when applied to heterogeneous, time-extended MRTA re-
optimization problem instances and on whether and how their performance is influ-
enced by different problem features. The introduced reoptimization approaches are
compared to an exact BnP approach as well as to a conventional, randomly initialized
GA. Evaluation criteria are determined to evaluate the performance, responsiveness
and stability of the proposed approaches, i. e. the aspects relevant for their application
in an interactive MRTA optimization system (see Section 1.1). To evaluate the influence
of different features of the MRTA problem instances on the reoptimization approaches
of Chapters 3 and 4, three different evaluation scenarios focusing on different features
of the MRTA problem instances are introduced. As depicted in Figure 5.1, in evalua-
tion scenario 1, the size of the modified problem instance, i. e. the amount of tasks and
agents considered, is varied. In evaluation scenario 2 different levels of heterogeneity
w.r. t. different capabilities and velocities of agents as well as varying basic task dura-
tions are investigated for a fixed problem size. The influence of different numbers of
precedence and synchronization constraints is analyzed in evaluation scenario 3 for a
fixed problem size and homogeneous problem instances.

heterogeneity
A
scenario 2
< - >—> size
scenario 1
scenario 3
constraints

Figure 5.1: Overview of the features varied within each evaluation scenario. More details are given in Ta-
ble 5.1.
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The evaluation setup as well as the evaluation criteria are described in Section 5.1.
The results of evaluation scenario 1 investigating the influence of the problem size are
presented in Section 5.2. In Section 5.3, the results of evaluation scenario 2 analysing
the influence of different sources of heterogeneity are given and in Section 5.4, the
results of evaluation scenario 3 varying the number of precedence and synchronization
constraints are depicted.

5.1 Evaluation Setup and Evaluation Criteria

In this section, details on the evaluation setup including the parametrization are given.
Furthermore, the applied evaluation criteria are introduced.

5.1.1 Common Features of the Evaluation Scenarios

Within each evaluation scenario, different specifications for problem instances are con-
sidered. Each specification determines

e the size of the modified MRTA problem instance w.r.t. number of agents and
tasks,

e the heterogeneity within the corresponding modified problem instances w.r.t.
agents’ capabilities and velocities as well as tasks’ basic durations,

e and the number of precedence and synchronization constraints to be considered
within the modified problem instances.

Within each evaluation scenario, 50 problem instances are determined for each speci-
fication and each analyzed modification. Without loss of generality, all distances, ve-
locities and durations within a problem instance are defined dimensionless. Tasks and
agents’ depots are located on a two-dimensional area of size 100 x 100. The modified
problem instances are solved by the application of

e the respective reoptimization heuristic appropriate for the applied modification
as given in Chapter 3,

e the GA-based reoptimization framework specified in Sections 4.2 and 4.3,

® a conventional, randomly initialized GA that applies the same genotype repre-
sentation, crossover and mutation operators, fitness function, select procedure
and replacement strategy with elitism as defined in Section 4.3, i.e. it differs
from the GA-based reoptimization framework solely in the initialization, and

® an exact branch-and-price (BnP) solution approach as given in Appendix B.2.
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The parameters weighting the task execution times and the waiting times within the
objective function (3.1) are set to 4y = 1 and € = 0.9. Thus, transitioning and task
execution times are equally weighted, since in several applications they can be expected
to be similarly energy consuming. Waiting times are weighted 10% less, since they
usually consume less energy, but should still be minimized in order for all tasks to be
performed as quickly as possible.

To completely describe the GA-based reoptimization approach as well as the conven-
tional GA, some additional parameters have to be defined. Both approaches apply a
constant population size of 50 solutions per generation.>? As proposed by Entezari and
Mahootchi [EM20], the termination criterion is given by a fixed number of iterations,
which is set to 100. Since the principle of elitism is applied, which prevents the loss
of the best solution between two populations, high crossover and mutation rates allow
for a broad search of the solution space. The crossover rate is set to 100% and the
mutation rate numbers 50%.

All solution approaches are implemented and run in Python 3.9.6 on an Intel® i5-
960K processor with a clock frequency of 3.70 GHz, 16.0 GB RAM, and a Microsoft®
Windows 11® operating system.

An overview on the problem specifications investigated in the three evaluation scenar-
ios is given in Table 5.1. In the first evaluation scenario, the problem size is varied,
in the second evaluation scenario, different aspects of heterogeneity are investigated,
and in the third evaluation scenario, temporal constraints are contained in the problem
instances. In the following section, details on evaluation scenario 1 are given.

32 Different population sizes have been tested throughout the bachelor thesis of Teufel [Teu20] which was
supervised by the author and a population size of 50 was found to be a good compromise between
diversification and computation time needed per evolutionary loop.

Table 5.1: Overview on the problem specifications investigated in the three evaluation scenarios. The aspect
varied within the problem specifications of an evaluation scenario is printed in italics.

Problem size Heterogeneity Temporal constraints
Evaluation 1 —10 tasks and Homogeneous None
scenario 1 1 — 10 agents problem instances

Evaluation 3 agents and different agent capability, ~None
scenario 2 8 tasks agent velocity and
task duration levels

Evaluation 3 agents and Homogeneous 0 — 2 precedence and
scenario 3 8 tasks problem instances synchronization constraints
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5.1.2 Specification of Evaluation Scenario 1 — Different Sizes of
Problem Instances

In the first evaluation scenario, the influence of the number of tasks and agents within
the modified problem instance is analyzed. The goal is furthermore to determine a
meaningful size for the problem instances of the following evaluation scenarios. The
problem instances are all homogeneous, i.e. all basic task durations are set to ten,
i.e.7; =10Vi € N, all agents m € K have a capability of a!" = 1 for all tasks i € AV, and
the velocities of all agents m € K is set to v, = 1. No precedence or synchronization
constraints are considered in the problem instances.

Within this evaluation scenario, the modifications of task insertion and task deletion
are analyzed since they are the most common. Furthermore, the solutions generated
by the respective reoptimization approaches are not only guaranteed to be feasible,
moreover upper bounds on the resulting approximation ratios can be given (see Sec-
tions 3.2.5 and 3.3.5). Given the initial problem instances, the modified problem in-
stances are established as follows: To determine the modified problem instances for
the task insertion, an additional task, whose position is determined randomly out of a
uniform distribution over the whole area, is added to the initial problem instance. For
the modification of task deletion, the task to be deleted is selected randomly out of the
existing tasks within the initial problem instance.

The evaluation scenario has two parts: In the first part, the number of agents is fixed
and the number of tasks is varied, while in the second part it is vice versa. To determine
the initial problem instances for the first part of the evaluation scenario, the number
of agents is set to three, which is a common number for evaluations in heterogeneous,
time-extended MRTA problems [Kor1l, KKB"12]. The number of tasks within the
initial problem instance is increased stepwise. For each number of tasks, 50 problem
instances are generated. For the first 50 initial problem instances containing one task,
the position of the tasks and the agents” depots is chosen randomly out of a uniform
distribution over the whole area. In order to minimize the influence of other aspects
like the tasks” and depots’ positions on the evaluation results, the problem instances are
defined iteratively: For the initial 50 initial problem instances containing two tasks, the
positions of the agents depots’ and the first task is equivalent to their corresponding
problem instance containing one task. The position of the second task is again chosen
randomly out of a uniform distribution. The initial problem instances containing three
tasks are defined based on the problem instances containing two tasks and so forth.
Overall, initial problem instance containing one to ten tasks are generated.

In the second part of the evaluation scenario, the number of agents within the problem
instances is varied from one to ten agents. The fixed number of tasks contained in
each modified problem instance is set to eight, i.e. the initial problem instances gen-
erated for the modification of task insertion contain seven tasks and the ones for the
modification of task deletion contain nine tasks. To reduce the influence of the tasks’
positions, they are determined once for the 50 problem instances for each modification
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and remain fixed, independently of the number of agents considered. The agents’ de-
pot positions are determined iteratively as described for the tasks’ positions in the first
part of the evaluation scenario.

The results of the first evaluation scenario build the basis for defining a problem size
that yields a good compromise between complexity and calculability for the second
evaluation scenario, which is described in the following section.

5.1.3 Specification of Evaluation Scenario 2 — Different
Heterogeneity Levels

In this evaluation scenario, the influence of different sources of heterogeneity is an-
alyzed. Therefore, different levels of agents’ capabilities, agents’ velocities and basic
task durations are defined. The problem instances of this evaluation scenario do nei-
ther contain precedence nor synchronization constraints. All modifications unrelated
to precedence and/or synchronization constraints (i.e. the modifications of task in-
sertion, task deletion, task position variation, task duration variation, agent capability
variation and agent velocity variation) are considered. Based on the results of the pre-
vious evaluation scenario 1, each modified problem instance consists of three agents
and eight tasks.

To represent different possible strengths of the three agents w.r.t. their capabilities
to perform different tasks, tasks are assumed to be of three different types and each
task is assigned to one of these three task types. Using these task types, the different
capability levels are defined as given in Table 5.2. Capability level 0 corresponds to
the case of homogeneous capabilities, i.e. every agent is fully capable to accomplish
each task, independent of its type. With capability level 1, each agent is still capable
of accomplishing each task type, but for each task type there are agents that take up
to double the time to finish the corresponding tasks compared to other agents. In
capability level 2, tasks of type 1 and 3 can only be performed by two of the three
agents and the differences in speed of operation remain similar as in level 1. The
agent-task-assignment for tasks of type 1 and 3 becomes unambiguous for capability
level 3, since these tasks can only be performed by one of the three agents. For tasks
of type 2, still all agents possess some capability to different amounts. Since the case
of an unambiguous assignment of all tasks, i.e. for each task only one agent being
capable of its execution, is trivial and reduces the time-extended MRTA problem to a
pure scheduling problem, it is not considered.

Similarly to the capability levels, also different levels of the agents’ velocities are de-
fined, which are depicted in Table 5.3. Also for the velocities, level 0 corresponds to
the homogeneous case where there are no differences between the agents’ velocities.
In levels 1 and 2, the differences in the agents’ velocities increase with agent k; being
the slowest and agent k3 the fastest one.

For the basic task durations, different levels are defined as well. They are given in
Table 5.4. Analogous to the capability and velocity levels, duration level 0 corresponds
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Table 5.2: Definition of different capability levels.

Capability level =~ Agent ‘ Task type 1  Task type2  Task type 3

ky 1 1 1
capability level 0 ko 1 1 1
ks 1 1 1
kq 1 0.8 0.5
capability level 1 ko 0.8 0.5 1
ks 0.5 1 0.8
ky 1 0.8 0
capability level 2 ky 0.8 0.5 1
ks 0 1 05
kq 1 0.8 0
capability level 3 ko 0 0.5 1
ks 0 1 0

Table 5.3: Definition of different velocity levels.

Velocity level ‘ Agent k; Agentk, Agentks

velocity level 0 ‘ 1 1 1
velocity level 1 ‘ 0.8 0.9 1
velocity level 2 | 0.4 0.7 1
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to the homogeneous case with every task of each task type having the basic duration
of ; = 10, Vi € N. The differences in the task types’ basic durations increase for
duration levels 1 and 2, with tasks of type 1 always requiring the least and tasks of
type 3 requiring the most processing time.

To generate the initial problem instances for this evaluation scenario, homogeneous
instances with capability, velocity and duration levels of 0 are generated. The homo-
geneous initial problem instances build the basis for the initial problem instances with
different capability, velocity or duration levels. Independent of the capability, velocity
and duration level under consideration, the task types as well as the positions of the
tasks and the agents’ depots remain as defined in the homogeneous initial problem
instances. Reason for this is to prevent influences of altered task types or position
within the results. In order for all modified problem instances to contain eight tasks as
previously specified, for the modification of task insertion, 50 homogeneous problem
instances with seven tasks are generated, for the modification of task deletion, 50 ho-
mogeneous instances with nine tasks and for all other modifications, 50 homogeneous
problem instances with eight tasks are generated. For these instances, the positions
of the tasks and the agents” depots are chosen randomly from a uniform distribution
over the whole area. Also, for each task, the task type is randomly set to be either 1, 2
or 3.

Independently of the heterogeneity, velocity and duration level under consideration,
the modifications are chosen identically for all corresponding problem instances. For
the task insertion, the new task is randomly assigned to one task type and its posi-
tion is chosen randomly out of the uniform distribution over the whole area. For all
50 problem instances the task’s position and type remain fixed, independently of the
heterogeneity, velocity and duration level under consideration. In the same manner,
for all 50 problem instances the task to be deleted for the modification of task deletion,
is initially chosen randomly out of all tasks and remains fixed for all heterogeneity
levels. For the modification of task position variation, one task within the initial prob-
lem instance is chosen randomly. Within a radius of 50 of its initial position, a new
position is chosen by chance. It is ensured, that the new position lies within the area of
size 100 x 100, which is generally defined for all problem instances (see Section 5.1.1).
The modified task and its new position are employed within every heterogeneity level.
Also for the task duration variation, for all 50 problem instances one task to be mod-
ified is chosen randomly. Its duration is varied by a factor chosen uniformly out of

Table 5.4: Definition of different levels of basic task durations.

Duration level ‘ Task type 1  Task type2  Task type 3
duration level 0 ‘ 10 10 10
duration level 1 ‘ 5 10 15
duration level 2 ‘ 1 10 50
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the set [0.5,0.9] U [1.1,2.0], for a shorter or longer task duration, respectively. The same
factor is applied to the same task independently of the heterogeneity level. An analo-
gous approach is applied for the modifications of agent capability variation and agent
velocity variation. The agent to be modified, which is chosen randomly, is the same
for all heterogeneity levels. For the modification of capability variation, one task type
is determined randomly and the agent’s capability for this task type is varied by a
random factor out of the set [0.5,0.9] U [1.1,2.0]. In the same manner, the factor for
modifying the agent’s velocity is chosen randomly out of the set [0.5,0.9] U [1.1,2.0] for
the modification of agent velocity variation.

Within the second evaluation scenario, precedence and synchronization constraints
contained within the problem instances are not considered. Their influence is investi-
gated in the third evaluation scenario, which is described in the following section.

5.1.4 Specification of Evaluation Scenario 3 — Temporal Constraints

In the third evaluation scenario, the influence of precedence and synchronization con-
straints on the results of the reoptimization approaches shall be evaluated. As in eval-
uation scenario 2, all modified problem instances contain three agents and eight tasks.
Furthermore, only homogeneous problem instances are considered, i.e. all instances
are of capability, velocity and duration level 0 (see Section 5.1.3).

Upon this, six MRTA problem specifications differing in the number of precedence
and synchronization constraints are determined. The homogeneous initial problem in-
stances without any precedence or synchronization constraints of evaluation scenario 2
(see Section 5.1.3) serve as the basis problem specification. The other five specifications
contain one precedence constraint, two precedence constraints, one synchronization
constraint, two synchronization constraints, or one precedence and one synchroniza-
tion constraint, as given in Table 5.5. To determine the corresponding initial problem
instances, the respective number and type of constraints is added to the unconstrained
basic problem instances. The corresponding constraints always consider two tasks,
which are chosen randomly out of all tasks. For precedence constraints also the order

Table 5.5: Number of synchronization and precedence constraints contained within the different problem
specifications of evaluation scenario 3.

Problem # synchronization # precedence
specification constraints constraints
sync. 0 prec. 0 0 0
sync. 0 prec. 1 0 1
sync. 0 prec. 2 0 2
sync. 1 prec. 0 1 0
sync. 2 prec. 0 2 0
sync. 1 prec. 1 1 1
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of the tasks, i.e. which task is set to be the precedent one, is chosen randomly. If two
synchronization constraints are added and both of them contain one common task,
e.g. 513 = 1 and sy = 1, this corresponds to all three tasks having to be performed
synchronously, i.e. tasks nj, n3 and ng in the example. Since non-empty solution
spaces must be ensured, all initial instances generated are checked for feasible defini-
tions of the temporal constraints. If the randomly chosen constraints contradict each
other, e.g. p13 = 1 and p31 = 1, new constraints are chosen randomly. To prevent the
influence of task or depot positions on the results, the positions of the tasks and the
agents’ depots remain unchanged w. r. t. the unconstrained initial problem instances.

Within this evaluation scenario, all modifications analyzed in Chapter 3 are evalu-
ated. The generation of the modified problem instances for the modifications of task
insertion, task deletion, task position variation, task duration variation, agent capa-
bility variation and agent velocity variation, is equivalent as described for evaluation
scenario 2 (see Section 5.1.3). For the modifications of precedence or synchronization
constraint deletion, one of the existing constraints of the respective type is randomly
chosen to be deleted. Obviously, this modification is only applied to the problem
instances with at least one of the respective constraints. For the modifications of prece-
dence or synchronization constraint insertion, a respective constraint for two of the ex-
isting tasks is added to the problem instance in the same random manner, as described
above for the initial problem instances. Furthermore, it is ensured that the resulting
modified problem instances can be solved by the application of the eDIH (see Sec-
tion 3.8.2). If the additional constraint leads to an unsolvable problem instance, it is
replaced by a newly generated constraint.

So far, the evaluation scenario considered for the analysis have been introduced in
detail in this chapter. The following section determines the criteria used to evaluate
the reoptimization results.

5.1.5 Evaluation Criteria

As outlined in Section 1.1, in the context of interactive MRTA optimization systems,
three aspects are relevant when solving the modified problem instances. High quality
solutions w. r. t. the objective function (3.1) are relevant for the MRS performance [GM04,
VR21]. Furthermore, user acceptance is heavily influenced by the responsiveness of the
solution method applied to the modified problem instance as well as by the stability of
the solution [HGQ"12, MKF*15]. To evaluate these aspects, the following measures
are applied:

To assess the quality of approximative optimization or reoptimization approaches, the
approximation ratio « as given by Definition 2.11 is an appropriate measure (see Sec-
tion 2.1). Hence, for the solutions generated by the reoptimization heuristics, the GA-
based reoptimization framework and the conventional, randomly initialized GA, the
approximation ratios w.r.t. the objective function for heterogeneous, time-extended
MRTA problems with precedence and synchronization constraints as given by (3.1) are
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determined to evaluate their quality.3® The theoretical guarantees on the approxima-
tion ratio derived for the heuristics in this thesis and for similar TSP reoptimization
problems are at most two (see Sections 3.2.5 and 3.3.5 as well as Table 2.4). However,
the guaranteed approximation ratios are strictly conservative. Hence, it is expected
that the approximation ratio for the majority of problem instances in practical ap-
plication is much smaller. In the TSP, the smallest guaranteed upper bound on the
approximation ratio for reoptimization approaches equals 4/3 (see Table 2.4). Taking
some margin from this value, the following evaluation considers approximation ratios
a < 1.2 as desirable.3*

To evaluate the responsiveness of the applied solution methods, their calculation time
needed to solve the modified problem instance is the appropriate measure (see Sec-
tion 1.1). It is assessed for each modified problem instance for all four solution ap-
proaches, i.e. the reoptimization heuristics, the GA-based reoptimization framework,
the conventional, randomly initialized GA and the BnP. Different classifications of ac-
ceptable system response time categories that depend for example on users’ expecta-
tions [Mil68, Seo08] or on task complexity [Shn87] can be found in literature. Doherty
and Sorenson [DS15] combine and expand these frameworks focusing on perceived
user experience. In general, system response times below 300ms are perceived as
instantaneous, closed-loop interactions [DS15]. Response delays of up to 1s can be
detected by the human, but are still perceived as immediate interaction [DS15]. User
might even accept longer response times up to 10s and stay focused on the interaction
if they receive appropriate feedback during the delay [DS15]. Longer system response
times however are likely to cause the user to multitask during the process or even to
disengage with the task if system response times are above 5 min.

To evaluate the stability of the solutions generated for the modified problem instance, a
measure for their difference to the initial solution must be defined (see Section 1.1). As
introduced in Section 3.1.1, a solution to a time-extended MRTA problem instance
contains the routing information together with the timing information, i.e. X7 =
X7 U{t;]i € V}. However, for the solution approaches under consideration in this
thesis, a measure of the difference between the routings of the initial solution and the
solution to the modified problem instance fully describes the solution differences. This
is due to the fact, that, given a certain routing, all reoptimization heuristics (see Al-
gorithms Algorithm 1, 2, 3, 5 and 6), as well as the GA applied within the GA-based
reoptimization framework and within the conventional GA (see genotype represen-
tation in Section 4.3) and, by definition, also the exact BnP approach determine the
corresponding optimal timing information according to (3.5). Thus, the routing gener-
ated by any of the applied solution approaches inherently also determines the timing
of the corresponding solution.

33 By definition, the exact solution generated by the BnP approach has an approximation ratio of & = 1,

which is why this is not given explicitly. The BnP solution is needed to determine the approximation
ratios of the solutions generated by the other solution approaches.

To the best of the authors knowledge, so far no commonly acknowledged threshold for approximative
solution approaches in MRTA applications exists. Therefore, this choice has been made for the evaluation
within this thesis. However, further verification in various application fields is necessary.

34
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To measure the difference between the initial routing and the routing for the modified
problem instance, and thus of the corresponding solutions, the Levenshtein distance
is applied. The Levenshtein distance, named after the Russian mathematician Vladimir
Levenshtein, is one of the most popular measures in string matching [Lis13, Chapter
8.2]. It is given by the minimum number of basic operations required to convert one
string into another. The considered basic operations include the insertion of a charac-
ter, the deletion of a character, and the replacement of a character by another [Lis13,
Chapter 8.2]. Interpreting the routes of the agents as strings with the vertices repre-
senting the characters, the Levenshtein distance between two routes is given as the
minimum number of operations including

e the insertion of a vertex
e the deletion of a vertex
¢ the replacement of a vertex by another

required to convert one route into another.>® In order to evaluate the difference be-
tween the initial routing X7 and the routing X7_ , generated by the solution approach
for the modified problem instance, the sum over the Levenshtein distances of all agents’
routings is determined. Denoting the Levenshtein distance as lev, the Levenshtein dis-
tance between the routings X7 and Xz__, is given by

lev(X7, Xz )= ) lev(x7,x7_ ), (5.1)
mek

with x7, x7 denoting the route of agent m € K in the solutions to the initial instance
7 and the modified instance Zpoq, respectively. To assess the Levenshtein distances
in the context of time-extended MRTA reoptimization problems, the analogy to string
matching is adduced. According to Lisbach and Meyer [Lis13, Chapter 8.2], acceptable
Levenshtein distances depend on the size of the problem. For problems up to the size
considered in the following evaluation scenarios, the acceptable Levenshtein distances
range from zero to two.

As outlined in the previous sections, within each evaluation scenario, for every evalua-
tion specification 50 initial and modified MRTA problem instances are generated. They
share the same number of agents and tasks, the heterogeneity levels and the number
of precedence and synchronization constraints (see Section 5.1.1). For each problem
instance and every solution approach applied to it, the approximation ratio, calcula-
tion time and Levenshtein distance are determined. In the following presentation of
the results, the corresponding average values as well as the standard deviations are
given.

For some modifications in some evaluation scenario, additionally the convergence of
the GA-based reoptimization framework and the conventional, randomly initialized
GA is compared. Since the principle of elitism is applied, the approximation ratio of

35 For example, the Levenshtein distance between the routes {01, 12,13, 15,01} and {o1,n3,15,01} equals
one.
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the best solution contained within the populations cannot deteriorate in the course of
the iterations. Due to the fixed number of 100 iterations conducted by both GAs, the
convergence behavior is not explicitly contained in the computation time or the other
measures. To gain some insight into the convergence behavior, it is evaluated for how
many of the 50 problem instances, the respective GA reaches certain thresholds of the
approximation ratio, typically & < 1.5, # < 1.2 and « < 1.1. Out of these problem
instances, that converged to a certain approximation ratio threshold, additionally the
average number of iterations that were required to reach that threshold, is given.

Having introduced the evaluation scenarios and the evaluation criteria applied to an-
alyze the reoptimization approaches presented in Chapters 3 and 4, the results of the
first evaluation scenario, varying the size of the problem instances, are given in the
following section.

5.2 Evaluation of Different Sizes of Problem Instances

In this section, the results of the first evaluation scenario are presented. As introduced
in Section 5.1.2, homogeneous problem instances without any precedence or synchro-
nization constraints are considered and the influence of the number of tasks and agents
within the modified problem instances on the results generated by the different solu-
tion approaches is investigated. A presentation of the results is given in the following
section, followed by an analysis thereof in Section 5.2.2.

5.2.1 Evaluation Results

A presentation of the results of the evaluation of the influence of the number of tasks
and agents within the modified problem instances on the solutions generated for the
modifications of task insertion and task deletion is given in this section. First, the
results on the approximation ratios are presented, followed by the calculation times
and the Levenshtein distances.

Approximation ratio

For the modification of task insertion, the approximation ratio of the solutions gen-
erated by the CMI, the GA-based reoptimization framework and the conventional,
randomly initialized GA for modified MRTA problem instances with three agents and
different numbers of tasks are depicted by a box plot given in Figure 5.2. The small
problem instances with up to three tasks are all solved to optimality by both GA-based
solution approaches. By the application of the CMI, 7 out of 50 problem instances
are not solved to optimality for both problem sizes with the worst resulting approxi-
mation ratio being 1.226. For the problem instances containing four to ten tasks, the
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Figure 5.2: Evaluation scenario 1: Approximation ratios for the modification of task insertion over problem
instances with different numbers of tasks. Detailed values are given in Table C.1 in Appendix C.1.

approximation ratios generated by the CMI remain relatively stable for different num-
bers of tasks contained in the modified problem instances. The average approximation
ratio varies between 1.011 and 1.007 with a slight tendency towards the smaller ap-
proximation ratios for modified problem instances with more tasks (see Table C.1 in
Appendix C.1). For the problem instances containing up to six tasks, the GA-based re-
optimization framework yields on average slightly smaller approximation ratios than
the CML. For the modified problem instances containing seven to ten tasks, the approx-
imation ratios of the CMI and the GA-based reoptimization framework are identical.
In contrast to this, the approximation ratios of the conventional GA show an approxi-
mately linear increase for the problem instances with four to ten tasks, yielding clearly
higher approximation ratios than the two reoptimization approaches.

The respective results on the approximation ratios generated by the CMI for modi-
fied problem instances with eight tasks and different numbers of agents are depicted
in Figure 5.3. Independently of the number of agents considered within the problem
instances, the approximation ratios of the results generated by the TDH and the GA-
based reoptimization framework are identical. For these reoptimization approaches,
the resulting approximation ratios are equal to 1.0 for the majority of problem in-
stances, with the highest approximation ratio being equal to 1.083 for a modified prob-
lem instance with two agents. With an increase in the number of agents, the spread
of the approximation ratios slightly decreases. Contrary to the reoptimization ap-
proaches, the conventional GA shows an increase in the approximation ratios with a
growing number of agents contained in the modified problem instance. The incline is
approximately linear w.r.t. the median values for problem instances with one to ten
agents. Independently of the number of agents contained in the modified problem in-
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Figure 5.3: Evaluation scenario 1: Approximation ratios for the modification of task insertion over prob-
lem instances with different numbers of agents. Detailed values are given in Table C.1 in Ap-
pendix C.1.

stances, the average approximation ratio of the conventional GA is considerably higher
than the one of the reoptimization approaches, and no problem instance is solved to
optimality by the conventional GA. For individual problem instances containing six
and more agents, the approximation ratio of the solution generated by the GA exceeds
a value of w = 2.

The results on the approximation ratio for the modification of task deletion show sim-
ilar dependencies on the numbers of tasks and agents contained in the modified prob-
lem instances. The mean values as well as the corresponding standard deviations for
the specifications investigated are given in Table 5.6.3° For the modified problem in-
stances with up to three agents, both GA approaches solve all instances to optimality.
By the application of the TDH to these problem instances with up to three tasks, be-
tween three and ten out of the 50 problem instances are not solved to optimality. For
the problem instances with one task, the highest approximation ratio equals 1.28, with
two tasks it is equal to 1.06, and with three tasks the highest approximation ratio is
given by 1.10. On average, the approximation ratios generated by the reoptimization
approaches are close to 1.0 and have a standard deviation smaller than 0.02 for the
problem instances with more than one task. For the modified problem instances hav-
ing six or more tasks, the approximation ratio of the results generated by the TDH and
the GA-based reoptimization framework are identical. The average approximation ra-
tios resulting from the conventional, randomly initialized GA, increase approximately

36 As the qualitative results for the modification of task insertion and task deletion are similar, the results
for task deletion are given in a table only.
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Table 5.6: Evaluation scenario 1: Results on the approximation ratio &« (mean and standard deviation (SD))
the for the modification of task deletion.

TDH GA-based Conventional
Variation heuristic reoptimization GA
mean SD mean SD mean SD
1 | 1.0134 0.0538 | 1.0 0.0 1.0 0.0
» 2 | 10021 0.0091 | 1.0 0.0 1.0 0.0
"z) 3 ]11.0049 0.0165 | 1.0 0.0 1.0 0.0
%’ 4 11.0051 0.0161 | 1.0008 0.0038 | 1.0242 0.0371
5 5 11.0047 0.0123 | 1.0026  0.008 1.0825 0.0738
@ 6 | 1.0042 0.012 1.0042  0.012 1.1584  0.0695
s 7 | 1.0047 0.0133 | 1.0047 0.0133 | 1.2469  0.0904
g < 8 | 1.0032 0.0094 | 1.0032 0.0094 | 1.3126  0.0996
E 9 |1.0038 0.0102 | 1.0038 0.0102 | 1.373 0.0874
S 1 | 1.0023 0.0061 | 1.0023 0.0061 | 1.1281 0.0462
"é 2 | 1.002 0.0076 | 1.002 0.0076 | 1.1763  0.0576
= *é) 3 | 1.0017 0.0047 | 1.0017 0.0047 | 1.2584  0.0839
gm 4 11.0029 0.006 1.0029  0.006 1.3406  0.098
<= 5 | 1.0038 0.0077 |1.0038 0.0077 | 1.4081 0.1349
¥ 6 |10048 0.01 1.0048 0.01 1.4605 0.1395
'cg 7 |1.0084 0.0188 | 1.0084 0.0188 | 1.5196 0.1388
E 8 | 1.0082 0.0196 | 1.0082 0.0196 | 1.5605 0.1425
9 | 1.005 0.0111 | 1.005 0.0111 | 1.626 0.1704
10 | 1.0037  0.0095 | 1.0037 0.0095 | 1.6663  0.1595

linearly with the number of tasks contained in the modified problem instances for in-
stances with more than three tasks to an average of # = 1.37 for modified instances
with nine tasks. Compared to the GA-based reoptimization framework, the standard
deviation of the conventional GA is about six to ten times higher for problem instances
with at least four tasks. Independently of the number of agents, the results for the TDH
and the GA-based reoptimization framework are identical. The average approximation
ratios are close to 1.0, varying between about 1.002 and 1.008 for different numbers of
agents. For the conventional GA however, the average approximation ratios are higher
for all numbers of agents investigated and increase with the number of agents from
1.128 with one agent to 1.666 with ten agents. The standard deviations are about
seven to 17 times higher than the ones of the TDH and the GA-based reoptimization
framework.

The differences between the GA-based reoptimization and the conventional GA also
becomes obvious, when comparing the convergence behavior of the two GA-based ap-
proaches. Table 5.7 gives an overview of how many of the 50 problem instances reach
an approximation ratio threshold of & < 1.1 for the GA-based reoptimization and how
many iterations it takes for these instances on average to converge to this threshold.
The same information is given for the conventional GA for reaching thresholds of
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x <15 a« <12and a« < 1.1. Independent of the numbers of tasks and agents con-
tained in the modified problem instances, both GA-based reoptimization frameworks
for the modifications of task insertion and task deletion reach an approximation ratio
threshold of « < 1.1 for all 50 problem instances, which in the vast majority of problem
specifications takes on average exactly one iteration to be reached. In contrast to this,
the conventional, randomly initialized GA reaches an approximation ratio threshold of
« < 1.1 for all 50 problem instances only for the specifications with up to three tasks for
both modifications. The more tasks are contained in the modified problem instances,
the less often the GA converges to a threshold of «# < 1.1, which then also takes more
iterations. For example, for the problem instances containing six tasks, in 10 out of
50 problem instances the conventional GA reaches an approximation ratio threshold
of « < 1.1 for both modifications, which are reached on average after 18.6 and 13.5
iterations, respectively. For the specifications with a growing number of agents, the
GA does not converge to an approximation ratio threshold of a < 1.1 for any prob-
lem instance with more than three agents, except for one problem instance with five
agents for the modification of task deletion. While for the specifications with growing
numbers of tasks, only within the problem instances with eight and more tasks some
do not converge to a threshold of « < 1.5, less than half of the problem instances with
seven or more agents converge to an approximation ratio threshold of « < 1.5 for both
modifications by the application of the conventional GA.

Calculation time

In Figure 5.4, a box plot of the calculation times required by the different solution ap-
proaches to solve the task insertion problem instances for different numbers of tasks
contained in the modified problem instance is depicted. For a better ascertainabil-
ity it is cut off at a maximum of 90s. The average calculation times required by the
CMI remain below 3ms for all evaluated numbers of tasks contained in the modi-
fied problem instance (see average values given in Table C.2 in Appendix C.1). For
both GA-based solution approaches, the required calculation times are very similar.
They grow approximately linear with the number of tasks contained in the problem
instance and remain below 25s for all numbers of tasks contained in the problem in-
stances. Contrary to this, the calculation time required by the exact BnP approach and
also its spread grow exponentially and surpasses the GA approaches for the instances
containing nine and ten tasks. For problem instances with ten tasks, the average BnP
calculation time is 373 s (see Table C.2 in Appendix C.1) and the maximum calculation
time required by one of the problem instances equals 1055s.

The box plot of the calculation times required for different numbers of agents con-
tained within the task insertion problem instance is depicted in Figure 5.5. Contrary to
different numbers of tasks, the calculation time required by the BnP approach grows
approximately linear with the number of agents contained within the problem in-
stance. On average, the BnP approach requires less computation time than the GA-
based reoptimization framework and the conventional GA for all numbers of agents



5.2 Evaluation of Different Sizes of Problem Instances 131

Table 5.7: Evaluation scenario 1: Convergence of the GA-based reoptimization framework and the conven-
tional, randomly initialized GA for the modifications of task insertion and task deletion.

GA-based Conventional GA
reoptimization
iterations to iterations to iterations to iterations to
Variation a<11 a<15 a <12 a<11
mean #inst. | mean #inst. mean #inst. mean @ # inst.
2 | 1.00 50 1.00 50 1.00 50 1.00 50
9 3 |1.18 50 1.00 50 1.14 50 2.02 50
@ 4 | 1.00 50 2.16 50 4.33 48 13.39 46
%’ 5 | 1.00 50 1.00 49 9.80 44 12.64 28
5 6 | 1.00 50 1.08 50 11.48 29 18.60 10
< 7 | 1.00 50 1.16 50 23.93 15 1.00 1
€ 8 |100 50 175 48 975 4 -0
g Z 9 [1.00 50 8.26 46 22.00 4 - 0
£ 10 | 1.00 50 12.80 41 - 0 - 0
é) 1 1.00 50 1.00 50 3.71 41 3.55 11
f@ » 2 | 100 50 1.00 50 15.75 28 12.75 4
= % 3 | 1.00 50 1.14 50 25.89 9 73.00 1
e 4 | 1.00 50 1.72 47 1.00 1 - 0
% 5 | 1.00 50 5.44 41 1.50 4 - 0
¥ 6 | 1.00 50 1.97 29 36.00 1 - 0
@ 7 | 1.00 50 2.71 21 - 0 - 0
S5 8 | 1.00 50 6.17 12 1.00 1 - 0
Z 9 [100 50 11 9 -0 -0
10 | 1.00 50 1.86 7 - 0 - 0
1 1.00 50 1.00 50 1.00 50 1.00 50
2 2 | 1.00 50 1.00 50 1.00 50 1.00 50
2 3 | 100 50 1.00 50 1.02 50 1.22 50
%’ 4 | 1.00 50 1.00 50 1.64 50 8.90 48
5 5 | 1.00 50 1.00 50 8.15 47 16.53 30
S 6 | 1.00 50 1.00 50 16.06 36 13.50 10
§ 7 | 1.00 50 1.58 50 17.08 13 1.33 3
g Z 8 [1.00 50 5.78 46 14.17 6 65.00 1
E} 9 | 1.00 50 12.15 47 1.00 2 - 0
! 1 /100 50 100 50 420 46 469 13
?;n » 2 | 100 50 1.00 50 11.06 31 17.29 7
= “é:: 3 | 1.00 50 1.36 50 17.40 15 - 0
e 4 | 1.00 50 1.69 45 10.67 3 - 0
s 5 | 1.00 50 3.53 38 1.00 2 1.00 1
¥ 6 | 1.00 50 6.19 32 1.00 1 - 0
g 7 | 1.00 50 7.22 23 - 0 - 0
5 8 | 1.00 50 8.27 22 - 0 - 0
z 9 | 1.00 50 13.55 11 - 0 - 0
10 | 1.00 50 1.00 5 - 0 - 0
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Figure 5.4: Evaluation scenario 1: Calculation times for the modification of task insertion over problem
instances with different numbers of tasks. Detailed values are given in Table C.2 in Appendix C.1.
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Figure 5.5: Evaluation scenario 1: Calculation times for the modification of task insertion over problem in-
stances with different numbers of agents. Detailed values are given in Table C.2 in Appendix C.1.



5.2 Evaluation of Different Sizes of Problem Instances 133

evaluated. The BnP calculation time clearly has the greatest spread of all solution ap-
proaches. The calculation times required by the GA-based reoptimization framework
and the conventional GA are very similar, and they grow approximately linear with
the number of agents. The by far smallest calculation time with average values below
4ms is required by the CMI heuristic.

An overview of the calculation times required by the different approaches to solve the
task deletion problem instances is given in Table 5.8. In the table, the mean value as
well as the standard deviation over the 50 problem instances contained in each prob-
lem specification is given. The TDH requires on average a calculation time of less than
4 ms to solve all problem instances. The required calculation time grows slightly with
the number of tasks and with the number of agents contained in the modified prob-
lem instances. The standard deviations are within a range of up to 6ms. As for the
modification of task insertion, for any problem specification evaluated, i.e. number of
tasks and agents, the average calculation times required by the GA-based reoptimiza-
tion framework and by the conventional, randomly initialized GA, are very similar.
Both grow approximately linear with the number of tasks and with the number of
agents contained in the modified problem instance. They are roughly 10* times higher
than the calculation times required by the TDH reoptimization heuristic and have a
standard deviation of less than 0.3 s for all numbers of agents and tasks evaluated. The
results on the calculation time required by the BnP approach for the task deletion prob-
lem instances match the results for the task insertion reoptimization approaches. The
calculation time grows exponentially with the numbers of tasks contained within the
problem instances and surpasses the calculation times required by the GA approaches
for instances with nine and more tasks. Also, the standard deviation of the calculation
time grows exponentially with the number of tasks contained in the problem instances.
Contrary to this, the average computation times and the standard deviations are influ-
enced approximately linearly by the number of agents within the problem instance.

Levenshtein distance

For the modification of task insertion, the Levenshtein distances of the initial solution
to the solutions generated by the CMI, the GA-based reoptimization framework, the
conventional GA and the exact BnP approach are depicted over the varying number of
tasks in Figure 5.6. By definition, the routings of the solutions generated by the CMI
(see Algorithm 1) differ by one additional task contained in the route of one agent.
Thus, the Levenshtein distance of the CMI is always equal to 1, independently of the
number of tasks or agents contained within the modified problem instances. For the
problem specifications with more than five tasks, also the Levenshtein distances of the
solutions generated by the GA-based reoptimization framework are equal to 1 for all
50 problem instances. For problem instances with fewer tasks, there exist some out-
liers having a Levenshtein distances up to 8 for individual problem instances. The
Levenshtein distances of the solutions generated by the conventional GA and the exact
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Table 5.8: Evaluation scenario 1: Results on the calculation time in seconds (mean and standard devia-
tion (SD)) the for the modification of task deletion.

TDH GA-based Conventional Branch-and-
Variation heuristic reoptimization GA price
mean SD mean SD mean SD mean SD
1 |0.0009 0.0037 9.5308 0.0423 9.5312 0.0373 0.0025 0.0054
» 2 |0.0013 0.004 11.0164 0.0537 | 11.0232 0.0518 0.0065 0.0065
fz@ 3 |0.0013 0.0042 | 12.4531 0.05 12.4398 0.0491 0.0147 0.0066
%’ 4 10.0016 0.0047 | 13.8258 0.066 13.8103 0.0487 0.0341 0.008
5 5 |0.0016 0.0047 | 15.3255 0.1074 |15.3068 0.0764 0.0954 0.0217
g 6 |0.0016 0.0046 |16.6686 0.096 16.6834 0.0757 0.3292 0.0761
5 7 |0.0019 0.0048 | 18.0936 0.0956 |18.088 0.081 1.4009 0.3368
g Z 8 10.0022 0.005 19.4686 0.09 19.4727 0.0959 8.0993 1.9977
T 9 10.0025 0.0057 |20.8409 0.14 20.8148 0.1726 55.4437  18.5293
3 1 10.0019 0.0025 |16.1969 0.0761 |16.1922 0.0668 4.4595 1.3539
é . 2 10.0022 0.0052 |18.0362 0.1354 | 18.0242 0.1025 7.8452 2.4496
= + 3 |0.0022 0.0054 |19.7478 0.0845 |19.7827 0.1194 10.9295 3.3378
go 4 10.0025 0.0056 |21.3566 0.1015 |21.3315 0.0883 14.6456 4.6009
%= 5 |0.0025 0.0056 |23.0555 0.1043 |23.0463 0.1046 14.9673 4.0564
g 6 [0.0028 0.0031 |24.9809 0.1288 |24.9546 0.1051 17.9851 5.5919
Jé 7 10.0029 0.0032 |26.8527 0.108 26.8028 0.166 20.6745 6.8098
2 8 10.003 0.0028 | 28.6156 0.13 28.6224 0.1683 21.7446 7.8269
9 10.0033 0.0036 |30.3814 0.1533 |30.3969 0.1446 24.179 8.1451
10 | 0.0031  0.006 32.1636 0.1524 | 32.1096 0.1326 25.949 8.2305
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Figure 5.6: Evaluation scenario 1: Levenshtein distances for the modification of task insertion over problem
instances with different numbers of tasks. Detailed values are given in Table C.3 in Appendix C.1.
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BnP approach grow approximately linearly with the numbers of tasks and vary com-
paratively more than the solutions of the reoptimization approaches. The Levenshtein
distances of the conventional GA grow the most with the numbers of tasks, with the
Levenshtein distances being spread between 7 and 19, having a median of 11.5 and an
average of 11.82 (see average values given in Table C.3 in Appendix C.1) for problem
instances with ten tasks. The Levenshtein distances of the solutions generated by the
BnP approach for the modified problem instances with ten tasks have a median of 4.0,
an average value of 6.34 and are spread from 1 to 19 over all 50 instances.

The results on the Levenshtein distances of the solutions generated by the different
solution approaches for the modification of task insertion over the varying number
of agents within the problem specifications is given in Figure 5.7. For all numbers of
agents investigated, the Levenshtein distances of the GA-based reoptimization frame-
work equal the ones of the CMI, i.e. 1, for all problem instances. The Levenshtein
distances of the solutions generated by the conventional GA are relatively stable for
the problem instances with two to ten agents. They vary between 3 and 15, having
an average value between 8.64 and 10.76 (see average values given in Table C.3 in Ap-
pendix C.1). For the exact solutions generated by the BnP approach, the Levenshtein
distances reach values between 1 and 15 for problem instances with up to five agents.
For problem instances with more agents, the Levenshtein distances decrease again to
being spread from 1 to 5 with an average value of 3.08 for the problem instances with
ten agents.

In Table 5.9, the mean values and corresponding standard deviations of the Leven-
shtein distances of the solutions generated by the different solution approaches for
the modification of task deletion are given. By definition, the routings of the solu-
tions generated by the TDH differ from the initial routings by the deletion of one task
(see Algorithm 2). Consequently, the Levenshtein distance of the TDH solutions to the
initial solution are equal to 1, independently of the number of tasks or agents consid-
ered within the modified problem instance. The solutions generated by the GA-based
reoptimization framework have a Levenshtein distance of 1 for all problem specifica-
tions with varying numbers of agents and for all problem instances of the problem
specifications with seven or more tasks. For the problem instances with fewer tasks,
the average Levenshtein distance is slightly higher, ranging between 1.12 and 1.90.
Since the conventional GA and the BnP approach solve each problem instance inde-
pendently, i.e. they are optimization and no reoptimization approaches, they show a
qualitatively and quantitatively similar dependency on the number of tasks and agents
within the modified problem instance as presented above for the modification of task
insertion.

5.2.2 Discussion

Overall, both reoptimization heuristics yield very good approximation ratios clearly
below a < 1.02 which are relatively constant, independently of the number of agents
and tasks contained within the modified problem instances. Only for some problem
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Figure 5.7: Evaluation scenario 1: Levenshtein distances for the modification of task insertion over prob-
lem instances with different numbers of agents. Detailed values are given in Table C.3 in Ap-
pendix C.1.

instances with up to six tasks, an improvement w.r.t. the approximation ratio of the
CMI or TDH solutions is obtained by the additional application of the GA-based re-
optimization framework. By definition of the CMI and TDH reoptimization heuristics,
their solutions have a fixed Levenshtein distance of 1. Since for some problem instances
with up to six tasks, the solutions of the GA-based reoptimization framework deviate
from the solutions of the reoptimization heuristics, also the average Levenshtein dis-
tances of the corresponding problem specifications deviate from 1 to at most 1.9. Thus,
for these problem instances, the average approximation ratios of the CMI and TDH im-
prove by the additional application of the GA-based reoptimization framework, which
at the same time increases their Levenshtein distance.

Especially for instances with seven and more tasks, the CMI and the TDH outper-
form the GA-based reoptimization framework since they generate solutions of the
same quality w.r.t. to the approximation ratio in much less computation time and
with a constant and low Levenshtein distance of 1. Moreover, taking into considera-
tion the substantially higher computation time required by the GA-based reoptimiza-
tion framework compared to the reoptimization heuristics, it is questionable whether
the potential improvement in approximation ratio for small problem instances with
three agents and up to six tasks is worth the loss in responsiveness of the solution
approach. For small instances up to this size, the exact computation of a globally op-
timal solution via the BnP approach requires on average at least about 50 times less
computation time and thus might be a better alternative to the GA-based reoptimiza-
tion framework when putting the focus on solution quality. However, the reduction in
computation time by the application of the BnP approach compared to the GA-based
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Table 5.9: Evaluation scenario 1: Results on the Levenshtein distance (mean and standard deviation (SD))
the for the modification of task deletion.

TDH GA-based Conventional Branch-and-
Variation heuristic reoptimization GA price
mean SD mean SD mean SD mean SD
1 |10 0.0 1.12 0.475 1.12 0.475 1.12 0.475
w 2 |10 0.0 1.16 0.5044 1.58 0.8022 | 1.3 0.6403
’:‘{@ 3 110 0.0 1.9 1.7464 2.44 1.6752 | 2.06 1.7252
o 4 110 0.0 1.68 1.5677 3.98 21771 | 2.3 1.9723
; 5 1.0 0.0 1.44 1.6144 6.1 2.3937 | 2.72 2.8847
Jé 6 | 1.0 0.0 1.24 1.68 7.46 29679 | 3.44 3.5505
5 7 |10 0.0 1.0 0.0 9.48 29205 | 3.2 3.7736
g z 8 | 1.0 0.0 1.0 0.0 11.52 3.1064 | 44 4.4362
E 9 |10 0.0 1.0 0.0 13.24 2.8111 | 4.8 5.4699
g 1 |10 0.0 1.0 0.0 6.66 1.38 2.74 2.8622
f‘(@ 2 | 1.0 0.0 1.0 0.0 9.6 2.569 3.3 3.7216
a ‘E 3 1.0 0.0 1.0 0.0 10.5 2.816 452 4.4955
go 4 110 0.0 1.0 0.0 10.9 2.6401 | 4.6 4.5431
w 5 |10 0.0 1.0 0.0 11.4 2.8496 | 4.5 4.5706
g 6 | 1.0 0.0 1.0 0.0 11.46 2.5156 | 4.38 4.5028
@ 7 | 1.0 0.0 1.0 0.0 12.24 24622 | 4.28 4.4228
2 8 | 1.0 0.0 1.0 0.0 13.04 2.163 3.48 4.3965
9 1.0 0.0 1.0 0.0 12.32 2.2578 | 3.32 4.1638
10 | 1.0 0.0 1.0 0.0 12.7 2.2561 | 3.08 3.3873

reoptimization framework for problem instances of this size comes at the cost of poten-
tially higher Levenshtein distances, i.e. less solution stability. Due to the exponential
increase in computation time with the numbers of tasks contained in a problem in-
stance, for problems containing nine or more tasks however, the application of the BnP
solution approach becomes computationally very expensive. This significant reduc-
tion in responsiveness together with the potentially low solution stability makes the
BnP approach unsuitable for application in interactive MRTA optimization systems,
especially if potentially large problem instances are under consideration.

With the number of agents and tasks contained within a modified problem instance,
the calculation time required for the determination of the timing information corre-
sponding to a routing according to (3.5) increases. This is the cause of the approxi-
mately linear increase in the computation times required the CMI, TDH and by both
GA approaches. The calculation times of the CMI and TDH for all problem specifi-
cations are by two orders of magnitude below 300 ms such that these reoptimization
heuristics allow for instantaneous interactions [DS15]. This not only holds for the
considered problem sizes but also demonstrates their potential for instantaneous inter-
actions for considerably larger problem instances. The higher increase in computation
time for the GA approaches is caused by the higher number in different routings eval-
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uated within the course of the GA approaches compared to the reoptimization heuris-
tics. Since the computation times of the GA are mainly determined by the population
size and fixed number of 100 iterations performed, there is no significant difference
between the conventional GA and the GA-based reoptimization framework. Both GA-
based approaches require on average calculation times above 10s, which makes it im-
probable for users to stay focused on the interaction if the GA-based approaches were
applied in an interactive MRTA optimization system. While this choice of the terminal
condition ensures the comparability of the GA approaches w.r.t. solution quality and
stability, further optimization of the terminal condition of the GA-based reoptimization
framework w.r. t. computation time is possible.

Moreover, the results demonstrate the importance and the influence of the initialization
of the GA. The GA-based reoptimization framework clearly outperforms the conven-
tional, randomly initialized GA. This holds both w.r.t. solution quality, i.e. approxi-
mation ratio, and solution stability, i.e. Levenshtein distance, even though these GA
approaches only differ in their initialization.

In summary, the results of the heuristic reoptimization approaches CMI and TDH scale
the best with problem size w.r.t. the combination of solution quality, responsiveness
and solution stability and are thus promising for application in interactive MRTA op-
timization systems. Furthermore, the results of this evaluation scenario indicate that a
problem size of three agents and eight tasks is a good compromise between complexity
and temporal manageability for the following evaluation scenarios.

After the investigation of the influence of the problem instances’ size in this evaluation
scenario, the influence of different causes of heterogeneity within the problem instance
are evaluated in the following section.

5.3 Evaluation of Different Heterogeneity Levels

The results of the second evaluation scenario and their analysis are presented in this
section. As introduced in Section 5.1.3, the modified problem instances contain three
agents and eight tasks and no precedence or synchronization constraints. Different
levels of agents’ capabilities, velocities and tasks’ basic durations are considered. The
results are presented in the following Section 5.3.1, a discussion of the results is given
in Section 5.3.2.

5.3.1 Evaluation Results

The solutions generated by the reoptimization heuristics, the GA-based reoptimiza-
tion framework, the conventional, randomly initialized GA and the BnP approach
w.r. t. their approximation ratios, required calculation times and Levenshtein distances
are presented in the following. Different levels of heterogeneity w.r.t. the agents’
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capabilities, their velocities and the tasks” basic durations (see Section 5.1.3) are an-
alyzed . Since all problem instances investigated are temporally unconstrained, all
modifications except for the insertion and deletion of a precedence or synchronization
constraint are considered.

Approximation Ratio

The approximation ratios of the solutions generated by the reoptimization heuristics,
the GA-based reoptimization framework and the conventional, randomly initialized
GA for the problem specifications differing in the levels of the agents’ capabilities (c),
agents’ velocities (v) and tasks’ basic durations (d), are given in the following. In
Table 5.10, the average values and standard deviations obtained for the modification of
task insertion are depicted. The average values of the approximation ratio generated
by the CMI heuristic are within a small range of 1.0 to 1.0111 for all heterogeneity
levels considered. Out of the different capability levels, level 2 yields by a narrow
margin the highest average approximation ratio of 1.0098 with a standard deviation
of 0.0306. Compared to the different capability levels, the influence of the different
velocity and duration levels on the CMI results is even smaller. Also, heterogeneous
velocities or basic task durations in combination with capability level 2 only slightly
vary the average approximation ratio.

For the majority of problem specifications, i. e. heterogeneity levels considered, the ap-
proximation ratios of the GA-based reoptimization framework are identical to the ones
of the CMLI. Only for capability level 3 and for the combination of capability level 2 with
velocity level 2, the approximation ratios of the GA-based reoptimization framework
are a little smaller on average and in standard deviation compared to the CMI. The
conventional GA yields exact solutions for the same specifications as the CM], i. e. ho-
mogeneous problems, problems of velocity level 1 and problems of task duration level
1. For the other specifications, the average approximation ratio of the conventional GA
ranges up to 1.754 without a clear trend w.r. t. the different heterogeneity levels.

For the modification of task deletion, there is no clear trend of the influence of the
different heterogeneity levels on the approximation ratio of the TDH reoptimization
heuristic. The average approximation ratios range between about 1.003 and 1.008 for
all heterogeneity specifications. For the majority of problem specifications, the ap-
proximation ratios of the GA-based reoptimization framework are identical to the ap-
proximation ratios of the TDH reoptimization heuristic. The conventional GA yields
approximation ratios within a similar range as the ones for the task insertion modifi-
cation. The detailed results are given in Table C.4 in Appendix C.2.

The approximation ratios generated by the DIH and the INI reoptimization heuristics
for the modifications of task position variation and task duration variation are depicted
in Table 5.11. The table also indicates the number of instances for which the solution
generated by the DIH reoptimization heuristic differs from the one generated by the
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Table 5.10: Evaluation scenario 2: Results on the approximation ratio « (mean and standard deviation (SD))
for the modification of task insertion.

-g CMI GA-based Conventional
S Level heuristic reoptimization GA
c v d mean SD mean SD mean SD
0 0 O 1.0 0.0 1.0 0.0 1.0 0.0
1 0 0 1.0058 0.0122 | 1.0058 0.0122 | 1.3223  0.0884
2 0 0 1.0098  0.0306 | 1.0098 0.0306 | 1.2784  0.1028
3 00 1.0049  0.0214 | 1.0019 0.0058 | 1.0882  0.0812
0 1 0 1.0 0.0 1.0 0.0 1.0 0.0
- 0 20 1.0012  0.0036 | 1.0012 0.0036 | 1.7153  0.2071
2 210 1.0081 0.0221 | 1.0081 0.0221 | 1.28 0.1031
§g 2 2 0 1.0111  0.0346 | 1.0102 0.0312 | 1.3551  0.1509
S0 0 1 1.0 0.0 1.0 0.0 1.0 0.0
é 0 0 2 1.0051 0.0163 | 1.0051 0.0163 | 1.2924  0.0818
E 20 1 1.0094 0.0279 | 1.0094 0.0279 | 1.3155 0.0943
2 0 2 1.0084 0.0242 | 1.0084 0.0242 | 1.2757 0.0884
0 2 1 1.0012 0.0035 | 1.0012 0.0035 | 1.7538 0.164
0 2 2 1.0009 0.0027 | 1.0009 0.0027 | 1.5848 0.17
2 2 1 1.0097 0.0294 | 1.0097 0.0294 | 1.3511  0.1499
2 2 2 1.0083  0.0263 | 1.0083 0.0263 | 1.3686  0.1403

INI heuristic. Furthermore, considering only the problem instances for which the solu-
tions differ, the average improvement of the approximation ratio of the DIH solutions
in comparison to the INI solutions is depicted.

For the modification of task position variation, the average approximation ratios gener-
ated by the DIH heuristic range between 1.0032 and 1.0105 for the different heterogene-
ity specifications with standard deviations between 0.0086 and 0.0226. The average ap-
proximation ratios of the solutions generated by the INI heuristic range between 1.0229
and 1.0632 with standard deviations between 0.0440 and 0.0751. Clear influences of the
different capability, velocity and duration levels cannot be identified for any of the two
heuristics. Within all problem specifications, the DIH and INI solutions differ for at
least 17 and up to 33 out of the 50 problem instances. The average improvement of
the DIH solutions differing from the INI solutions range between 4.93% and 10.44%
for the different problem specifications. As given in Table C.5 in Appendix C.2, for
the GA-based reoptimization framework initialized with the DIH heuristic, hardly any
improvement of the DIH approximation ratios is obtained. For the GA-based reopti-
mization framework initialized with the INI heuristic, small improvements compared
to the INI solution are generated for some heterogeneity levels.

In comparison to this, for the modification of task duration variation, the average ap-
proximation ratios as well as their standard deviations of the solutions generated by
the INI and the DIH heuristic are identical for 8 out of the 16 of heterogeneity specifi-
cations. For only up to 3 out of 50 problem instances within the specifications, the DIH
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Table 5.11: Evaluation scenario 2: Results on the approximation ratio « (mean and standard deviation (SD))
for the modifications of task position variation and task duration variation for the DIH and the
INI reoptimization heuristics. Additionally, the number of instances for which the solution gen-
erated by the DIH reoptimization heuristic differs from the one generated by the INI heuristic is
given. Furthermore, the last column (impr.) gives the average improvement of the approximation
ratio of the DIH over the INI solutions (only considering the problem instances, for which the

solutions differ).

'g DIH INI DIH differs
S Level heuristic heuristic from INI
v d | mean SD mean « instances  impr.
0 0 0 | 1.0067 0.0146 | 1.0571 0.0697 | 30 of 50 8.40%
1 0 0 | 1.009 0.0188 | 1.0632 0.0751 | 28 of 50 9.56%
2 0 0 | 1.0105 0.0226 | 1.0471 0.0681 | 19 of 50 9.64%
3 0 0 | 1.0058 0.0172 | 1.0229 0.0526 | 15 of 50 5.70%
§ 0 1 0 |1.0062 0.0119 | 1.0513 0.0555 | 32 of 50 6.31%
:'g 0 2 0 | 1.005 0.0121 | 1.0486 0.0554 | 33 of 50 5.97%
§ 2 1 0 | 1.0064 0.0151 | 1.0473 0.0699 | 19 of 50  10.44%
g 2 2 0 | 1.004 0.0085 | 1.0359 0.0585 | 17 of 50 9.07%
£ 0 0 1 |1.0067 0.0144 | 1.0571 0.0698 | 30 of 50 7.33%
é 0 0 2 | 1.0055 0.0117 | 1.0458 0.0568 | 31 of 50 5.80%
R 2 0 1 |1.0102 0.023 1.0475 0.0707 | 20 of 50 8.00%
£ 2 0 2 | 1.0087 0.0221 | 1.0389 0.0674 | 20 of 50 6.49%
0 2 1 |1.005 0.0121 | 1.0486 0.0548 | 33 of 50 5.93%
0 2 2 |1.0042 0.0101 | 1.0397 0.044 33 of 50 4.93%
2 2 1 | 1.0047 0.0106 | 1.0371 0.0582 | 17 of 50 8.36%
2 2 2 ]1.0032 0.0086 | 1.0308 0.0503 | 18 of 50 6.84%
0 0 0 |10 0.0 1.0 0.0 1 of 50 0.00%
1 0 0 | 1.0012 0.0059 | 1.0012 0.0059 0 of 50 0.00%
2 0 0 | 1.0007 0.0047 | 1.0007 0.005 1 of 50 0.21%
3 0 0 | 1.0006 0.0039 | 1.0013 0.0062 5 of 50 0.70%
.5 01 0|10 0.0 1.0 0.0 0 of 50 0.00%
T 0 2 0110 0.0 1.0 0.0 0 of 50 0.00%
§ 2 1 0|10 0.0 1.0001 0.0007 2 of 50 0.26%
g 2 2 0 | 1.0001 0.0006 | 1.0003 0.0018 2 of 50 0.60%
£ 0 0 1|10 0.0 1.0 0.0 1 of 50 0.00%
_§ 0 0 2|10 0.0 1.0 0.0 1 of 50 0.00%
v 2 0 1 | 1.0005 0.0033 | 1.0005 0.0036 1 of 50 0.22%
5 2 0 2 | 1.0003 0.0019 | 1.0003 0.0022 1 of 50 0.21%
0 2 110 0.0 1.0 0.0 0 of 50 0.00%
0 2 2110 0.0 1.0 0.0 0 of 50 0.00%
2 2 1 | 1.0003 0.0018 | 1.0005 0.0025 2 of 50 0.62%
2 2 21|10 0.0 1.0005 0.0026 3 0of 50 0.88%
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and INI solutions differ. The corresponding improvement in approximation ratio of the
differing DIH solutions is on average at most 0.88% compared to the corresponding
INI solutions. For both heuristics, the average approximation ratios are close to opti-
mal ranging between 1.0 and 1.0012, and also for this modification no trends w.r. t. the
heterogeneity levels can be identified for the approximation ratios. The correspond-
ing GA-based reoptimization frameworks yield the same approximation ratios as the
heuristics they are initialized with (see Table C.6 in Appendix C.2).

Also for the modifications of agent capability variation and agent velocity variation,
no clear influences of the different capability, velocity and duration levels can be iden-
tified. The average approximation ratios of the INI heuristic range between 1.0 and
1.0435 for the agent capability variation and between 1.0290 and 1.1318 for the agent
velocity variation. Only slight improvements of these values are obtained for individ-
ual specifications by the application of the GA-based reoptimization framework. The
detailed results are given in Table C.7 in Appendix C.2.

Calculation Time

The calculation times required by the CMI and the TDH reoptimization heuristics to
solve the task insertion and task deletion problem instances of different heterogeneity
levels are within the same magnitude as their calculation time required to solve homo-
geneous problem instances of the same size. The detailed results are given in Table C.8
in Appendix C.2. For the CMI, the average calculation time ranges between 1.8 ms and
3.2ms, for the TDH it ranges between 1.3 ms and 4.4 ms. There is no clear trend on how
which kind of heterogeneity influences these calculation times. Furthermore, also the
average calculation times required by the GA-based reoptimization frameworks and
the conventional, randomly initialized GA are relatively stable around about 19.5s to
20.3s, i. e. they differ from the calculation times required by the reoptimization heuris-
tics approximately by a factor of 10%.

The only solution approach for which the calculation times for solving the task inser-
tion and task deletion problem instances are clearly effected by the heterogeneity level
is the exact BnP approach. The effects are the same as for the modifications of task
position variation and task duration variation, for which the results on the average
calculation time and its standard deviation for the DIH heuristic, the INI heuristic and
the BnP approach are given in Table 5.12.

For the exact BnP approach, the average computation time needed to solve homoge-
neous problem instances for the modification of task position variation is about 7.96s.
For capability level 1, where the capabilities of the agents to perform the tasks vary,
but are all positive (see Table 5.2), the average computation time increases slightly to
about 8.65s. To solve problem instances of capability level 2, in which two of the three
agents have no capability to perform one task type, the average calculation time of the
BnP approach decreases to about 3.15s. The smallest average calculation time of about
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Table 5.12: Evaluation scenario 2: Results on the calculation time in seconds (mean and standard devia-
tion (SD)) for the modifications of task position variation and task duration variation for the DIH
and the INI heuristics.

]

o]
=

(e}

Level
v

DIH
heuristic
mean SD

INI
heuristic
mean SD

Branch-and-
price

mean

SD

Task position variation

0.0048  0.0068
0.0036  0.0061
0.0031  0.0062
0.0041  0.0068
0.0059  0.0124
0.0038  0.0052
0.004  0.0065
0.0034  0.0058
0.0049  0.007

0.0046  0.0069
0.006 0.0109
0.0047  0.007

0.0039  0.0062
0.0043  0.0067
0.0042  0.0067
0.0056  0.0073

0.0034 0.0063
0.0018  0.0047
0.0032  0.0061
0.0024 0.0055
0.0025 0.0057
0.0032  0.0106
0.0024 0.0053
0.0028  0.0055
0.0024 0.0053

0.002 0.005
0.002 0.0051
0.002 0.0051

0.0032  0.0058
0.0011  0.0036
0.0022  0.0054
0.0016  0.0047

7.9584
8.6492
3.1495
0.7105
7.2826
5.1822
3.376

3.1101
8.1114
9.7915
3.4315
4.3473
5.4368
6.6701
3.2069
4.1095

2.3851
2.6216
1.0826
0.8992
2.0259
1.6548
1.1757
1.1323
2.4378
3.3737
1.2444
1.4569
1.7139
2.2263
1.5318
1.209

Task duration variation

NN OONNOONNOOWNRFRO|INNOONNOONNODOWNRF=LO

N NDNMNMNNODODOONRP NP, OOODO|INNDNMNMNMNOODOONRFPL,NFE,OOOO

NP NP NP NP, OO0 NFPFNFEFNFEFNR,ODODODODOOOO|

0.0059  0.0075
0.0042  0.0066
0.0037  0.0065
0.0046  0.007

0.0052  0.0071
0.0034  0.0044
0.0053  0.0073
0.0046  0.0067
0.0041  0.0063
0.0041  0.0067
0.0056  0.0072
0.0049  0.0069
0.0051  0.0103
0.0053  0.0071
0.0047  0.0069
0.0058 0.0122

0.0014 0.0038
0.0028  0.0056
0.0031  0.006

0.0019  0.0046
0.0018  0.0048

0.002 0.0039
0.0015 0.0044
0.002 0.0048

0.0016  0.0047
0.0015 0.0045
0.0017  0.0046
0.0018  0.0045
0.0026  0.0054
0.0013  0.0042
0.0024 0.0055
0.0016  0.0047

7.5067
8.5191
3.6616
0.7378
7.143

5.0668
3.5769
3.3709
7.5589
9.0524
3.7682
4.5276
5.1572
6.5357
3.2877
4.0817

2.2915
2.3673
1.3735
0.9946
2.2115
1.4212
1.6092
1.4947
2.0451
3.0947
1.3325
1.5566
1.4974
2.1128
1.3111
1.6441
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0.71s, i.e. about 10% of the average calculation time for homogeneous problem in-
stances, is needed to solve problem instances of capability level 3. In capability level 3
two out of the three agents are only capable to perform one task type (see Table 5.2).
An increase in velocity levels also leads to a slight decrease in the average calculation
time required by the BnP approach, which reduces to about 5.18 s for velocity level 2.
Contrary to this, an increase in duration level slightly increases the average calculation
time, which is equal to about 9.79s for basic task duration level 2. However, also for
the combinations of the different heterogeneity levels, the capability level has the high-
est impact on the required calculation time. The same dependencies can be observed
for the BnP approach applied to the modified problem instances corresponding to the
modifications of task duration variation, task insertion and task deletion (see Table C.8
in Appendix C.2).

For the modifications of task position variation and task duration variation both re-
optimization heuristics, i.e. INI and DIH, require average calculation times that are
relatively stable for all heterogeneity levels. As depicted in Table 5.12, for the INI
heuristic, they vary between 1.1 ms and 3.4 ms for both modifications with standard
deviations between 3.6 ms and 10.6 ms. The average calculation times required by the
DIH are approximately twice as high, varying between 3.1ms and 6.0ms for both
modifications with similar standard deviations. For the modifications of agent capa-
bility variation and agent velocity variation, the average calculation times for the INI
heuristic are approximately within the same range (see Table C.11 in Appendix C.2).
The calculation times required by the GA-based reoptimization framework and the
conventional GA are relatively stable around 20's, independently of the modification
under consideration (see Tables C.8 to C.11).

Levenshtein Distance

For the modifications of task insertion and task deletion, the Levenshtein distances of
the solutions generated by the CMI and the TDH, respectively, are, by definition of the
reoptimization heuristics, equal to one. The application of the GA-based reoptimiza-
tion framework slightly increases the average Levenshtein distance to a maximum of
1.18 for two out of 16 heterogeneity specifications for the modification of task insertion
and for one out of 16 heterogeneity specifications for the modification of task dele-
tion. For both modifications, the exact solutions generated by the BnP approach have
an average Levenshtein distance varying between 2.26 and 5.22 with no clear trend
regarding the corresponding heterogeneity specification. For all heterogeneity specifi-
cations considered, the results generated by the conventional, randomly initialized GA
yield the highest Levenshtein distances for both modifications, which range up to an
average value of 11.14. The detailed results of the Levenshtein distances for the modi-
fications of task insertion and task deletion are given in Table C.12 in Appendix C.2.

The results on the Levenshtein distances of the solutions generated for the problem
instances corresponding to the modifications of task position variation and task dura-
tion variation are depicted for the DIH, the INI and the BnP approach in Table 5.13.
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By definition of the INI heuristic (see Algorithm 3), the Levenshtein distances of the
corresponding solutions are equal to 0. For the modification of task position variation,
the DIH heuristic yields solutions with average Levenshtein distances ranging between
0.6 and 1.32 with a standard deviation of about 0.92 to 0.99. An increase in the agent’s
capability levels decreases the resulting Levenshtein distances. The average Leven-
shtein distance of the homogeneous problem specification (i. e. capability, velocity and
duration level 0) equals 1.2 which reduces to 0.76 for problems of capability level 2 and
to 0.6 for problems of capability level 3. Also, the comparison of different combina-
tions of velocity and duration levels with either capability level 0 or capability level 2
reveals almost up to factor 2 smaller average Levenshtein distances for combinations
with capability level 2. No clear influence of different velocity and duration levels can
be identified for the solutions generated by the DIH for the modification of task posi-
tion variation. When solving problems of the modification task duration variation, the
average Levenshtein distances generated by the DIH vary between 0.0 and 0.12 with
standard deviations in a range of 0.0 to about 0.48. For problems corresponding to this
modification, neither an influence of the capability level nor of the velocity or dura-
tion level can be identified. The solutions generated by the exact BnP approach have
an average Levenshtein distance ranging between 2.32 and 5.62 for the different het-
erogeneity levels when applied to task position variation problems. In comparison to
this, the average Levenshtein distances of the BnP solutions to task duration variation
problems are much smaller and range between 0.16 and 1.56 for the different hetero-
geneity levels. For both modifications, no clear influence of the capability, velocity and
duration levels on the Levenshtein distances of the BnP solutions can be identified.

For both modifications of task position variation and task duration variation, the Lev-
enshtein distances of the solutions generated by the GA-based reoptimization frame-
works initialized with DIH or INI, respectively, are equal to the Levenshtein distances
of the DIH or INI solutions for the majority of heterogeneity levels (see Tables C.13 and
C.14 in Appendix C.2). This also holds for the GA-based reoptimization framework
initialized with INI when applied to problems corresponding to the modifications of
agent capability variation and agent velocity variation. The overview of the average
Levenshtein distances and their standard deviations for the modifications of agent ca-
pability variation and agent velocity variation are given in Table C.15 in Appendix C.2.
For the modification of agent capability variation, the Levenshtein distances of the ex-
act solutions generated by the BnP approach vary between 0.84 and 3.98, the range of
the average Levenshtein distances of the BnP solutions to problems of the modification
agent velocity variation is given by 1.72 to 7.76. No clear influence of the different het-
erogeneity levels on the corresponding Levenshtein distances of the BnP solutions can
be identified for the agent capability variation problems. For agent velocity variation
problems, higher capability levels reduce the corresponding Levenshtein distances for
BnP solutions from an average of 7.56 for homogeneous problems to 2.06 for capability
level 3. Also in combination with other velocity and duration levels, capability level 2
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Table 5.13: Evaluation scenario 2: Results on the Levenshtein distance (mean and standard deviation (SD))
for the modifications of task position variation and task duration variation for the DIH and the
INT heuristics.

'8' DIH INI Branch-and-
S Level heuristic heuristic price
¢ v d | mean SD mean SD mean SD
0 0 0|12 0.9798 | 0.0 0.0 4.3 4.6615
1 0 0 |112 0.9928 | 0.0 0.0 5.62 4.0541
2 0 0 |076 0.9708 | 0.0 0.0 4.22 3.8538
3 0 006 0.9165 | 0.0 0.0 2.32 2.2221
§ 01 0 |128 0.96 0.0 0.0 4.68 4.5758
:(‘3 0 2 0 |132 0.9474 | 0.0 0.0 3.5 3.189
§ 2 1 0 |076 0.9708 | 0.0 0.0 2.58 3.0925
g 2 2 0 |0.68 0.9474 | 0.0 0.0 4.46 3.8585
£ 0 0 1 |12 0.9798 | 0.0 0.0 4.92 4.4937
é 0 0 2 |124 0.9708 | 0.0 0.0 4.54 4.5879
< 2 0 1108 0.9798 | 0.0 0.0 4.06 3.8803
< 2 0 2 (08 0.9798 | 0.0 0.0 3.26 3.4975
0 2 1 132 0.9474 | 0.0 0.0 3.44 3.0735
0 2 2 /132 0.9474 | 0.0 0.0 3.54 3.1062
2 2 1 /068 0.9474 | 0.0 0.0 3.78 3.684
2 2 21072 0.96 0.0 0.0 3.06 3.3431
0 0 0 |0.04 0.28 0.0 0.0 0.28 1.3862
1 0 0|00 0.0 0.0 0.0 1.26 3.7138
2 0 0 |0.04 0.28 0.0 0.0 0.68 2.4855
3 0 0102 0.6 0.0 0.0 0.56 1.7339
E 0 1 0100 0.0 0.0 0.0 0.16 1.12
s 0 2 0|00 0.0 0.0 0.0 0.32 1.5677
§ 2 1 0 |0.08 0.3919 | 0.0 0.0 0.16 0.88
£ 2 2 0 |0.08 0.3919 | 0.0 0.0 0.78 2.0522
£ 0 0 1 ]004 0.28 0.0 0.0 0.16 0.88
_§ 0 0 2 |004 0.28 0.0 0.0 0.24 1.0307
v 2 0 1 |0.04 0.28 0.0 0.0 1.56 3.2812
S 2 0 2|004 028 0.0 0.0 128  3.0136
0 2 1100 0.0 0.0 0.0 0.76 2.294
0 2 2100 0.0 0.0 0.0 0.48 1.8999
2 2 1 |0.08 0.3919 | 0.0 0.0 1.2 2.735
2 2 2 /012 0.475 0.0 0.0 0.92 2.5047
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yields average Levenshtein distances for the BnP solutions that are up to almost factor
3 lower compared to homogeneous capabilities of level 0.3

The Levenshtein distances of the conventional, randomly initialized GA range approx-
imately between 5.4 and 11.1, independently of the problem modification and the het-
erogeneity level (see Tables C.12 to C.15 in Appendix C.2).

A discussion of the presented results on the approximation ratios, calculation times
and Levenshtein distances resulting for problems of different heterogeneity levels is
given in the following section.

5.3.2 Discussion

Within the second evaluation scenario, the influence of different causes of heterogene-
ity on the solutions generated by the different reoptimization heuristics, the corre-
sponding GA-based reoptimization frameworks, the conventional, randomly initial-
ized GA and by the BnP approach are analyzed.

Overall, no distinct influence of the different agents’ capability and velocity levels and
the different tasks’ basic duration levels considered on the approximation ratios result-
ing from any of the investigated solution approaches for the considered modifications
can be identified. Only the capability level has a slight influence on the approxima-
tion ratios for the modifications of task insertion. Capability level 2, in which agents
differ in their capabilities in performing different task types and two agents are only
capable of performing two out of three task types (see Table 5.2), slightly increases the
approximation ratios compared to problem instances with homogeneous capabilities.
However, the approximation ratios of all reoptimization approaches are as close to the
optimum as desired (¢ < 1.2), and clearly outperform the optimization approach using
the conventional, randomly initialized GA.

Neither can a general trend of the heterogeneity levels influencing the resulting Lev-
enshtein distances of the solution approaches be identified. Only for the modification
of task position variation, higher capability levels with more unambiguous agent-task
allocations, slightly decrease the average Levenshtein distances of the DIH reoptimiza-
tion heuristic. This is probably caused by the reduced number of alternative routes in
which the task with the altered position can be inserted due to the increased chance of
incapable alternative agents.

Furthermore, also the calculation times required by the CMI, TDH, DIH, and INI reop-
timization heuristics, as well as by the GA-based approaches are not clearly affected by

%7 An average Levenshtein distance of 5.10 is given for problems of capability level 0, velocity level 2 and
duration level 2 compared to an average Levenshtein distance of 1.72 for problems of capability level 2,
velocity level 2 and duration level 2.
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the different heterogeneity levels. The additional application of the GA-based reopti-
mization framework compared to only applying the respective reoptimization heuris-
tic, only slightly improves the resulting approximation ratios of some problem in-
stances. Thus, it is questionable whether spending the by orders of magnitude higher
additional calculation time is worth the comparatively small potential improvement
in solution quality. Only the calculation time required by the exact BnP approach is
affected by the heterogeneity levels. It reduces considerably with an increase in un-
ambiguous agent-task allocations which result from only some or even only one agent
having capabilities greater zero to perform certain tasks. For capability level 3, in
which two of the three agents are only capable to perform one of the three task types,
the calculation time reduces to about 10% of the calculation time required for the ho-
mogeneous problem instances. However, the calculation times required by the BnP
approach are still by several orders of magnitude higher compared to the respective
reoptimization heuristics. Moreover, if the capabilities of the agents to perform the
tasks differ, but are all greater than zero, i. e. no agent-task-allocation can be excluded,
the calculation time required by the BnP increases slightly compared to the problem
specifications with homogeneous capabilities.

The comparison of the different problem modifications is especially interesting for the
modifications of task position variation and task duration variation. For both mod-
ifications, both the DIH and the INI reoptimization heuristic are applicable. While
the INI heuristic keeps the initial routing, the DIH tries to improve the initial rout-
ing by deleting and reinserting the task of which the position or duration has been
modified (see Algorithm 5). This additional effort results in calculation times that are
approximately twice as high for the DIH compared to the INI heuristic. However,
the DIH still generates results within milliseconds and can thus be regarded as hav-
ing a good responsiveness when applied in interactive MRTA optimization systems
[DS15]. The application of the DIH results in much higher improvements of the result-
ing approximation ratios compared to the INI heuristic for the problem instances of
the modification task position variation compared to the modification of task duration
variation. On average over all problem instances of all heterogeneity levels considered,
the DIH yields an approximation ratio that improves the approximation ratio of the
INI heuristic by 3.6847%. For the task duration variation problem instances, this aver-
age improvement is only 0.0106% and thus almost 350 times smaller than for the task
position variation problem instances. Obviously, the improvement in solution quality
by the DIH comes at the cost of slightly higher Levenshtein distances, i.e. reduced
solution stability. However, by the definition of the DIH, in which at most one task is
deleted in one position of a route and inserted in another position of any route, the
resulting Levenshtein distance can only equal zero or two, and is thus always within
the acceptable range. Hence, no arbitrarily low solution stability can result by the ap-
plication of the DIH compared to the INI heuristic that by definition always yields the
optimum Levenshtein distance of zero, since the initial routing is not altered. Conse-
quently, the slight decrease in responsiveness of the DIH compared to the INI heuristic,
yields much higher improvements in solution quality for the problem instances con-
sidered for the modification of task position variation compared to the ones of the
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modification task duration variation. These improvements slightly reduce the solution
stability, which is however bounded above by a Levenshtein distance of two.

The comparison of the DIH and the INI heuristic for task position and task duration
variation problems implies that the variation of a task position as conducted within
this evaluation has a higher influence on the optimal routing compared to the con-
ducted basic task duration variation. This assumption is supported by the Levenshtein
distances of the exact solutions generated by the BnP approach, which are on aver-
age 5.77 times higher for the problem instances corresponding to the modification of
task position variation compared to those corresponding to the modification of task
duration variation. Thus, the task position variation has a higher impact on the op-
timal solution than the task duration variation. Based on this measure, the influence
of the different modifications considered within this evaluation scenario on the vari-
ation of the optimal modified solution compared to the initial solution is as follows:
The modification of duration variation varies the optimal solution the least with an
overall average Levenshtein distance of 0.675 of the BnP solutions, followed by the
modification of agent capability variation that yields an average Levenshtein distance
of 2.035 of all BnP solutions. The modifications of task insertion, task deletion and task
position variation show similar influences with average BnP Levenshtein distances of
3.424, 3.769 and 3.893. The highest average Levenshtein distance of all BnP solution of
4.763 results for the modification of agent velocity variation, which thus influences the
optimal solution the most.

In summary, the proposed reoptimization heuristics outperform the other evaluated
solution approaches w.r.t. the combination of solution quality, responsiveness and so-
lution stability independent of the considered heterogeneity level. Furthermore, in this
evaluation scenario, the DIH is superior to the INI reoptimization heuristic, especially
for the modification of task position variation.

However, so far only temporally unconstrained problem instances have been analyzed.
Thus, in the following section, the influence of the presence of precedence and syn-
chronization constraints within the problem instances are evaluated. In addition to
the modifications considered within the heterogeneity investigation, also the modifi-
cations of precedence and synchronization constraint insertion as well as precedence
and synchronization constraint deletion are assessed.

5.4 Evaluation of Problem Instances with Temporal
Constraints

In this section, the results of the third evaluation scenario are presented. As introduced
in Section 5.1.4, the modified problem instances contain three agents and eight tasks.
They are homogeneous w.r.t. agent capabilities and basic task durations and vary
in the number of precedence and synchronization constraints considered within the
initial problem instances (see Section 5.1.4). All modifications analyzed in Chapter 3
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are considered within this evaluation scenario (i.e. task insertion, task deletion, task
position variation, task duration variation, agent capability variation, agent velocity
variation, precedence constraint insertion, synchronization constraint insertion, prece-
dence constraint deletion and synchronization constraint deletion). The results on the
respective approximation ratios, calculation times and Levenshtein distances are pre-
sented in the upcoming section, followed by a discussion thereof in Section 5.4.2.

5.4.1 Evaluation Results

The results w.r.t. the approximation ratios of the solutions generated by the differ-
ent reoptimization and optimization approaches of the evaluation of the influence of
precedence and synchronization constraints contained within the initial problem in-
stance are presented in the following. Subsequently, the required calculation times
and the corresponding Levenshtein distances are given.

Approximation Ratio

The mean values and corresponding standard deviations of the approximation ratios
generated for the problem instances corresponding to the modifications of task inser-
tion and task deletion are given in Table 5.14. For the modification of task insertion,
the average approximation ratios of the solutions generated by the CMI heuristic vary
between 1.0 and 1.0155, for the modification of task deletion and the corresponding
TDH, they range from 1.0083 to 1.0351. For both modifications and corresponding
reoptimization heuristics, the approximation ratios increase most with the number of
synchronization constraints contained within the problem instance. The approxima-
tion ratios of the problem instances with one synchronization constraint are already
higher than the ones of the problem instances considering two precedence constraints.
These values increase further for both modifications when two synchronization con-
straints are considered. For both modifications, the additional application of the GA-
based reoptimization framework yields either none or only small improvements of at
most 0.04% of the resulting average approximation ratios. The approximation ratios
generated by the conventional, randomly initialized GA are by orders of magnitude
higher and range between 1.23 and 1.36 for both modifications for problem instances
containing temporal constraints.

In contrast to this, no clear influence of the number of precedence and synchronization
constraints contained within the problem instances can be observed for the application
of the INI heuristic to modified problem instances corresponding to the modifications
of agent capability variation and agent velocity variation. The corresponding results
are depicted in Table C.16 in Appendix C.3. While the additional application of the GA-
based reoptimization framework on average does not yield improved approximation
ratios for the majority of problem specifications for the modification of agent capability
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Table 5.14: Evaluation scenario 3: Results on the approximation ratio # (mean and standard deviation (SD))
for the modifications of task insertion and task deletion.

. Constraints | Reoptimization GA-based Conventional
B inZ heuristic reoptimization GA
= sync. prec. | mean SD mean SD mean SD
s 0 0 1.0 0.0 1.0 0.0 1.0 0.0
g 0 1 1.0043  0.0187 | 1.0043  0.0187 | 1.2763  0.1165
g 0 2 1.0043  0.0104 | 1.0043 0.0104 | 1.3378 0.1289
8= 1 0 1.0126  0.0208 | 1.0125 0.0206 | 1.229 0.1009
f‘t@ 2 0 1.0155 0.0213 | 1.0155 0.0213 | 1.2394 0.1121
= 1 1 1.0153  0.0285 | 1.0153  0.0285 | 1.3007  0.132
c 0 0 1.0083  0.0147 | 1.0083  0.0147 | 1.3576  0.1097
g 0 1 1.0076  0.0133 | 1.0076  0.0133 | 1.345 0.1045
= 0 2 1.0107  0.0228 | 1.0107  0.0228 | 1.3422  0.1412
E 1 0 1.0292  0.0444 | 1.0292 0.0444 | 1.2554 0.1124
2 2 0 1.0351  0.06 1.0347 0.0578 | 1.2543  0.1102
a 1 1 1.0295 0.0417 | 1.0295 0.0417 | 1.2924 0.129

variation, an average improvement ranging from 0.3% to 1.8% for the different problem
specifications results for the modification of agent velocity variation.

For the modifications of task position variation and task duration variation, the results
on the approximation ratios generated by the application of the DIH and the INI re-
optimization heuristic are depicted in Table 5.15. Additionally, the number of problem
instances is given, for which the solutions generated by the DIH and INI heuristics
differ. For these instances, also the average improvement of the DIH approximation
ratio over the one of the INI heuristic is indicated.

As observed within evaluation scenario 2 considering different heterogeneity levels
(see Section 5.3.1), the approximation ratios of the solutions generated by INI for prob-
lem instances corresponding to the modification of task duration variation are smaller
compared to the approximation ratios of the INI solutions for problem instances cor-
responding to the modification of task position variation. For the problem instances of
task duration variation they lie within a range of mean values between 1.0 to 1.0008.
For the problem instances of task position variation the average approximation ratios
range from 1.0536 to 1.0606. While for the INI results no clear influence of the number
and type of temporal constraints contained in the problem instances on the approxi-
mation ratios can be observed, the approximation ratios generated by the DIH reop-
timization heuristic slightly increase for both modifications with the number of syn-
chronization constraints considered. The average approximation ratio for temporally
unconstrained problem instances equals 1.0067 for the modification of task position
variation and 1.0 for the modification of task duration variation. These values increase
up to 1.0639 and 1.0260 for problem instances with two synchronization constraints.
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Table 5.15: Evaluation scenario 3: Results on the approximation ratio « (mean and standard deviation (SD))
for the modifications of task position variation and task duration variation for the DIH and the
INI reoptimization heuristic. Additionally, the number of instances for which the solution gen-
erated by the DIH reoptimization heuristic differs from the one generated by the INI heuristic is
given. Furthermore, the last column (impr.) gives the average improvement of the approximation
ratio of the DIH over the INI solutions (only considering the problem instances, for which the
solutions differ).

-coi Constraints DIH INI DIH differs
S inT heuristic heuristic from INI
sync. prec. | mean « SD mean « SD instances  impr.

c 0 0 1.0067  0.0146 | 1.0571  0.0697 | 30 of 50 7.34%
= 0 1 1.0302  0.1076 | 1.0566  0.0696 | 28 of 50 3.93%
'z -% 0 2 1.0227  0.0765 | 1.0536  0.0727 | 25 of 50 5.23%
,\% s 1 0 1.0421  0.0729 | 1.0577  0.073 31 of 50 2.16%
> 2 0 1.0639  0.1043 | 1.0606  0.0604 | 330f50 —0.55%
= 1 1 1.0393 0.0492 | 1.0591 0.0821 | 31 of 50 2.24%
o 0 0 1.0 0.0 1.0 0.0 1 of 50 0.00%
S < 0 1 1.0 0.0 1.0 0.0 1 of 50 0.00%
£E2 0 2 |10 0.0 1.0 0.0 20f50  0.00%
E s 1 0 1.0151  0.0303 | 1.0001  0.0004 | 140f50 —5.38%
o > 2 0 1.026 0.0426 | 1.0008  0.0029 | 200f50 —6.31%
= 1 1 1.0187  0.0477 | 1.0005  0.0022 | 110of50 —8.25%

For the modification of task duration variation, the DIH and INI solutions differ for at
most 20 out of the 50 problem instances. For these instances containing synchroniza-
tion constraints, the approximation ratio of the DIH solutions is on average worse than
the approximation ratio of the INI solutions. They have an on average 5.38% to 8.25%
higher approximation ratio than the corresponding INI solutions. For the problem in-
stances containing no synchronization constraint however, all solutions of the DIH and
INI heuristic have exactly the same approximation ratios and the solutions only differ
for one or two out of the 50 problem instances.

For the modification of task position variation, within all problem specifications, the
DIH and INI solutions differ for at least half of the 50 problem instances. The DIH
improves the approximation ratios of these instances on average by 7.34% within the
temporally unconstrained problem specification. Within the problem specifications
with one and two precedence constraints, the average improvements amount to 3.93%
and 5.23%, respectively. For the problem specifications containing synchronization
constraints, the improvement is smaller ranging from a degradation of —0.55% to an
improvement of 2.24%.

For both modifications, the conventional GA yields approximation ratios within a sim-
ilar range as for the modifications of task insertion and task deletion. With both GA-
based reoptimization frameworks, only small improvements for some problem speci-
fications can be achieved. These results are depicted in Table C.17 in Appendix C.3.
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Within this evaluation scenario, also the modifications of precedence and synchroniza-
tion constraint insertion and deletion are investigated. The results on the approxi-
mation ratios generated by the eDIH for the insertion of a constraint and by the INI
reoptimization heuristic for the deletion of a constraint as well as the results of the
corresponding GA-based reoptimization frameworks are given in Table 5.16.

For the modification of precedence constraint insertion, the average approximation ra-
tios resulting from the eDIH reoptimization heuristic range between 1.0313 and 1.0425
and no clear influence of the number or type of constraints considered within the initial
problem instances can be observed. Also, the additional application of the GA-based
reoptimization framework does yield at most small improvements of 0.2% of the aver-
age approximation ratios. The average approximation ratios resulting from the eDIH
reoptimization heuristic for the problem instances corresponding to the modification
of synchronization constraint insertion range from 1.1 to 1.1837 and are thus higher
than the ones generated for the modification of precedence constraint insertion for all
problem specifications. However, for all problem specifications, an improvement of the
average approximation ratios results from the additional application of the GA-based
reoptimization framework. The improvement ranges from 0.7% for the initial prob-
lem instances with one precedence and one synchronization constraint to 4.7% for the
initial problem instances without temporal constraints.

While the INI reoptimization heuristic yields small average approximation ratios be-
tween 1.0042 and 1.0196 for the modification of precedence constraint deletion which
are not improved by the application of the GA-based reoptimization framework, higher
average approximation ratios between 1.1033 and 1.2286 result for the modification of
synchronization constraint deletion. The resulting approximation ratios are the highest
for initial problem instances with two synchronization constraints. For these problem
instances, an average improvement of the approximation ratios of 1.9% results from
the additional application of the GA-based reoptimization framework.

Calculation Time

The calculation times required by the different solution approaches to solve the prob-
lem instances corresponding to the modifications of task insertion and task deletion
are given in Table 5.17. Independently of the numbers and types of constraints con-
sidered within the problem instances, the average calculation times required by the
CMI and TDH reoptimization heuristics are all below 4 ms and within a similar range
as for the problem instances of different heterogeneity levels investigated in the pre-
vious evaluation scenario (see Section 5.3.1). However, the average calculation time
required by both GA approaches to solve problem instances with precedence or syn-
chronization constraints reduces to approximately half of the time required for prob-
lem instances without any temporal constraints. It is the lowest for problem instances
with two synchronization constraints, for which on average about 8.8s to 9.4 s are re-
quired. The opposite effect occurs for the problem instances being solved using the
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Table 5.16: Evaluation scenario 3: Results on the approximation ratio « (mean and standard deviation (SD))
for the modifications of precedence constraint insertion, synchronization constraint insertion,
precedence constraint deletion and synchronization constraint deletion.

"cos' Constraints | Reoptimization GA-based
p inZ heuristic reoptimization
sync. prec. | mean SD mean SD

o
o

1.0412  0.0459 | 1.0412  0.0459
1.0313  0.0781 | 1.0302  0.0737
1.0316  0.0495 | 1.0316  0.0495
1.0358  0.0732 | 1.0354 0.0717
1.0425 0.0913 | 1.0404 0.0867
1.0252  0.0464 | 1.0252  0.0464

Precedence
constr. insertion

§ & 11837 0.1348 | 1.1278  0.0786
£ E 11611 0.1434 | 1.1263  0.0822
E § 11792 0.1927 | 1.1443 0.1329
E ; 1.1 0.0848 | 1.0863 0.0671
2 2 11162  0.1085 | 1.1039  0.093
&S 11021  0.1085 | 1.0944  0.0842

1.0042  0.0199 | 1.0042 0.0199
1.0179  0.0319 | 1.0179  0.0319

Precedence
constr. deletion

1.0196  0.0352 | 1.0196  0.0352

P NP OOO| P NFR OOO(FRPFNFRFOODO| R NRFR OO
R OO NRPFRPRO|IRPOONRFRPRO|POONFRO|I R OONR

£8
S 9
N =
= %
E = 1.1033  0.0799 | 1.1033  0.0799
e 2 1.2286 0.1673 1.2052  0.138
(%‘ S 1.1327  0.0921 1.1289  0.091

exact BnP approach. Every additional temporal constraint increased the average cal-
culation time needed. However, there is a significant difference between precedence
and synchronization constraints contained within the problem instances. For example,
two precedence constraints increase the average calculation time for the task insertion
problem instances to on average 43.2 s from about 7.5 s for the problem instances with-
out temporal constraints. Contrary to this, on average 2159.5s, i.e. almost 36 min, are
required by the BnP approach for problem instances considering two synchronization
constraints. The clear increase in standard deviation is within the similar order of
magnitude.

The same effects considering the influence of precedence and synchronization con-
straints on the calculation times required by the GA-based reoptimization framework,
the conventional, randomly initialized GA, and the BnP approach can be observed for
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Table 5.17: Evaluation scenario 3: Results on the calculation time in seconds (mean and standard devia-
tion (SD)) for the modifications of task insertion and task deletion.

-g Constraints | Reoptimization GA-based Conventional Branch-and-
S inZ heuristic reoptimization GA price

sync. prec. | mean SD mean SD mean SD mean SD
c 0 0 |0.0018 0.0048 |19.551 0.215 |19.547 0.121 7.472 2.748
2 0 1 ]0.0031 0.006 |10.649 0.283 |10.575 0.249 19.469  27.56
g 0 2 | 0.0024 0.0005 | 9.833 0.306 9.789 0.258 43.157  52.879
& 1 0 ]0.001 0.0037 |10.173 0.249 |10.113 0.19 410.721  655.749
f@ 2 0 |0.0013 0.0042 | 8918 0.499 8.835 0.386 |2159.463 2974.18
= 1 ]0.0025 0.0037 | 9433 0.218 9.42 0212 473111  366.966
s 0 0 |0.0014 0.0038 |19.519 0.183 |[19.53 0.122 7.745 3.294
g 0 1 10.0016 0.0047 |12.639 3.651 |12.611 3.674 15.473  20.826
= 0 2 | 0.0024 0.0001 |10.8 2.29 10.721 2.321 28.77 41.93
E 1 0 |0.0019 0.0051 |12.025 3.813 |11.981 3.841 392979  529.784
e 2 0 |0.0018 0.0037 | 9.388 0.865 9.369 0.881 |1233.356 1339.11
= 1 ]0.0019 0.0051 | 9.722 0.508 9.668 0.459 403.488  554.367

the modifications of agent capability variation, agent velocity variation, task position
variation, task duration variation, precedence constraint deletion and synchronization
constraint deletion. The corresponding results are given in Tables C.19 to C.21 in Ap-
pendix C.3. These also contain the average calculation times required by the respective
reoptimization heuristics which are within a similar range as in the previous evaluation
scenario (see Section 5.3.1) and for which no clear influence of the type and number of
temporal constraints considered within the problem instances can be observed.

The results on the calculation times required by the different solution approaches for
the modifications of precedence and synchronization constraint insertion are given in
Table 5.18. The average calculation times required by the eDIH reoptimization heuris-
tic to solve these problem instances range from 12.4ms to 14.4 ms for the modification
of precedence constraint insertion and from 12.9ms to 17.6ms for the modification
of synchronization constraint insertion. No clear trend w.r.t. the number and type of
temporal constraints can be identified. The calculation times required by the GA-based
solution approaches and the BnP approach show the same effects as presented above.
To solve the problem instances containing three synchronization constraints (synchro-
nization constraint insertion with the initial problem instances containing two syn-
chronization constraints), the average calculation time required by the BnP approach
increases to over 106 min.

Levenshtein Distance

The Levenshtein distances of the solutions generated by the different solution ap-
proaches to the problem instances of the modifications task insertion and task deletion
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Table 5.18: Evaluation scenario 3: Results on the calculation time in seconds (mean and standard devia-
tion (SD)) for the modifications of precedence constraint insertion, synchronization constraint
insertion, precedence constraint deletion and synchronization constraint deletion.

"g Constraints eDIH GA-based Conventional Branch-and-
S inZ heuristic reoptimization GA price
sync. prec. | mean  SD mean  SD mean  SD mean SD
0 0 |0.0125 0.0037 | 10.809 0.246 | 10.788 0.298 17.8 21.56

g
é % 0 1 |0.0137 0.006 9.89 0.201 9.839 0.244 43.76 53.43
Lz 0 2 10.0144 0.0042 | 9.838 0.259 9.803 0.261 76.88 80.64
g ; 1 0 10.0134 0.0054 | 9.737 0.234 9.73 025 539.66  550.01
gz 2 0 10.0124 0.0062 | 9.213 0.174 9.205 0.167 |1807.73 1872.11

g 1 1 |0.0147 0.0048 | 9.699 0.203 9.678 0.234 733.85  630.01
gg O 0 |0.0169 0.0023 | 10.076 0.244 9.999 0.21 412,75  375.96
EE 0 1 |0.0176 0.0056 | 9.523 0.201 9.553 0.212 630.2 954.67
E qé 0 2 | 0.0167 0.0045 | 9.684 0.202 9.614 0.204 670.29  616.11
g ; 1 0 |0.0142 0.0057 | 9.027 0.128 8.958 0.138 |2025.56 1881.62
g2 2 0 |0.0129 0.0075 | 8.644 0.116 8.639 0.116 | 6370.99 5513.63
&S 1 1 |0.015 0.0071 | 9.203 0.224 9.121 0.196 |2697.25 2749.53

are similar to the results on the Levenshtein distances within the second evaluation
scenario for these modifications (see Section 5.3.1). The detailed results are given in
Table C.22 in Appendix C.3.

For the modifications of agent capability variation and agent velocity variation, the
results on the Levenshtein distances are given in Table 5.19. By definition of the INI
reoptimization heuristic (see Algorithm 3), the Levenshtein distances are equal to 0 in-
dependently of the problem specification. For the modification of agent capability vari-
ation, the average Levenshtein distances of the solutions generated by the GA-based
reoptimization framework remain equal to 0 for all problem specifications except for
the problem instances containing one precedence and one synchronization constraint,
for which an average Levenshtein distance of 0.18 results. The globally optimal solu-
tions resulting from the BnP approach also have on average low Levenshtein distances
to the initial solution of 0.12 to 0.54 for the problem instances containing some tempo-
ral constraints and an average Levenshtein distance of 2.28 for the problem instances
without any temporal constraints.

In contrast to this, the solutions generated by the GA-based reoptimization framework
for the problem instances corresponding to the modification of agent velocity variation
range from 0.62 to 1.56 with standard deviations around 2.5 to 4.3. Compared to
the modification of agent capability variation, also the Levenshtein distances of the
optimal solutions generated by the BnP approach are higher. The mean values for
the different problem specifications range from 5.48 to 7.56. However, the Levenshtein
distances of the solutions of the conventional, randomly initialized GA are similar for
both modifications with the mean values ranging from 7.52 to 10.46.
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Table 5.19: Evaluation scenario 3: Results on the Levenshtein distance (mean and standard deviation (SD))
for the modifications of agent capability variation and agent velocity variation.

-8' Constraints INI GA-based Conventional Branch-and-
S inZ heuristic reoptimization GA price
sync. prec. | mean SD | mean  SD mean  SD | mean SD
2 0 0 |00 0.0 0.0 0.0 95 2851 |228 3.25
T e O 1 100 0.0 0.0 0.0 9.1 3.008 | 0.4 1.327
§ % 0 2 |00 0.0 0.0 0.0 1046 2934 |0.12 0.475
o8 1 0 |00 0.0 0.0 0.0 774 2488 |04 1.039
g~ 2 0 |00 00 |00 00 78 2209 |052 @ 164
2:0 1 1 100 0.0 0.18 1.26 8.04 2514 |0.54 1.711
o 0 0 |00 0.0 0.9 3.151 102 2173 |7.56 6.658
'§ = 0 1 100 0.0 156  4.258 9.84 2859 |7.14 7.082
2 -%. 0 2 |00 0.0 0.62 2473 9.64 3399 |7.24 6.956
=5 1 0 |00 0.0 112 3.392 8.68 2549 |6.56 5.08
- 2 0 |00 0.0 1.08 2576 752 267 5.58 4.06
< 1 1 100 0.0 0.84 2935 8.32 2063 |548 4.801

For the modifications of task position variation and task duration variation, the results
regarding the Levenshtein distances are similar to the results obtained within the pre-
vious evaluation scenario considering different heterogeneity levels (see Section 5.3.1).
For the modification of task position variation, the average Levenshtein distances of
the DIH results vary between 1.0 and 1.32, the ones of the optimal solutions of the BnP
approach vary between 3.54 and 4.44 with no clear influence of the number or type
of temporal constraints considered. In comparison to these values, the average Lev-
enshtein distances resulting for the modification of task duration variation are smaller
and vary between 0.04 and 0.8 for the DIH reoptimization heuristic and between 0.0
and 0.64 for the BnP approach. For the DIH applied to task duration variation problem
instances, the number of synchronization constraints considered within the problem
instances seems to slightly increase the resulting Levenshtein distances, while the num-
ber of precedence constraints considered has no clear influence. The detailed results
on the Levenshtein distances for these modifications are given in Table C.23 in Ap-
pendix C.3.

The average Levenshtein distances and their standard deviations for the results of
the different solution approaches applied to the problem instances corresponding to
the modifications of precedence and synchronization constraint insertion are given in
Table 5.20. For the modification of precedence constraint insertion, the average Leven-
shtein distances of the eDIH results vary between 0.84 and 1.20 with no clear influence
of the number and type of temporal constraints contained within the initial problem
instance Z. These values increase slightly to a Levenshtein distance of on average 0.88
to 1.36 for the results of the GA-based reoptimization framework. The average Lev-
enshtein distances of the solutions generated by the eDIH for the problem instances
corresponding to the modification of synchronization constraint insertion are a little
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Table 5.20: Evaluation scenario 3: Results on the Levenshtein distance (mean and standard deviation (SD))
for the modifications of precedence constraint insertion and synchronization constraint insertion.

9 Constraints eDIH GA-based Conventional | Branch-and-
= inZ heuristic reoptimization GA price
sync. prec. | mean  SD mean  SD mean  SD mean  SD
g O 0 |116 0987 |116 0987 |1054 2.685 |4.38  4.024
é 'g 0 1 1092 0997 |126 2143 |1026 2999 |376  5.339
a2 0 2 108 0997 [1.08 0997 |1044 2988 |4.68 5931
§ o1 0 |12 0.98 1.36 1.572 852 2532 |328 3904
& @ 2 0 |084 0987 |11 1.652 812 2183 |256  3.401
g 1 1 1088 0993 |0.88  0.993 812 2312 |256  3.054
gg O 0 |184 0543 |54 4.927 9.88 2372 |814  3.784
EE 0 1 192 0392 |378  3.874 9.88 2597 |804 372
E § 0 2 | 188 0475 |454 4704 99 2563 |8.0 3.561
E ; 1 0 |18 0.6 262 2331 814 1822 |642  3.269
U& a 2 0 |18 0475 |298 2565 766 2036 |548  2.67
AFe 1 1 1192 0392 |234 1.762 778 1847 |588  3.037

higher. They vary between 1.8 and 1.92 for the different problem specifications. For
this modification, also no clear influence of the number or type of constraints within
the initial problem instance can be observed. By the additional application of the GA-
based reoptimization framework, the average Levenshtein distances increase to 2.34
to 5.4 for the different problem specifications. The optimal solutions generated by the
BnP approach on average have a higher Levenshtein distance to the initial solutions for
the modification of synchronization constraint insertion, for which the average Leven-
shtein distances range from 5.48 to 8.14, compared to the modification of precedence
constraint insertion, for which it ranges from 2.56 to 4.68. For both modifications, the
Levenshtein distances of the BnP solutions tend to be lower, if synchronization con-
straints are contained within the initial problem instances Z. The same holds for the
results generated by the conventional, randomly initialized GA, for which the absolute
values of the average Levenshtein distances of the corresponding solutions are simi-
lar for both modifications ranging from 7.66 to 10.54. The results on the Levenshtein
distances for the modifications of precedence and synchronization constraint deletion
are given in Table C.24 in Appendix C.3. For the modification of precedence con-
straint deletion, the Levenshtein distances of the GA-based reoptimization framework
remain equal to 0.0, i. e. the Levenshtein distances of the INI solutions, for all problems
considered. For the modification of synchronization constraint deletion, average Lev-
enshtein distances of 2.38 for the initial problem instances with two synchronization
constraints and of 0.66 for the initial problem instances with one precedence and one
synchronization constraint result.

A discussion of the presented results obtained for the evaluation scenario analyzing
the influence of different types and numbers of temporal constraints is given in the
following section.
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5.4.2 Discussion

Within the previously presented evaluation scenario, the influence of precedence and
synchronization constraints on the approximation ratios, calculation times and Leven-
shtein distances is investigated for the different solution approaches.

Opverall, both precedence and synchronization constraints influence especially the so-
lution quality, i.e. approximation ratios, and responsiveness, i.e. calculation time, of
some solution approaches. However, synchronization constraints seem to have a con-
siderably higher impact on the corresponding results than precedence constraints.

The comparison of the DIH and INI reoptimization heuristics for the modifications of
task position variation and task duration variation yields interesting differences both
between these modifications and between instances with and without synchronization
constraints. For the modification of task position variation, the DIH reoptimization
heuristic in general yields better approximation ratios than the INI approach for more
than half of the investigated problem instances. However, these differences become
smaller and can also become slightly negative when synchronization constraints are
considered within the problem instances. In contrast to this, for the modification of
task duration variation, the application of the DIH reoptimization heuristic in the con-
ducted evaluation does not yield a better approximation ratio for any problem instance.
Moreover, for the problem instances with synchronization constraints, the solutions
generated by the DIH have worse approximation ratios than the INI solutions for up
to 40% of the problem instances. A cause for this decrease in solution quality of the
DIH solutions is the potential overapproximation of the actual insertion costs by the
delete-insert heuristic (DIH, see Algorithm 5) as soon as precedence or synchroniza-
tion constraints are considered within the problem instance. This overapproximation
of insertion costs may cause the initial routing to be evaluated worse than another
routing within the DIH, even though the actual objective function value of the solution
corresponding to the initial routing is better than the modified one. This seems to hap-
pen especially often if synchronization constraints are contained within the problem
instance. A reason for this might be that the potential number ; (see Section 3.4.4) of
routes affected by a temporal shift of a synchronization constrained task n; is at least
equal to two®. Contrary to this, precedence constraints that are related to task 7; only
increase its value of B; to be greater than 1, if task n; is the preceding task and the
subsequent task is contained within the route of another agent. Thus, the chance of
overapproximating the actual insertion costs is higher, if synchronization constraints
are considered within the problem instance. Consequently, for the modification of task
duration variation as performed within this evaluation, the application of the INI reop-
timization heuristic can be recommended over the DIH reoptimization heuristic when
temporal constraints and especially synchronization constraints are considered within
the problem instance. For these problem instances, the INI reoptimization approach
tends to yield solutions of higher quality while at the same time having the optimal so-

38 1If a task n; is synchronized with | € IN other tasks, ; equals at least  + 1.
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lution stability (i. e. Levenshtein distance of 0) and requiring slightly less computation
time.

The solution quality resulting from the application of the extended delete-insert heuris-
tic (eDIH, see Definition 6) to solve problem instances with an additional temporal
constraint differs depending on which kind of temporal constraint is inserted to the
problem instance. The results of inserting a precedence constraint into problem in-
stances without synchronization constraints have approximation ratios that are on av-
erage 12.6% to 14.3% better than when a synchronization constraint is inserted to the
same problem instances. If the initial problem instances already consider synchroniza-
tion constraints, the relative difference in approximation ratio ranges between 6.2%
and 7.5%. One reason for this is the same as explained above. When inserting a syn-
chronization constraint, the chances of overapproximating the resulting waiting times
and thus the overall insertion costs resulting from reinserting the tasks affected by the
new temporal constraint is higher than when inserting a precedence constraint. The
same holds if synchronization constraints are contained within the initial problem in-
stance since these also increase the chance of even higher overapproximations of the
actual insertion costs. Consequently, the information basis of the eDIH on which the
decision on the final routing is made is more prone to include overapproximated esti-
mates on the resulting objective function if synchronization constraints are contained
within the modified problem instance compared to problem instances only containing
precedence constraints. However, despite this biased information basis, the average
approximation ratios obtained within this evaluation are all below a value of 1.2 as
desired.

One of the consequences of the comparably high approximation ratios generated by
the eDIH for the modification of synchronization constraint insertion is, that for all
problem specifications on average an improvement of up to 4.7% of the approxima-
tion ratios is generated by the additional application of the GA-based reoptimization
framework. This comes at the cost of increased calculation times of about 9s to 10s and
a slightly reduced solution stability. However, if a high priority is set on the solution
quality compared to the criteria of responsiveness and solution stability, the additional
application of the GA-based reoptimization framework can be recommended for the
modification of synchronization constraint insertion.

Another interesting effect of the temporal constraints is the influence they have on the
calculation times. While there is no obvious influence on the calculation times of the
different reoptimization heuristics observable, the calculation times required by both
GA-based approaches within this evaluation are very similar and reduce by about 35%
to 45% as soon as any temporal constraint is considered within the problem instance
compared to temporally unconstrained problem instances. The results indicate a slight
further decrease in calculation time the more temporal constraints are contained within
the problem instance with this effect being slightly higher for synchronization than for
precedence constraints. This is probably caused by much more of the routings evalu-
ated within the evolutionary loop of the GA being found to be infeasible if temporal
constraints are to be considered. For their evaluation, no timing information according
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to (3.5) must be determined (see Fitness evaluation in Section 4.3), which decreases the
required calculation time.

In contrast to this, the calculation time required by the exact BnP approach increases
with the number ob temporal constraints contained within the problem instances. This
effect is especially distinct for synchronization constraints, which cause a significant in-
crease in calculation time. This observation within this evaluation is compatible with
the results obtained by Korsah [Korll], who presented the corresponding BnP ap-
proach. Thus, the exact BnP approach is unsuitable for application within interactive
MRTA optimization systems for problem instances of the investigated size (8 tasks,
3 agents) especially if synchronization constraints are contained within the problem
instances since here, on average calculation times of more than 6 min for problem in-
stances with one synchronization constraint are required, which increase to 106 min
for problem instances with three synchronization constraints. Thus, the requirement
of responsiveness (see [HGQ™12, DS15]) is clearly not fulfilled by the BnP approach
for problems of the considered size containing synchronization constraints. In contrast
to this, the results of the conducted evaluation clearly indicate the proposed reopti-
mization heuristics to fulfill the requirement of being responsive, independently of the
number of temporal constraints considered within the problem instances.

Concluding remarks on the results obtained within the conducted evaluation are given
in the following section.

5.5 Concluding Remarks on the Evaluation Results

This section summarizes the evaluation results presented in the previous Sections 5.2
to 5.4 and provides a concluding assessment regarding the suitability of the analyzed
solution approaches for application in interactive MRTA optimization systems. As
defined in Section 1.1, the requirements of solution quality, responsiveness of the solu-
tion approach and solution stability are important criteria for the application of solu-
tion approaches within interactive MRTA optimization systems. The obtained evalua-
tion results indicate significant differences between the considered solution approaches
w.r.t. these criteria.

Both categories of introduced reoptimization approaches, i.e. the modification-speci-
fic reoptimization heuristics and the GA-based reoptimization framework, yield very
promising results w. r. t. solution quality and stability for all modifications and evalua-
tion scenarios considered. In comparison to the reoptimization approaches, the consid-
ered optimization approaches both show major drawbacks that limit their suitability
for application in interactive MRTA optimization systems:

While the exact BnP approach by definition yields optimal results w.r. t. solution qual-
ity, the stability of the solutions generated is in general slightly lower than the solu-
tion stability of both reoptimization approaches. Furthermore, the calculation time
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required by the BnP approach increases exponentially with the number of tasks con-
tained within the problem instance (see Section 5.2.1). This causes the BnP approach
to not satisfy the requirement on the system response time being at most 10s in or-
der to keep the user’s attention [DS15] for medium size and larger MRTA problem
instances. The calculation time required by the BnP approach furthermore is highly
influenced by temporal constraints, especially synchronization constraints, contained
within the problem instance (see Section 5.4.1). Consequently, the BnP approach only
fulfills the requirement of solution approach responsiveness for problem instances of
very limited size. The number of precedence and especially of synchronization con-
straints containted within the problem instance furthermore decrease the manageable
size of the problem instances (see Section 5.4.2).

Compared to the BnP approach, the calculation times required by the conventional,
randomly initialized genetic algorithm (GA) are more stable w.r. t. problem size (see Sec-
tion 5.2.1). The consideration of temporal constraints within a problem instance even
reduces the calculation time required by the GA (see Sections 5.4.1 and 5.4.2). However,
for the problem size of 8 tasks and 3 agents considered in the majority of problem in-
stances within this evaluation, the calculation time of the GA does in general not meet
the threshold of at most 10's system response time (see Sections 5.2.1 and 5.3.1) in order
to keep the user focused on the interaction [DS15]. Only under the consideration of
temporal constraints, this threshold can be met for the majority of problem instances
(see Sections 5.4.1). What is more, within the conducted evaluation, the conventional,
randomly initialized GA clearly showed the worst performance of all evaluted solu-
tion approaches w.r.t. solution quality and solution stability (see Sections 5.2.1, 5.3.1
and 5.4.1). Since the extension of the conventional, randomly initialized GA towards
the GA-based reoptimization framework substantially improves the generated solu-
tions w.r.t. these two criteria while only marginally influencing the required calcu-
lation time, the GA-based reoptimization framework can be clearly prioritized over
the conventional GA for application in interactive MRTA optimization systems. Con-
sequently, both proposed reoptimization approaches, the modification-specific reopti-
mization heuristics and the GA-based reoptimization framework, clearly outperform
the evaluated optimization approaches w.r.t. the combination of criteria relevant for
their application in interactive MRTA optimization systems.

Between the two reoptimization approaches, there is a big difference w.r.t. their re-
sponsiveness, evaluated based on their required calculation time. Out of all solution
approaches under evaluation, only the proposed reoptimization heuristics yield calcu-
lation times that for all modifications and evaluation settings considered are by orders
of magnitude below 300 ms and thus suitable for instantaneous, closed-loop interac-
tions [DS15]. Even though there seems to be a linear increase in required calculation
time with the problem size, the calculation times obtained within this evaluation of
all reoptimization heuristics are all more than factor 10 below the threshold of 300 ms,
such that the reoptimization heuristics can be expected to meet the responsiveness re-
quirements for instantaneous interactions up to comparably large problem instances.
Furthermore, the reoptimization heuristics also have the potential to handle multiple
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modifications at a time (by the consecutive application of several reoptimization heuris-
tics) in a responsive manner suitable for instantaneous, closed-loop interaction.

Compared to this, the GA-based reoptimization framework requires by orders of mag-
nitude higher calculation times, which are very similar to the calculation times required
by the common, rondomly intitialized GA. Thus, the threshold of 300ms for instan-
taneous interactions can clearly not be met and also the threshold of 10s in order to
maintain the user’s attention is in general exceeded for the unconstrained problem
instances considered within the conducted evaluation.

While it is important to note, that the implementations of all solution approaches
within this thesis were not fully optimized w.r.t. calculation times, the obtained re-
sults still give a good indication of the orders of magnitudes of calculation times re-
quired, the influences diverse problem features have on the calculation times, and the
relation between the calculation times required by the different solution approaches
under consideration. However, there probably is potential for further improvement
w.r.t. calculation time. This holds especially for the GA-based solution approaches,
for which the calculation time is strongly influenced by the numbers of evolutionary
loops conducted, such that different termination criteria might be considered in order
to yield a better responsiveness. The criteria of a fixed number of 100 iterations chosen
within this thesis however allows for an objective comparison between the conven-
tional, randomly intitialized GA and the GA-based reoptimization approach w.r.t. all
criteria relevant for interative MRTA reoptimization settings.

Comparing the two reoptimization approaches w.r. t. the other two criteria relevant for
interactive MRTA optimization systems, the results of this evaluation indicate that in
the majority of temporally unconstrained problem instances, the solution quality of the
solution generated by the respective reoptimization heuristic is not or only marginally
improved by the GA-based reoptimization framework. One exception from this is the
modification of synchronization constraint insertion, for which the approximation ra-
tio, i. e. the criterium evaluating the solution quality, was improved by up to on average
4.7% for synchronization constrained problem instances (see Section 5.4.2). However,
the quality of the solutions resulting for all modifications are all close to the optima
with approximation ratios « < 1.2. Thus, also for the modifications of task insertion
and task deletion, the problem instances considered within this evaluation all yield so-
lutions with objective function values that are noticeably better than the guarantees on
the tight upper bounds of the resulting approximation ratios (see Sections 3.2.5, 5.2.1,
5.3.1 and 5.4.1). Moreover, the obtained low approximation ratios indicate, that also
if multiple reoptimization heuristics were applied consecutively, the resulting solution
will in many cases still be close to optimal.

Furthermore, by their definition all reoptimization heuristics yield stable solutions with
acceptable Levenshtein distances ranging from zero to at most two. For the problem
instances in which the GA-based reoptimization framework alters the solutions of the
reoptimization heuristics, the solution stability in general slightly decreases.
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Overall, the reoptimization heuristics outperform the GA-based reoptimization frame-
work w.r.t. responsiveness and also perform better w.r.t. solution stability (see Sec-
tions 5.2.1, 5.3.1 and 5.4.1). In return, the GA-based reoptimization framework on
average only improves the solution quality by less than 2% for most modifications.
Only for the modification of synchronization constraint insertion an higher average
improvements of up to 4.7% results (see Sections 5.2.1, 5.3.1 and 5.4.1). Therefore, the
reoptimization heuristics can be considered to provide the best combination to ful-
fill the criteria for application in interactive MRTA optimization systems, i.e. solution
quality, solution stability and responsiveness, and to be very well suited for this kind
of application. However, if a high priority is set on solution quality, the additional
application of the GA-based reoptimization framework can be advisable. This holds
especially for the modification of synchronization constraint insertion when applied to
temporally constrained problem instances (see Section 5.4.2).



6 Conclusion

This thesis introduces, analyzes and evaluates for the first time centralized reoptimiza-
tion approaches for heterogeneous, time-extended MRTA problems with precedence
and synchronization constraints, aiming at enabling interactive MRTA optimization
systems.

Interactive MRTA optimization systems allow for combining the strengths of an au-
tomated system in terms of calculation performance with the strengths of the human
in situational awareness and capability of abstraction. This is realized by letting a hu-
man define MRTA problems and adapt it to dynamic environmental changes, while
the automated system solves the defined problem instances. To enable such interactive
systems, solution approaches that unite guaranteed solution quality, responsiveness,
and solution stability are necessary. Solution quality is essential due to its influence on
MRSs’ performance. Responsive systems, that in the best case allow for instantaneous,
closed-loop user interaction, together with solution stability, are relevant criteria for
user acceptance and satisfaction. However, the analysis of the current state of research
reveals that there is no adequate solution approach in literature for heterogeneous,
time-extended MRTA problems with precedence and synchronization constraints that
combines these requirements.

To close this gap, the first contribution of this thesis is the introduction of reoptimiza-
tion heuristics for ten modifications of heterogeneous, time-extended MRTA problems
with precedence and synchronization constraints. These reoptimization heuristics are
the first for the considered problem class for which guarantees on the resulting solution
quality are derived.

For all modifications, the solutions generated by the respective reoptimization heuris-
tics are guaranteed to be feasible and thus to fulfill all constraints. For eight out of the
ten modifications, it is moreover guaranteed that, if the solution space is non-empty,
a feasible solution is found by the proposed reoptimization heuristics. Even stronger
performance guarantees in the form of upper bounds of # < 2 on the resulting ap-
proximation ratios & are given for the two modifications of inserting and deleting a
task. These modifications are the most studied ones also for the TSP (see Table 2.4)
and belong to the most important ones in practical MRTA applications, especially the
insertion of a task (see Table 2.3). The bounds given on the approximation ratios for
these modifications are proven to hold for all reoptimization approaches that fulfill two
conditions. For the modification of task insertion, it is shown that the proposed CMI
reoptimization heuristic always fulfills these conditions and thus yields an approxima-
tion ratio bounded above by « < 2, which is furthermore proven to be a tight bound.
For problem instances not considering any precedence or synchronization constraints,
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even smaller tight upper bounds on the approximation ratio down to « < 3/2 are de-
rived. Also, the TDH reoptimization heuristic proposed for the modification of task
deletion is shown to fulfill the respective conditions in the vast majority of instances
for which the resulting approximation ratios are thus bounded above by « < 2. This
bound is also shown to be tight. Furthermore, a tight upper bound of & < 3/2 is de-
rived for problem instances with homogeneous agents and without any precedence or
synchronization constraints.

The second contribution of this thesis is the introduction of a metaheuristic reopti-
mization framework. This framework combines the previously defined reoptimization
heuristics with metaheuristic solution approaches that aim at balancing intensifica-
tion and diversification. Any metaheuristic suitable for heterogeneous, time-extended
MRTA problems with precedence and synchronization constraints can be applied. It is
shown that for any metaheuristic that guarantees to retain the best solution generated
throughout the search process, the performance guarantees given for the respective
reoptimization heuristics remain valid. Moreover, a specific realization of the meta-
heuristic reoptimization framework is proposed. It is based on a GA and fulfills the
aforementioned property of preserving the performance guarantees given for the re-
spective reoptimization heuristics.

To assess the performance of the proposed reoptimization approaches on heteroge-
neous, time-extended MRTA problems instances with precedence and synchronization
constraints, an extensive evaluation of the reoptimization heuristics and the GA-based
reoptimization framework is conducted. The reoptimization approaches are compared
to two optimization approaches, an exact BnP approach and a conventional GA. The
influence of different features of the problem instances including problem size, hetero-
geneity and the number of precedence and synchronization constraints considered, is
analyzed. The results reveal that both reoptimization approaches outperform the op-
timization approaches w.r.t. the criteria relevant for application in interactive MRTA
optimization systems. Especially the reoptimization heuristics by far yield the best
combination of solution quality, solution stability, and responsiveness of the solution
approach. For all problem specifications evaluated, the reoptimization heuristics yield
solutions with close to optimal quality and with a deterministically high solution sta-
bility in a very responsive manner that allows for instantaneous, closed-loop interac-
tions. Only if high priority is set on the solution quality, an additional application of
the GA-based reoptimization framework can be recommended, especially if synchro-
nization constraints are contained in the problem instance.

Both, the theoretical performance guarantees and the evaluation results confirm the in-
troduced reoptimization heuristics and the metaheuristic reoptimization framework to
be very well suited for application in interactive MRTA optimization systems. When-
ever modifications to heterogeneous, time-extended MRTA problems with potential
precedence and synchronization constraints occur, they generate stable, high quality
solutions in a very responsive manner. This allows for an increase in user acceptance
and MRS performance and thereby renders the reoptimization approaches a key en-
abler for a beneficial application of MRSs in volatile and unstructured environments



6 Conclusion 167

such as space exploration, inspection of power plants, and nursing practice. Thus, this
thesis provides an important step towards broader purposeful application of MRSs
for society and eventually towards the anticipated improvement of the standard of
living.






A Fundamentals Regarding the Modeling of
MRTA Optimization Problems

A.1 Mathematical Models for the MTSP Optimization
Problem

The basics of two common approaches to model MTSPs and their relaxations are given
in this section. They comprise a three-index model based on a vehicle-flow formula-
tion®” and a two-index model based on a set partitioning formulation. To focus on the
fundamentals of the formulations, the following depictions consider the basic MTSP
problem, i.e. additional constraints are neglected and a homogeneous team of agents
is considered. However, both formulations allow for adaptions in order to represent
problem features of time-extended MRTA problems (or VRPs).

A.1.1 Three-Index Model Based on a Vehicle-Flow Formulation

The three-index vehicle-flow model, which was initially proposed by Golden et al.
[GMNY77], is presented in the following. The given exposition is based on [BBV08],
but has been shortened and adapted to focus on the basic MTSP. Vehicle-flow formu-
lations are especially well suited for cases in which the objective function depends on
costs associated with agents traveling between distinct positions and on agents being
allocated to tasks [TV02].

A complete graph G(V,E) is used to model the problem. Let the set of agents be
denoted by K = {ky,ky,...,kx} and the set of tasks be given as N' = {ny,np...,ny}.
The vertices of the graph comprise all tasks plus the agents’” common depot which is
denoted as oy, thus V = N U {ox}. Binary decision variables xl”; are equal to one if

edge (i,j) € E is traversed by agent m € K and zero otherwise. With (i, ) denoting
the cost of traversing edge (i,j) € E, the tree-index vehicle-flow model is given as

min ) Z 6(i,j)xi; (A1)
mek i jeV
7]

39 Besides the three-index vehicle-flow model, also a two-index vehicle-flow formulation exists. However,
the two-index variants do not explicitly differentiate between the individual vehicles. Thus, they do not
allow for a direct allocation of agents to tasks which is also why these models are not suited for problem
instances in which route costs depend on the allocated agent. This important feature can, in contrary, be
modeled by the three-index variation of the vehicle-flow formulation. [TV02]

Therefore, only the three-index model is presented.
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sty Y ali=1 Vi e V\{ox} (A.2a)
mek ieV
Yoy xi— ) Yaj=0 VieV\{oc} VmeK (A.2b)
mekieV mekl jeVv
xl’”] € {0,1} Vi,jeV,i#jVme K. (A.2¢)

In the above formulation, the optimization objective (A.1) is to minimize the overall
costs. Constraint (A.2a) enforces all tasks to be visited exactly once and constraint
(A.2b) makes sure that every agent departs from all tasks it visits. The binarity of the
decision variables are ensured by constraint (A.2c).

Vehicle flow formulations are very commonly used to model VRPs and allow for the
consideration of various constraints (see e. g. [BR07, KLB09, DRL11, RJDL12, LIW 23]).
On the other hand, vehicle flow models can have very weak linear programming re-
laxations when constraints are tight40. [TV02]

A.1.2 Two-Index Model Based on a Set Partitioning Formulation

A main advantage of the set partitioning formulation is that its linear programming
relaxation is typically much tighter than the one of the vehicle-flow formulation [TV02].
The set partitioning formulation was initially proposed by Balinski and Quandt [BQ64].
The explanations given in the following are based on [TV02, Chapter 1.3.4].

The set partitioning formulation is based on the set of feasible routes r starting and
ending at the depot. Routes are circuits of the graph G(V,E) which can be defined
as sequences of edges or vertices. The set of feasible routes is given by R. Each
route is associated with a cost x,. The binary indicator variable b;, takes the value 1 if
vertex i € V is covered by route r € R and 0 otherwise. Binary decision variables A,
are equal to 1 if and only if route r € R is chosen. Using this notation, set partitioning
formulation is given by

min Z KAy (A.3)
reR
st Y bpAr=1, VieN (A.4a)
reR
A€ 40,1} Vr e R. (A.4b)

The cost of the selected routes is minimized by the optimization objective (A.3). The
set partitioning constraints (A.4a) impose that each task is visited exactly once by the
routes selected and (A.4b) ensures the binarity of the decision variables.

40 An inequality constraint is tight in a point x if it is fulfilled with equality for x [PAN23, p. 126].
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The set partitioning formulation allows for very general route costs and can be ex-
tended to express various constraints (see e.g. [HRJL08, Korll, KKB"12]). A main
advantage of the formulation is that its linear programming relaxation is typically
much tighter than the one of the vehicle-flow formulation. On the downside however,
set partitioning models come at the cost of a very large number of variables. [TV02]

Both, the three-index vehicle flow and the two-index set partitioning formulation, are
often applied in optimization-based solution approaches. Both models can be extended
to express various problem variants.

A.2 Linearization of the Vehicle Flow Formulation of the
MRTA Optimization Problem

The MRTA optimization problem representation given Problem 3.1 is non-linear due to
constraint (3.2f) and due to the representation of waiting costs c% in the objective func-
tion (3.1). This section introduces the linearization of the aforementioned components
and thus of the MRTA optimization problem.

For this linearization, additional decision variables w; ; € R>( representing the waiting

times between two vertices i € V, j € N are introduced.*! Thus, the waiting times
associated with a solution c%(Xz) can be linearly expressed as

F(X7) =) ) wi (A.5)
i€V jeN
Using a sufficiently large constant Timax € IR>, the appropriate determination of wait-
ing times can be ensured by the additional constraints

wij =t —ti— Z}:Cx%(dTerﬁ)—(l— ZxZ}>Tmax, VieN,jeN (Aé6a)

me mekC

wij =t —ti— ZKX?}d?,} - <1 -y x?}) Tmax, VicO,jeN (A6b)
me

mekC
wi; € R>p VieV,je N, (A.60)

which must be added to the optimization problem. In case an agent m € K transi-
tions from a task i € N toataski € N, ie. Y, cx xl”; = 1, constraint (A.6a) ensures
that the waiting time between the two tasks cannot become smaller than the differ-
ence between their starting times minus the sum of the agent-dependent duration d}"
of task i and the transition time dl”; to task j. In case edge (i,j) is not taken by any
agent, i.e. Y ,cx x:’; = 0, a sufficiently large choice of Tmax € R>o ensures w;; to be

bounded below by a negative value which becomes negligible due to constraint (A.6c).

41 Since waiting times, which are caused by precedence or synchronization constraints, can only occur in

front of tasks, only j € A" must be considered.
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The same holds for transitioning from a depot to another vertex, as given by con-
straint (A.6b). The only difference in this case is that a depot is not associated with an
agent-dependent duration and thus d/" can be neglected. To complete the linearization,
the same technique can be applied to replace the non-linear constraint (3.2f), which en-
sures the consistency of starting times, by the linearized constraint

mek

—ti— Y g (ddn) > (): x;{;—1> Tmaxy Vi€V,jeN. (A7)
mek

An appropriate choice of Tnax allows for the application of the same constant Tax in
(A.6) and (A.7).



B Branch-and-Price for Time-Extended MRTA
Problems with Complex Dependencies

This chapter is concerned with exact solution approaches for time-extended MRTA
problems. As revealed by the state of the research presented in Section B.1, so far
no exact solution approach exists that is capable of handling complex dependencies.
Thus, the exact branch-and-price (BnP) approach applied within this thesis to gener-
ate globally optimal solutions for time-extended MRTA problems with cross-schedule
dependencies, which is briefly introduced in Section B.2, is extended towards the con-
sideration of complex dependencies. Three different approaches to this problem are
presented in Section B.3 and a comparative evaluation of these approaches is given in
Section B.4.

B.1 Exact Optimization-Based Solution Approaches

Contrary to heuristic or metaheuristic approaches, exact approaches rely on rigorous
algorithms to achieve globally optimal solutions. In the following, an overview of
existing exact solution approaches for time-extended MRTA problems is given. The
number of exact solution methods introduced in the MRTA problem domain is very
limited, which is why also related problem domains are taken into consideration. Since
this thesis focuses on time-extended MRTA problems that solve both task allocation
and task scheduling (see Section 2.2), which are relevant for many practical appli-
cations, only approaches for problems with cross-schedule or complex dependencies
are considered. The presented approaches are investigated on whether they take into
consideration the required MRTA problem features as defined in Section 1.2, i.e. het-
erogeneous tasks and agents, precedence and synchronization constraints.

Bredstrom and Roénnquvist [BRO7] propose a BnP#? algorithm for a VRP. They con-
sider homogeneous agents, time windows for customer service as well as for agent
availability and synchronization constraints between tasks, i.e. customers. Each syn-
chronization constraint cannot involve more than two customers. The optimization
objective is to minimize traveling time and the sum of arbitrarily set weights for each
agent serving each destination.

A HCCSP is solved by Hansen et al. [HRJLO8]. Agents, i.e. caretakers, with different
competences have to be allocated and scheduled to tasks, i.e. customers, that require

42 Branch-and-price is an exact solution approach for (mixed-)integer linear optimization problems. It
combines branch-and-bound and column generation methods. [DL11]
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different services. Some services require the presence of several caretakers and thus
impose synchronization constraints on the problem. Furthermore, service time win-
dows and caretakers working hours must be respected. The objective function consid-
ers multiple criteria such as the minimization of overall operation cost and the maxi-
mization of the level of service, which is e. g. influenced by the number and priority of
services that cannot be scheduled. The problem is solved using a BnP approach.

A BnP approach applied to time-extended MRTA problems comprising a comprehen-
sive amount of different types of constraints is proposed by Korsah [Kor11]. She con-
siders temporal constraints including precedence, synchronization and time windows,
but also location choice, capacity constraints and location proximity constraints. The
considered optimization objective includes rewards for each task performed as well as
costs associated with travel and waiting times. A BnP method is proposed to solve the
problem.

Dohn et al. [DRL11] consider a VRP with time windows. Precedence and synchro-
nization constraints are modeled using generalized precedence constraints which also
allow for the representation of temporal overlapping constraints and constraints on
minimum or maximum temporal difference in starting times of task execution. They
propose four different problem formulations and apply a branch-and-cut-and-price
(BCnP)* approach to all of them.

A BnP approach for the HCCSP is introduced by Rasmussen et al. [RJDL12]. They con-
sider the agents, i. e. caretakers, to have heterogeneous capabilities and tasks, i. e. visits,
to be constrained by means of generalized precedence constraints and time windows.
The objective is given as a weighted sum of minimizing the amount of tasks not dealt
with, maximizing rewards associated with each agent-task allocation, and minimizing
total travel costs. Rasmussen et al. [RJDL12] propose a clustering of tasks in order to
accelerate calculation time. Since this restricts the solution space, solution optimality
can no longer be guaranteed if task clustering is applied.

Haddadene et al. [HLP14] consider also a HCCSP. They take agents as homogeneous
w.r.t. to travel times, but assume each agent to be only able to perform one out of
several types of tasks. Precedence and synchronization constraints as well as time win-
dows must be respected. They propose two different problem formulations which dif-
fer in whether the objective function additionally to agent-task-allocation and travel de-
pendent costs also considers waiting times. They solve both models using CPLEX®*.

Another HCCSP with time windows, precedence and synchronization constraints which
is solved by CPLEX® is given by Taieb et al. [TLM19]. Allocation-dependent costs that
depend on the individual mapping between agents and tasks as well as travel costs are
to be minimized. Their model additionally takes into consideration breaks required by
the caretakers, i. e. agents.

43 BCnP is an extension to BnP for solving (mixed-)integer linear optimization problems that additionally
applies cutting planes to strengthen the linear programming relaxations. [DL11]
4 CPLEX?® is a commercial optimizer by IBM [IBM].
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Li et al. [LIW 23] consider a truck-drone routing problem (TDRP) with simultaneous
delivery and pickup. The heterogeneous set of agents consists of trucks and drones
and good delivery and pickup services for customers represent the tasks. A set of
homogeneous trucks, each equipped with its own set of heterogeneous drones have to
deliver a defined set of goods to customers and can furthermore fulfill any subset of a
known set of pickup requests from customers to increase the objective function values.
Drones can only start their routes when the truck arrives at a customer and a truck
must wait at until all drones return before it can continue its drive. Thus, the positions
of the depots for the drones are variable and coupled with the routed of the trucks.
Solutions are evaluated by their associated service and transportation costs reduced
by the utility generated by pickup services realized. The authors introduce a BCnP
algorithm to optimally solve the problem.

Table B.1 summarizes the presented publications to time-extended MRTA and related
problems. The majority of the respective exact solution approaches belongs to the do-
main of VRPs or HCCSPs, and they allow for the consideration of various different
constraints. It is interesting to note that all exact optimization-based approaches pre-
sented consider time-extended MRTAs with cross-schedule dependencies. To the best
of the author’s knowledge, no exact optimization-based solution approaches for time-
extended MRTA problems with complex dependencies exist. Thus, the consideration
of task decomposition has not yet been tackled by the respective solution approaches.
To close this gap, three approaches on how to consider complex dependencies in BnP
are presented in Section B.3. They are based on the BnP approach by Korsah [Korl1],
which is briefly introduced in the following section.

Table B.1: Overview of exact solution approaches to solve time-extended MRTA or related optimization
problems. The depicted approaches all consider a time-extended planning horizon. For each
publication, the applied solution approach, the problem domain as well as the degree of interre-
latedness (Interr.) are given. Furthermore, it is indicated, whether heterogeneous teams of agents
(Het.), precedence constraints (Prec.) and synchronization constraints (Sync.) are considered.
Additionally respected constraints are given in column labeled "Others". All approaches respect
time windows.

Solution ~ Problem
Publication approach domain Interr. Het. Prec. Sync. Others

[BRO7] BnP VRP XD X X (v)

[HRJLO8] BnP HCCSP XD v v v working hours

[Korl1] BnP MRTA XD v v v location choice and
proximity constraints

[DRL11] BCnP VRP XD X

[RIDL12]  BnP HCCSP XD v
[HLP14] CPLEX® HCCSP XD (V)
[TLM19] CPLEX® HCCSP XD v
[LIW+23]  BCnP TDRP XD v

breaks for agents

AN NA Y
> NN NN

moving depots
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B.2 Application of Branch-and-Price to Time-Extended
MRTA Problems

To solve the heterogeneous, time-extended MRTA problem with precedence and syn-
chronization constraints, i.e. an MRTA problem with cross-schedule dependencies, a
BnP approach which uses a set-partitioning formulation (see Section A.1.2) is applied.
BnP approaches combine branch-and-bound with column generation for solving huge
integer linear programs (ILPs). An introduction to branch-and-bound and to column
generation can for example be found in [ES22, Chapter 5.3.2] and [Liib11], respectively.
The approach applied in this thesis is adapted from [Kor11], since this is the only ex-
act optimization approach in the MRTA domain that considers heterogeneous agents,
precedence and synchronization constraints (see Table B.1). Thus, it considers all fea-
tures of the time-extended MRTA Problem 3.1 of this thesis, i. e. heterogeneous agents
w. . t. capabilities and velocities, precedence and synchronization constraints (see also
Section 1.2).4°

The relevant sets, decision variables and constants are defined as given in Table B.2.
The different time variables and constants are exemplarily illustrated in Figure B.1
and explained in the following. The constant start times t] represent the time the
execution of task n; would start on route » € R™ if there was no waiting time. They
are determined by the vertices contained within a route r € R™ and their order. An
agent k;, having to wait right before the execution of task n; (caused by a precedence
or synchronization constraint) causes a delay ¢}". This delay is carried forward to all
following tasks n; within a route resulting in a delay {;;.

4 Further problem features considered by Korsah [Korl1] are disregarded, i.e. location choice, non-
overlapping constraints and proximity constraints. Furthermore, all compund tasks are assumed to
be decomposed into their simple subtasks.
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IX

Table B.2: Definition of variables applied in the BnP approach.

Symbol and interpretation Domain

K set of all agents
N set of all tasks
R™  set containing all possible routes of agent k,

Relevant
sets

P set of precedence constraints
S set of synchronization constraints
o Al whether agent ky, is allocated to route r € R™ € {0,1}
=] r g
2 % t; starting time of task 7; € R>p
8 s m delay of agent k, for task n; € Rxg
A= Gji delay of task n; caused by task 7; € Rxg
. b whether task n; is on route r € R™ € {0,1}
- %’ b;’l?r whether vertex j is scheduled before vertex i on route r € R™ € {0,1}
§ S execution time needed by agent k;;, for task n; € R>p
= g d;“j transition time of agent k;, from vertex i to vertex j € R>p
© = ’. =
“é’ % Kk, costs of route r € R™ of agent k;, neglecting waiting times € Rxg
c .9 costs related to waiting times of agent k; € Rxg
og 2 : . e =
g t start time of task n; on route r € R™ neglecting waiting time € R>
Tiay maximum planning horizon € R>p
route without delays: @ @ n3 @
! ! ! !
1 ! ! !
[ [ | [ [ | [ [
! | L L L L
I ‘ ‘ ‘ — — ‘ ‘ >
| | | [ | | | |
0 I I I 1o (. I I time
| | | [ | | | |
! ! ! [ ! ! ! !
starting times without g S i i
delavs: 1r 2r 4r 3r
ys: I I I Lo o I I
starting times with ‘ ‘ ‘ L b ‘ !
t ta ty t3
delaYS: | | | [ | | | |
= I (| T I
delays of starting times: et oy
——a —A —
delays caused by ‘ c c (C1s + Ca3)
previous tasks: 12 14 137 o3
Symbol explanation:
() starting time of a task transition and task execution time
O start and end time of a route ~ =r*===r waiting time

O time of arrival at task

Figure B.1: Illustration of the different time variables and constants applied in the BnP approach. The figure

is adapted from [Wo23].
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Using these definitions, the problem formulation is given as

min | Y Y «fAN+ Y Y k) (B.1)

meK reRM mek ieN
Y oAr=1 Vmek (C1)
reRm
Yo ) At =1 VieN (C2)
mek reRM
H— ), Y HOIAT =) gi— Y =0 VieN (C3)
mek reRM jeN mekx
—Gi+ Y O+ T Y Y, DAY < Tax VieN,jeN (C4a)
mex mek reRM
éji_Tmax Z Z b;‘?rAT SO A iEN,jEN (C4b)
mek reRM
Gii— ), ¢ <0 VieN,jeN (C4c)
mek
b+ Y Y dArAT —t <0 Y (i,j) €P (C5)
mekr reRm
ti—tj= 0 4 (l,]) €Ss. (C6)

As in (3.1), the optimization objective (B.1) is the minimization of the weighted sum of
delay and routing costs which consider both driving as well as task processing times.
The problem constraints require each agent to perform one (potentially empty) route
(C1) and each task to be performed exactly once (C2). Constraints (C3)-(C4c) ensure
the time and delay variables to be consistent and (C5) and (C6) model the precedence
and synchronization constraints, respectively.

To exactly solve the MRTA problem, the relevant branching rules of [Kor11] and their
order are adapted, which yields: branching on task pairs occurring on the same route,
branching on pairwise task’s order for tasks allocated to the same agent’s route and
branching on a task being allocated to a specific agent. To generate new profitable
routes, the pricing subproblem is solved using a depth-first search and column man-
agement according to [Korll]. A more detailed algorithmic description can be found
in [Kor11, Chapter 5].

B.3 Consideration of Complex Dependencies

In this section, three approaches on how to extend the previously introduced BnP ap-
proach to handle also compex tasks and thus heterogeneous, time-extended MRTA
problems with precedence and synchronization constraints and complex dependen-
cies, are introduced. These approaches have been established in the master thesis of
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Woran [W623] supervised by the author and have been published in conference pro-
ceedings by the author [BWRH24]. They are based on modeling complex tasks as task
trees, which is presented in the following section.

B.3.1 Modeling of Complex Tasks

In this section, the modeling of complex tasks (see Section 2.1) using task trees as
introduced by Zlot [ZS06] is presented. This representation of complex tasks is applied
in the following in order to extend the problem defined in Section B.2 towards complex
tasks.

Task trees apply AND and OR operators to define how tasks are interconnected. Tempo-
ral constraints are allowed but only between simple tasks which both are direct sub-
nodes of the same AND-operator. One exemplary task tree with temporal constraints is
shown in Figure B.2. Within this example, the overall problem contains seven simple
tasks. Tasks ng and ny; must both be executed with ny proceeding n4. Additionally,
either task nq, or tasks np and n3, or tasks n4 and 15 must be executed by the agents. If
tasks 72 and n3 are chosen, these are related by a precedence constraint py3 = 1, and if
tasks n4 and 15 are chosen, they are related by a synchronization constraint sy 5 = 1.

The consideration of complex tasks changes the MRTA problem with cross-schedule
dependencies presented in Section B.2. The combination of all simple tasks (all leafs in
a task tree) which originate from the complete decomposition of the original tasks from
the overall problem result in the set of fully decomposed simple tasks A. If complex
tasks are contained within the problem instance, only a subset of N’ must be executed.
Thus, not only must an optimal task allocation and task scheduling be determined, but
also must the problem of task decomposition be solved to optimality. These problems
influence each other.

To handle this extended MRTA problem, three approaches called decomposition method,
decision variable method and cluster method are presented in the following.

Figure B.2: Exemplary task tree with time constraints. The overall problem is located at the top and each
of its subnodes must be fulfilled. Operators are labeled with “AND" or “OR". All leafs of the tree
represent simple tasks. Precedence constraints and synchronization constraints are visualized
with purple and orange arrows, respectively. The figure is adapted from [W623].
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B.3.2 Decomposition Method

The decomposition method considers all possible decompositions of the complex tasks
contained in a problem instance in a complete enumeration approach.

In a first step all minimal decompositions of the overall problem must be determined. A
decomposition contains a subset of the simple tasks of the overall task set A" which must
be part of the solution. A decomposition is considered to be minimal if the decomposi-
tion solves the overall problem, but no strict subset of the tasks of the decomposition
does. For the example depicted in Figure B.2 the set of tasks {0,5,6} is a minimal
decomposition because none of its strict subsets fulfils the overall problem but the set
itself does. On the other hand, the set {0,2,5,6} also fulfils the overall problem, but
it is not minimal, because {0, 5,6} is a strict subset of it. All minimal decompositions
and corresponding task trees only containing simple tasks of the example depicted in
Figure B.2 are given in Figure B.3.

All minimal decompositions of a problem instance can be determined with an iterative
approach: The problem instance itself is modeled as a task tree with the root node
being an AND operator. Each AND and OR operator contains a set of suboperators and
a set of simple subtasks, both of which can potentially be empty. Starting at the root
node, the possible decompositions are determined iteratively. For each AND operator, its
simple suptasks are added to all possible decompositions determined so far. For each
OR operator, new decompositions are created for each subtask and for each possible
decomposition of its suboperators. Starting at the root node, the decompositions are
determined by iteratively assessing all subtasks and suboperators.

After the determination of all minimal decompositions of the overall problem, for each
minimal decomposition a separate subproblem is created that only contains the set of
simple tasks necessary for the respective decomposition. Each of these subproblems is
an MRTA problem with at most cross-schedule dependencies (see Section 2.1), i.e. all
simple task must be part of the solution. This reduces the complexity of the problem
to only contain the problems of task allocation and task scheduling. As a result, each
subproblem can be modeled and solved by the original BnP approach described in
Section B.2. After the solution is calculated for every possible subproblem, the one with
the smallest objective function value solves the overall problem globally optimal.

Figure B.3: Minimal decompositions of the exemplary MRTA problem with complex dependencies depicted
in Figure B.2. The figure is adapted from [W623].
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In summary, the decomposition approach separates the problem of task decomposition
from the problems of task allocation and task scheduling and handles them sequen-
tially.
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B.3.3 Decision Variable Method

Contrary to the previously introduced decomposition method, the decision variable
method handles the problems of task decomposition, task allocation and task schedul-
ing simultaneously. This is done by direcly modeling and considering the AND and OR
operators and thus the task trees in the mathematical problem formulation used for
BnP. To accomplish this, a new decision variable j, is introduced for each operator
w € Q) with Q) being the set of all operators within the task tree of a problem instance.
The binary variable y, is equal to one if operator w is fulfilled and zero otherwise.
Additionally, the binary indicator variables s{(\f} and s%  are needed. These are equal
to one if a simple task i, or an operator @ € (), are direct subnodes of operator w.

The constraint

nopo < Y. Y Y SKOEAT + Y sGuta VweQ o (C7)
mek reR™ic N we

limits the p, and must be added to the problem formulation given in Section B.2
provided that the value of 1, is determined by

OR: 1g:=1 (B.2)
AND: ng = Y sM+ Y s2, (B.3)
ieN weQ)

for OR and AND operators, respecitvely. The right part of (C7’) sums up how many
direct subnodes of the operator w are fulfilled. The 7, indicates how many subnodes
of operator w must at least be fulfilled to satisfy the operator w itself. Thus, for
the fulfillment of OR operators, at least one subnode must be fulfilled, while for the
fulfillment of AND operators all direct subnodes must be fulfilled.

Moreover, constraint (C2) of the original problem formulation given in Section B.2
must no longer be fulfilled if complex tasks are contained in the problem instance. It
ensures all simple tasks to be executed, which is not necessary anymore as soon as OR
operators are contained in the problem instance. For problem instances with complex
dependencies, all direct subtasks and suboperators of the overall problem must be
fulfilled. Let these direct subtasks and operators be contained in the sets £ and L,
respectively. By replacing constraint (C2) with the constraints

Z Z bIAT =1 vViel (C2a))
mel reR™
Yo ) ppAar<a VieN\E (C2a)
mel reR™
Ho =1 Vwel (C2b))
o <1 VweQ\L (C2by)

the wanted behavior is ensured. Equation (C2a)) ensures all direct subtasks of the
overall problem to be fulfilled, while (C2a}) makes sure that all other elemental tasks
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are executed at most once. The same is ensured for the fulfillment of the operators by
(C2b}) and (C2b)).

The changes in the LP require the introduction of additional branching rules. The
branching rules applied for the MRTA problem instances with cross-schedule depen-
dencies and their priorization are preserved, i.e. branching on task pairs occurring
on the same route, branching on pairwise task’s order for tasks allocated to the same
agent’s route and branching on a task being allocated to a specific agent (see Section B.2
and for more details refer to [Korll, Chapter 5]). If none of these branching rules are
applicable, the additional branching rules are applied in the following order:

Branching on the execution of an operator:
The binary decision variable y, determines whether an operator w is fulfilled
or not. If the value of any ., obtained from solving the problem relaxation is
non-binary, one branch forces the respective operator to be fulfilled, while the
other forces it to not be fulfilled, i. e.

left branch: Ho =1
right branch: o =0

In case several variables i, are non-binary, the one having the value closest to 0.5
is chosen for branching, as customary.

Branching on the execution of a task:
For each simple task i € N, Y c Lyerm bif A determines whether a task is fully
executed in a solution to the problem relaxation or not. If the value is non-binary,
one branch forces the respective task to be executed, while the other forces it to
not be executed, i. e.

left branch: Yomek Lrerm DAY =1
right branch: Yomek Yrerm DAY =0

In case several tasks are only partially executed, the task i € N is considered for
branching, for which },, cx },crm bjf A} is closest to the value of 0.5.

One restriction to the decision variable approach is that simple task are allowed to
only be used once in the task tree of the overall problem. If this restriction is neglected
and a task is used multiple times in the tree, the LP sums several times over this task
which can results in impermissible solutions. However, every MRTA problem with
complex tasks can be formulated such that each simple task is contained only once in
the overall task tree. An example of an infeasible task tree and a corresponding feasible
representation of the same problem instance is depicted in Figure B.4.

B.3.4 Cluster Method

Another approach to simultaneously handle of task decomposition, task allocation,
and task scheduling is the cluster method. It is based on the idea of partitioning the
set of simple tasks A into pairwise disjoint sets of task clusters C. The set containing
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(b) Reformulation of the task tree that is feasible for the
(a) Task tree infeasible for the decision variable method. decision variable method.

Figure B.4: Example of a feasible reformulation of an infeasible task tree for the decision variable method.
The figure is adapted from [W623].

all clusters is given by Cy-. The clusters are defined such that the junction of all clusters
equal the task set, i.e.
UCECZC =N. (B.4)

Each cluster C either contains an elemental task or all elemental tasks belonging to a
complex task of the overall problem. Thus, every direct subtasks of the overall problem
is stored in a separate cluster. Each elemental task is only allowed to be used in one
cluster. Weight parameters are used to model possible task decompositions. Each
task n; € N has a corresponding task weight g; and each cluster C € Cy is allocated
to a corresponding cluster weight g¢. The weights are chosed such that for all valid
minimal task decompositions

Yo N Y gibiAy = vV CecCy (C2a")

mek reR"™ieC

is fulfilled. Constraint (C2a’’) ensures, that the sum of weights g; of executed tasks
equals the cluster weight g¢ of each cluster C.

An example of a problem with complex tasks and corresponding clusters, task and
cluster weights is depicted in Figure B.5. In this example, the elemental tasks are split
into three clusters C; = {n1}, C; = {ny2} and C3 = {n3, n4,ns,ng}. Clusters C; and C;
only contain one simple task each, thus (C2a”) is fulfilled for these clusters with the
weights being set to g¢, = g1 and g¢, = g2, which are all set to equal 1 in this example.
The complex task represented by cluster Cs is fulfilled, if either task n3, or tasks 14 and
ng, or tasks ns and ng are executed. This is represented by setting the cluster weight to
gc, = 3 and the task weights to g3 =3, g4 = g5 = 2, and g¢ = 1.

As explained in the previous section, constraint (C2) that ensures the fulfillment of
all simple tasks, must be neglected when considering complex tasks. In the cluster
method, (C2) is replaced by constraint (C2a”). In the relaxed problem formulation
additionally

AM <] VreR" meKk (C2b")

must be considered to prevent manifold utilization of routes to fulfill (C2a").
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For the determination of a valid set of weight parameters, an ILP can be formulated
for each cluster C € Cy. The division into separate weight determination problems for
each cluster is possible due to the restriction of each simple task only being contained
in one cluster, i.e. the clusters being disjoint. To find the cluster and task weights
for a cluster C € Cy,, all possible task subsets Bz C C are determined and separated
into two disjoint subsets By and B". All valid minimal cluster decompositions are
contained in B(‘/ial, while Bicr“’ consists of all subsets that do not form a valid minimal
decomposition of the cluster C.

The ILP seeks to find integer task and cluster weights greater zero such that the cluster
weight g¢ is minimal and the task weights of all valid minimal decompositions sum
up to the cluster weight, i. e.

min g¢ (B.5)
st ) gi=gc V Be € B, (B.6)

i€Be

g €N ViecN, (B.7)

gc €N vV Ce Cz. (B.8)

However, (B.7) must not be fulfilled for any invalid decomposition Bz € BIY of the
cluster C. Thus, after solving the ILP it is checked if any subset of tasks By € B
exists, that fulfills }; 5, gi = g¢. If this is the case, the constraint

Y gi>gc+1 (B.9)

iGBC

Figure B.5: Example of clusters, cluster weights and task weights in an MRTA problem instance with com-
plex dependencies. The Figure is based on [W623].



XVIII B Branch-and-Price for Time-Extended MRTA Problems with Complex Dependencies

is added to the ILP and it is solved anew. This process is repeated until no further
Be € BgW tulfilling (B.7) can be found, which ensures the weights to be suitable.

As for the decision variable method (see Section B.3.3), also for the cluster method
the changes in the problem formulation require an additional branching rule. First,
the branching rules as given for the MRTA problem instances with cross-schedule
dependencies and their priorization are used (see Section B.2 and for more details
refer to [Kor11]). If none of these rules are applicable, the branching on the execution
of a simple task as explained in the previous Section B.3.3 is applied.

B.4 Evaluation of the Proposed Methods

To compare the previously introduced decomposition method (see Section B.3.2), de-
cision variable method (see Section B.3.3), and cluster method (see Section B.3.4), an
evaluation with problem instances differing in the amount and types of complex tasks
is conducted. The results of this evaluation have been published in [BWRH24].

Overall, seven different problem specifications are considered. They all contain eight
simple tasks and three homogeneous agents, but differ in the amount and the type of
complex tasks the simple tasks are combined to. The amount and type of complex tasks
considered in the different problem specifications are depicted in Figure B.6. For each
problem specification, in total ten problem instances are considered. For each problem
instance, the initial positions of the agents and the positions of the simple tasks are
chosen randomly over an uniform distribution of an area of the size 10 x 15. The basic
durations of the tasks are randomly sampled from a uniform distribution over the
interval [0,30]. For comparability of the results, the tasks’ positions and durations are
equal for all problem specifications.

The results of the calculation times required by the different solution approaches are
given in Table B.3.

Table B.3: Results on the calculation time in seconds (mean and standard deviation) required by the pro-
posed BnP approaches for solving MRTA problem instances with different complex tasks.

Problem Decomposition Decision variable Cluster
specification method method method
mean SD mean SD mean SD

A 31.77 10.57 33.03 11.22 33.47 11.55

B 8.24 1.08 25.72 4.60 16.80 4.12

C 3.21 0.25 19.72 11.74 14.89 10.13

D 2.01 0.20 15.10 9.38 11.06 7.37

E 1.19 0.05 20.54 25.93 23.04 34.54

F 1.60 0.15 19.71 8.65 333.86  709.62

G 0.30 0.01 20.77 1538 | 1987.52  2330.27
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Figure B.6: Overview of the task trees of the different problem specifications considered for the evaluation
of the BnP decomposition, decision variable and cluster method. The figure is based on [W623].
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All proposed BnP methods are capable to exactly solve the examined MRTA problem
instances. The calculation time required by the three methods to solve the problem
instances of specification A without any complex tasks is very similar.

Independent of the amount and type of complex tasks contained in the problem in-
stance, the decomposition method requires the least calculation time. The results in-
dicate that the fewer tasks are simple, the less calculation time is needed by the de-
composition approach to solve the respective problem instances. For this method, the
influence of exponentially less calculation time needed for time-extended MRTA prob-
lem instances with fewer simple tasks (see Section 5.2) predominates the additional
calculation time needed for the determination of possible minimal decompositions.

For the decision variable method and the cluster method, the mean calculation time
required to solve problem instances with complex tasks that only contain two simple
tasks linked by an OR operator (problem specifications B-E), also decreases compared to
the calculation time required to solve problems only containing simple tasks (problem
specification A). However, the consideration of complex tasks linking four simple tasks
with more operators (problem specifications F and G) significantly increases the calcu-
lation time required by the cluster method to on average up to more than 33 min for
problem specification G. In these cases, more branches are needed to solve the prob-
lem instances using the cluster approach, which results in higher calculation times. In
contrast to this, the average calculation time required by the decision variable method
to solve these problem instances remains approximately constant around 20s. Thus,
between these two methods, the decision variable method can be clearly favored over
the cluster approach if complex tasks linking many simple tasks are contained in the
problem instance.

Overall, all methods are capable of solving the considered time-extended MRTA prob-
lem instances with complex dependencies. The decomposition method clearly yields
the best results and handles complex tasks the fastest. However, further optimization
of the decision variable method and the cluster method probably is possible, e.g. by
optimizing the order of the branching rules.



C Additional Evaluation Results

In this chapter, results supplementary to the evaluation presented in Chapter 5 are
given.

C.1 Evaluation Scenario 1 — Different Sizes of Problem
Instances

In this section, the additional results of evaluation scenario 1 are given. They include
the results on the approximation ratio and the Levenshtein distance for the modifica-
tions of task insertion and task deletion. For both, the mean values and the standard
deviations over the 50 modified problem instances of one specification are given in
Tables C.1 and C.3, respectively.
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Table C.1: Evaluation scenario 1: Results on the approximation ratio # (mean and standard deviation) for
the modifications of task insertion and task deletion.

Reoptimization GA-based Conventional

Variation heuristic reoptimization GA
mean SD mean SD mean SD

2 | 1.0089 0.0351 | 1.0 0.0 1.0 0.0

» 3 | 1.0108 0.0265 | 1.0 0.0 1.0 0.0
":é 4 | 1.0092 0.0196 | 1.0032 0.0084 | 1.033 0.0621
%’ 5 | 1.0096 0.0181 | 1.0089 0.0166 | 1.1114 0.09
5 6 | 10082 00173 |1.0078 0.0159 | 1.1798  0.0969
@ 7 | 1.0078 0.0167 | 1.0078 0.0167 | 1.247  0.0786
5 8 | 10078 0.0151 | 1.0078 0.0151 | 1.3117 0.0775
g < 9 | 10071 0012 1.0071  0.012 1.3794  0.1054
g 10 | 1.0071  0.0121 | 1.0071  0.0121 | 1.4342  0.0994
g 1 |1.0044 0.0132 | 1.0044 0.0132 | 1.1451 0.0564
”:é 2 | 1.0053 0.0153 | 1.0053 0.0153 | 1.1848  0.062
B ‘E 3 | 1.0043 0.0101 | 1.0043 0.0101 | 1.2537  0.0686
%o 4 | 1.0067 0.016 1.0067  0.016 1.3411  0.0833
%= 5 | 1.0065 0.0151 | 1.0065 0.0151 | 1.4004 0.1195
g 6 | 10043 0.0103 | 1.0043 0.0103 | 1.4884  0.1468
g 7 |1.0032 0.0092 | 1.0032 0.0092 | 1.5418 0.1542
2 8 | 1.0016 0.0045 | 1.0016  0.0045 | 1.5999  0.1659
9 |1.0009 0.0036 | 1.0009 0.0036 | 1.6512  0.1809
10 | 1.0011  0.0039 | 1.0011  0.0039 | 1.6947  0.1936

1 | 1.0134 0.0538 | 1.0 0.0 1.0 0.0

» 2 | 10021 0.0091 | 1.0 0.0 1.0 0.0

’;‘(@ 3 | 1.0049 0.0165 | 1.0 0.0 1.0 0.0
%’ 4 | 1.0051 0.0161 | 1.0008 0.0038 | 1.0242  0.0371
5 O | 10047 00123 | 1.0026  0.008 1.0825  0.0738
Jé 6 | 1.0042 0.012 1.0042  0.012 1.1584  0.0695
5 7 | 10047 0.0133 | 1.0047 0.0133 | 1.2469  0.0904
g Z 8 | 10032 00094 |1.0032 00094 |1.3126 0.099
';3 9 |1.0038 0.0102 | 1.0038 0.0102 | 1.373 0.0874
e 1 |1.0023 0.0061 | 1.0023 0.0061 | 1.1281  0.0462
é 2 | 1.002 0.0076 | 1.002 0.0076 | 1.1763  0.0576
= £ 3 | 10017 00047 |1.0017 00047 |1.2584 0.0839
%o 4 | 1.0029 0.006 1.0029  0.006 1.3406  0.098
%= 5 | 1.0038 0.0077 | 1.0038 0.0077 | 1.4081  0.1349
g 6 | 1.0048 0.01 1.0048 0.01 14605 0.1395
"é 7 | 1.0084 0.0188 | 1.0084 0.0188 | 1.5196 0.1388
2 8 | 1.0082 0.0196 | 1.0082 0.0196 | 1.5605 0.1425
9 | 1.005 0.0111 | 1.005 0.0111 | 1.626 0.1704
10 | 1.0037  0.0095 | 1.0037  0.0095 | 1.6663  0.1595
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Table C.2: Evaluation scenario 1: Results on the calculation time in seconds (mean and standard deviation)
of the for the modifications of task insertion and task deletion.

Reoptimization GA-based Conventional Branch-and-
Variation heuristic reoptimization GA price

mean SD mean SD mean SD mean SD
2 |0.0013 0.0004 |10.9004 0.05 10.9161 0.1194 0.0069  0.0007
» 3 |0.0014 0.0043 |12.3838 0.0488 |12.3933 0.0587 0.0156  0.0051
"é 4 |0.0016 0.0046 |13.8013 0.0527 |13.8015 0.0587 0.0327  0.0074
& 5 [0.0019 0.0048 |152781 0.1023 |15.2705 0.0847 0.1031 0.0249
; 6 |0.0025 0.0054 |16.7087 0.0757 |16.7185 0.0858 0.3469  0.0616
Jé 7 10.0022 0.0053 |18.0411 0.0995 |18.0373 0.0949 14312 0.3633

5 8 |0.0022 0.0052 |19.4094 0.0936 | 19.4468 0.0937 82996  2.593
5 Z 9 00023 0.0054 |20.8564 0.1147 |20.8121 0.1048 55.9639  21.2503
'*é’ 10 | 0.0025 0.0055 |22.2244 0.0863 |22.2249 0.1048 | 372.5452 158.5708
g 1 ]0.0019 0.0022 |15.921 0.0719 | 159246 0.1182 43638  1.803
"fc@ 2 [0.0025 0.0034 |17.6509 0.0809 |17.661 0.0839 7.8432  3.2909
= ‘3 3 [0.0025 0.0057 |19.3867 0.0779 |19.3918 0.0823 10.1442 9422
%D 4 10.0028 0.0059 |21.0468 0.1196 |21.0344 0.0957 12.8124  3.9262
«= 5 |0.0025 0.0055 |22.8387 0.2505 |22.7884 0.2103 14.8944  4.6895

g 6 [0.0028 0.0057 |24.5158 0.1037 |24.4983 0.1292 17.6627  5.53
g 7 10.0032 0.0061 |26.2178 0.151 26.2237 0.1251 19.0405  6.7351
2 8 |0.0034 0.0051 |28.1031 0.1632 |28.0873 0.1753 21.1797  7.2234

9 |0.0033 0.004 |29.7958 0.1522 |29.8024 0.1665 21.795 7.068
10 | 0.0035 0.0064 |31.6498 0.2653 |31.6617 0.2149 241618 82775
1 10.0009 0.0037 | 9.5308 0.0423 9.5312 0.0373 0.0025  0.0054
» 2 |0.0013 0.004 |11.0164 0.0537 |11.0232 0.0518 0.0065  0.0065
";é 3 [0.0013 0.0042 |12.4531 0.05 12.4398 0.0491 0.0147  0.0066
%‘ 4 |0.0016 0.0047 |13.8258 0.066 13.8103 0.0487 0.0341 0.008
5 © | 00016 0.0047 | 15.3255 0.1074 |15.3068 0.0764 0.0954  0.0217
Jé 6 |0.0016 0.0046 |16.6686 0.096 16.6834 0.0757 0.3292  0.0761
5 7 |0.0019 0.0048 |18.0936 0.0956 | 18.088 0.081 1.4009  0.3368
g Z 8 0002 0005 |19.4686 0.09 19.4727 0.0959 8.0993  1.9977
E 9 |10.0025 0.0057 |20.8409 0.14 20.8148 0.1726 55.4437  18.5293
e 1 10.0019 0.0025 |16.1969 0.0761 |16.1922 0.0668 44595  1.3539
—ffg 2 |0.0022 0.0052 |18.0362 0.1354 |18.0242 0.1025 7.8452 24496
= *E 3 10.0022 0.0054 |19.7478 0.0845 |19.7827 0.1194 10.9295  3.3378
go 4 10.0025 0.0056 |21.3566 0.1015 |21.3315 0.0883 14.6456  4.6009
w5 |0.0025 0.0056 |23.0555 0.1043 |23.0463 0.1046 149673  4.0564
g 6 ]0.0028 0.0031 |24.9809 0.1288 |24.9546 0.1051 17.9851  5.5919
@ 7 10.0029 0.0032 |26.8527 0.108 26.8028 0.166 20.6745  6.8098
2 8 [0.003 0.0028 |28.6156 0.13 28.6224 0.1683 | 21.7446  7.8269
9 [0.0033 0.0036 |30.3814 0.1533 |30.3969 0.1446 | 24.179 8.1451
10 | 0.0031 0.006 |32.1636 0.1524 |32.1096 0.1326 | 25.949 8.2305
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Table C.3: Evaluation scenario 1: Results on the Levenshtein distance (mean and standard deviation) for the
modifications of task insertion and task deletion.

Reoptimization GA-based Conventional Branch-and-

Variation heuristic reoptimization GA price
mean SD mean SD mean SD mean SD
2 |10 0.0 1.24 0.6499 1.24 0.6499 | 1.24 0.6499
w 3 |10 0.0 1.52 1.0438 1.82 1.0713 | 1.74 1.0356
f‘c@ 4 |10 0.0 1.78 1.6887 3.12 1.9559 | 2.32 1.7022
& 5 |10 0.0 1.12 0.621 5.14 2.2804 | 2.96 2.5997
; 6 |1.0 0.0 1.14 0.98 6.16 2.361 3.22 2.8516
@ 7 |10 0.0 1.0 0.0 7.32 2.5569 | 4.26 3.8513

5 8 |10 0.0 1.0 0.0 9.22 2.5868 | 5.0 5.02
g Z 9 |10 0.0 1.0 0.0 10.48 2.8301 | 5.48 5.714
g 10 | 1.0 0.0 1.0 0.0 11.82 2.7254 | 6.34 5.6413
& 1 |10 0.0 1.0 0.0 5.26 15338 | 3.5 2.7659
"é 2 |10 0.0 1.0 0.0 8.64 3.242 478 4.5046
= *E 3 |10 0.0 1.0 0.0 8.98 2.4289 | 5.02 4.3474
go 4 |10 0.0 1.0 0.0 10.04 2.441 4.8 4.6476
w 5 |10 0.0 1.0 0.0 9.58 2.384 3.48 4.1484
g 6 |10 0.0 1.0 0.0 9.86 2.2892 | 3.2 3.1048
”g 7 |10 0.0 1.0 0.0 10.54 2.1091 | 2.52 2.5631
E 8 | 1.0 0.0 1.0 0.0 10.38 1.8643 | 2.36 2.0274
9 |10 0.0 1.0 0.0 10.76 2.1407 | 2.04 1.7316
10 | 1.0 0.0 1.0 0.0 10.52 2.0808 | 2.14 1.8656
1 |10 0.0 1.12 0.475 1.12 0.475 1.12 0.475
» 2 |10 0.0 1.16 0.5044 1.58 0.8022 | 1.3 0.6403
f‘z@ 3 1.0 0.0 1.9 1.7464 2.44 1.6752 | 2.06 1.7252
S 4 |10 0.0 1.68 1.5677 3.98 21771 | 2.3 1.9723
; 5 1.0 0.0 1.44 1.6144 6.1 2.3937 | 2.72 2.8847
% 6 |10 0.0 1.24 1.68 7.46 2.9679 | 3.44 3.5505
5 7 |10 0.0 1.0 0.0 9.48 2.9205 | 3.2 3.7736
g Z 8 |10 0.0 1.0 0.0 11.52 3.1064 | 4.4 4.4362
E 9 |10 0.0 1.0 0.0 13.24 2.8111 | 4.8 5.4699
. 1 110 0.0 1.0 0.0 6.66 1.38 2.74 2.8622
—f@ 2 |10 0.0 1.0 0.0 9.6 2.569 3.3 3.7216
a *E 3 |10 0.0 1.0 0.0 10.5 2.816 4.52 4.4955
go 4 10 0.0 1.0 0.0 10.9 2.6401 | 4.6 4.5431
w 5 |10 0.0 1.0 0.0 11.4 2.8496 | 4.5 4.5706
g 6 |10 0.0 1.0 0.0 11.46 2.5156 | 4.38 4.5028
@ 7 | 1.0 0.0 1.0 0.0 12.24 24622 | 4.28 4.4228
E 8 | 1.0 0.0 1.0 0.0 13.04 2.163 3.48 4.3965
9 |10 0.0 1.0 0.0 12.32 2.2578 | 3.32 4.1638
10 | 1.0 0.0 1.0 0.0 12.7 2.2561 | 3.08 3.3873
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C.2 Evaluation Scenario 2 — Different Heterogeneity
Levels

The additional results of evaluation scenario 2 are given in this section. First, the results
on the approximation rations for the modifications of task insertion, task deletion, task
position variation, task duration variation, agent capability variation and agent velocity
variation are given in Tables C.4 to C.7. This is followed by the results on the calculation
times in Tables C.8 to C.11 and the Levenshtein distances in Tables C.12 to C.15.
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Table C.4: Evaluation scenario 2: Results on the approximation ratio # (mean and standard deviation) for
the modifications of task insertion and task deletion.

'g Reoptimization GA-based Conventional
S Level heuristic reoptimization GA
c v d mean SD mean SD mean SD
0 00 1.0 0.0 1.0 0.0 1.0 0.0
1 0 0 1.0058 0.0122 | 1.0058  0.0122 | 1.3223  0.0884
2 0 0 1.0098  0.0306 | 1.0098 0.0306 | 1.2784  0.1028
300 1.0049 0.0214 | 1.0019 0.0058 | 1.0882  0.0812
01 0 1.0 0.0 1.0 0.0 1.0 0.0
- 0 20 1.0012  0.0036 | 1.0012 0.0036 | 1.7153  0.2071
g 210 1.0081  0.0221 | 1.0081  0.0221 | 1.28 0.1031
822 0 1.0111  0.0346 | 1.0102 0.0312 | 1.3551  0.1509
g0 0 1 1.0 0.0 1.0 0.0 1.0 0.0
é 0 0 2 1.0051 0.0163 | 1.0051 0.0163 | 1.2924  0.0818
F 201 1.0094 0.0279 | 1.0094 0.0279 | 1.3155  0.0943
2 0 2 1.0084 0.0242 | 1.0084 0.0242 | 1.2757  0.0884
0 2 1 1.0012  0.0035 | 1.0012 0.0035 | 1.7538  0.164
0 2 2 1.0009  0.0027 | 1.0009 0.0027 | 1.5848 0.17
2 21 1.0097  0.0294 | 1.0097  0.0294 | 1.3511 0.1499
2 2 2 1.0083  0.0263 | 1.0083  0.0263 | 1.3686  0.1403
0 00 1.0083  0.0147 | 1.0083  0.0147 | 1.3576  0.1097
1 0 0 1.0055 0.0111 | 1.0055 0.0111 | 1.3268 0.1117
2 00 1.0054 0.0151 | 1.0054 0.0151 | 1.2937  0.0902
300 1.0056  0.017 1.0051  0.016 1.0806  0.0927
01 0 1.0046  0.0147 | 1.0046 0.0147 | 1.4407 0.1062
. 020 1.0055 0.0152 | 1.0055 0.0152 | 1.7356  0.1885
g 210 1.0041 0.0106 | 1.0041 0.0106 | 1.2939  0.1023
- 220 1.0052  0.0166 | 1.0052 0.0166 | 1.3495 0.1376
E 0 0 1 1.0083  0.0146 | 1.0083  0.0146 | 1.3649  0.1073
2 0 0 2 1.0069 0.0118 | 1.0069  0.0118 | 1.3108  0.096
20 1 1.0049 0.0125 | 1.0049 0.0125 | 1.3094  0.1049
2 0 2 1.0027  0.0077 | 1.0027  0.0077 | 1.3063  0.0897
0 2 1 1.0055 0.0149 | 1.0055 0.0149 | 1.7532  0.1819
0 2 2 1.0044 0.0119 | 1.0044 0.0119 | 1.6319  0.1854
2 21 1.0046 0.0132 | 1.0046 0.0132 | 1.3742  0.1394
2 2 2 1.0075 0.0183 | 1.0075 0.0183 | 1.3866  0.1364
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Table C.7: Evaluation scenario 2: Results on the approximation ratio # (mean and standard deviation) for
the modifications of agent capability variation and agent velocity variation.

'g INT GA-based Conventional
= Level heuristic reoptimization GA
¢ v d | mean SD mean SD mean SD
0 0 0|10 0.0 1.0 0.0 1.3232  0.1145
1 0 0 |1.005 0.016 1.005 0.016 1.3296  0.0945
2 0 0 |1.0051 0.0181 | 1.0051 0.0181 1.3105 0.1014
< 3 0 0 |1.0435 0.1015 | 1.0361 0.0768 1.1322  0.1348
% 0 1 0 |1.0023 0.0082 | 1.0023  0.0082 1.4151  0.1022
s 0 2 0 |1.0003 0.0019 | 1.0003  0.0019 1.7271  0.1761
; 2 1 0 |1.0104 0.0348 | 1.0104 0.0348 1.3142  0.1339
= 2 2 0 |1.0265 0.0703 | 1.0262  0.0694 1.3681  0.163
% 0 0 1|10 0.0 1.0 0.0 1.3491 0.1161
%* 0 0 2|10 0.0 1.0 0.0 1.2938  0.0996
= 2 0 1 |1.0016 0.0083 | 1.0016  0.0083 1.3144  0.1067
&% 2 0 2 |1.0015 0.0074 | 1.0015  0.0074 1.3216  0.0875
< 0 2 1 |1.0003 0.0012 |1.0003  0.0012 1.7674  0.2062
0 2 2 | 10019 0.0093 | 1.0019  0.0093 1.6341 0.1571
2 2 1 |1.0377 0.0904 | 1.0377  0.0904 1.4171  0.1568
2 2 2 | 10081 0.0297 | 1.0081 0.0297 1.4133 0.173
0 0 0 |1.1094 0.1536 | 1.1048  0.1409 1.4811 0.1543
1 0 0 | 11318 0.1658 | 1.1289  0.161 1.4495 0.125
2 0 0 |1.04 0.0952 | 1.04 0.0952 1.3318  0.1642
3 0 0 |1.0033 0.0159 | 1.0033  0.0159 1.0787  0.0821
_S 0 1 0 |11219 0.1634 | 1.1183  0.1567 1.5095 0.182
.§ 0 2 0 | 10302 0.067 1.0302  0.067 1.8024  0.3261
S 2 1 0 |10331 0.0892 | 1.0331 0.0892 1.352 0.1818
2 2 2 0 [1.0254 00709 |1.0248  0.0687 14124  0.2138
§ 0 0 1 |11109 0.1556 | 1.1042  0.1394 1.4879  0.1511
£ 0 0 2 |1.0913 0.1287 | 1.0853  0.1159 1.3903  0.1454
g 2 0 1 |1.029 0.0741 | 1.029 0.074 1.3386  0.1614
::o 2 0 2 | 10193 0.0596 | 1.0185  0.0585 1.3336  0.1432
0 2 1 |1.0299 0.0658 | 1.0299  0.0658 1.8244  0.2888
0 2 2 | 1023 0.0509 | 1.0236  0.0509 1.6257  0.2061
2 2 1 | 10252 0.0802 | 1.0252  0.0802 1.3956  0.1726
2 2 2 | 10061 0.0282 | 1.0061 0.0282 1.3927  0.1657
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Table C.8: Evaluation scenario 2: Results on the calculation time in seconds (mean and standard deviation)

for the modifications of task insertion and task deletion.

-g Reoptimization GA-based Conventional Branch-and-
= Level heuristic reoptimization GA price
c v d mean SD mean SD mean SD mean SD
0 0 O 0.0018 0.0048 | 19.5509 0.2149 | 19.547 0.1211 | 7.4716 2.7478
10 0 0.0027 0.0056 | 19.6815 0.1033 | 19.6993 0.0993 | 8.2547 2.7195
2 00 0.003  0.0061 | 19.7718 0.1248 | 19.7833 0.133 34833 1.4647
3 00 0.0028 0.0059 | 19.8405 0.145 19.8314 0.1299 | 0.8641 0.9172
01 0 0.0018 0.0048 | 19.8157 0.1367 | 19.8131 0.1175 | 7.1199 2.2529
< 020 0.0023 0.0041 | 19.8423 0.1077 | 19.8121 0.1129 | 49871 1.8414
g 210 0.002  0.0049 | 19.7807 0.1118 | 19.7582 0.1244 | 3.5387 1.6199
822 0 0.0032 0.0115 | 19.5568 0.1377 | 19.5616 0.1238 | 2.8643 1.1284
g0 0 1 0.003  0.0058 | 19.6011 0.1872 | 19.6192 0.141 7.8474  2.6915
f‘z@ 0 0 2 0.002  0.005 | 19.6335 0.1201 | 19.6388 0.1302 | 9.3631 3.7387
= 2 0 1 0.0029 0.0056 | 20.1354 0.1556 | 20.1432 0.1906 | 3.4105 1.1839
2 0 2 0.0027 0.0057 | 20.2188 0.1475 | 20.2094 0.1797 | 4.1998 1.4018
0 2 1 0.0022  0.005 | 20.1099 0.1211 | 20.1329 0.144 5.2483  2.1102
0 2 2 0.0022  0.0051 | 20.2562 0.131 20.2468 0.1368 | 6.4756 2.6726
2 21 0.0019 0.0048 | 20.228  0.1116 | 20.2579 0.1024 | 29706 1.309
2 2 2 0.002  0.0051 | 20.2004 0.1668 | 20.2002 0.1531 | 3.9252 1.2333
0 00 0.0014 0.0038 | 19.5194 0.1834 | 19.5298 0.1221 | 7.7449 3.2936
1.0 0 0.0025 0.0053 | 19.6969 0.1256 | 19.7175 0.2361 | 7.3883 1.9772
2 00 0.0014 0.0042 | 19.7675 0.1089 | 19.7468 0.1096 | 3.1314 1.0324
3 00 0.0022  0.0051 | 19.8433 0.2046 | 19.803  0.1048 | 0.5246 0.527
01 0 0.0023 0.0054 | 19.814 0.1141 | 19.8109 0.17 7196  2.1659
s 020 0.0027 0.0041 | 19.8001 0.1053 | 19.8248 0.1223 | 5.4208 1.5175
£ 210 0.0022  0.0054 | 19.7508 0.1166 | 19.7545 0.107 3.2989  1.1706
< 220 0.002  0.0048 | 19.5336 0.1052 | 19.5508 0.123 3.0041 1.2462
E 0 0 1 0.0013  0.0041 | 19.5911 0.1137 | 19.5942 0.1262 | 7.5072 2.3842
2 0 0 2 0.0041 0.012 | 19.657 0.1159 | 19.6313 0.1451 | 9.1899 3.5854
20 1 0.0019  0.0051 | 20.1006 0.1672 | 20.1464 0.1779 | 3.1474 1.1823
2 0 2 0.0021 0.0051 | 20.2136 0.1419 | 20.2353 0.1519 | 3.962  1.2307
0 2 1 0.0023 0.0051 | 20.1149 0.1268 | 20.1488 0.2381 | 5.3867 1.7477
0 2 2 0.0044 0.012 | 20.2183 0.1027 | 20.2359 0.1756 | 7.0591  3.0239
2 21 0.0021 0.0051 | 20.2182 0.145 20.2527 0.1273 | 2.9589  1.2406
2 2 2 0.0025 0.0055 | 20.1906 0.153 20.1983 0.1215 | 3.8086 1.1598
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Table C.11: Evaluation scenario 2: Results on the calculation time in seconds (mean and standard deviation)
for the modifications of agent capability variation and agent velocity variation.

-g INI GA-based Conventional Branch-and-
= Level heuristic reoptimization GA price
¢ v d | mean SD mean SD mean SD mean SD
0 0 0 |0.0009 0.0033 |19.6756 0.2698 19.6742  0.1739 7.7664  2.0276
1 0 0 |0.002 0.0051 | 19.6903 0.1074 19.6725 0.1051 8.3662  2.5361
2 0 0 |0.0021 0.0053 |19.7917 0.1076 19.7878  0.0973 44324  1.8518
< 3 0 0 |0.0025 0.0055 | 19.838  0.1087 19.8123  0.1319 1.2896  1.3567
% 0 1 0 |0.0013 0.0042 | 19.7859 0.12 19.7963 0.1212 7.3291  2.5487
s 0 2 0 |0.0029 0.005 19.8562  0.1998 19.8335 0.1147 | 5.1415 1.541
; 2 1 0 |0.001 0.0035 | 19.726  0.0952 19.7743 0.1457 | 41687 1.9139
= 2 2 0 |0.0024 0.0052 | 19.5368 0.1434 19.5387 0.1199 3.7333  1.6295
é 0 0 1 |0.0012 0.0042 | 19.6051 0.1272 19.6057 0.1175 7.9828 29819
%* 0 0 2 |0.0026 0.0057 | 19.6651 0.1165 19.6306  0.1209 9.3862  3.4826
= 2 0 1 |0.0014 0.0044 |20.1446 0.3216 20.1396 0.2283 42045 1.7895
& 2 0 2 |0.0019 0.0052 |20.2593 0.156 20.2387  0.1609 52096  1.9235
< 0 2 1 ]00017 0.0047 |20.1046 0.1003 20.1228  0.1099 5.0016  1.4141
0 2 2 |00024 0.0053 |20.2075 0.132 20.2349 0.1373 6.5013  1.9478
2 2 1 |00016 0.0044 |20.2412 0.1199 20.251 0.112 41159 1.863
2 2 2 |0.0017 0.0047 |20.1826 0.1293 20.2 0.1261 5.098 3.0656
0 0 0 |0.0025 0.0052 | 19.5416 0.1483 19.5378  0.1404 6.8959  2.2569
1 0 0 |0.0014 0.0042 | 19.6825 0.1157 19.7104 0.1175 7.0591  2.1465
2 0 0 |0.0014 0.0044 | 19.7827 0.0836 19.8109 0.1186 3.5822  1.5602
3 0 0 |0.0006 0.0028 |19.8304 0.1218 19.8106  0.1139 0.7924  1.1997
_5 0 1 0 |0.0021 0.0048 | 19.8014 0.1001 19.8242  0.1196 6.7766  1.9872
.§ 0 2 0 |0.0028 0.005 19.8273  0.0961 19.7952  0.1051 4.8971 1.5333
® 2 1 0 {00027 0.0058 | 19.7802 0.1122 19.7467 0.1151 3.435 1.7146
2 2 2 0 |0.002 0.0047 | 19.5631 0.0986 19.5554  0.1431 29599  1.006
§ 0 0 1 |0.004 0.0102 | 19.5931 0.119 19.6048 0.1156 7.3226  2.6144
£ 0 0 2 |0.0017 0.0047 | 19.7033 0.3094 19.647  0.1222 9.358 3.5496
;:: 2 0 1 |0.0014 0.0043 |20.1307 0.1913 20.1528 0.194 3.4044  1.2675
::D 2 0 2 |0.0018 0.0048 |20.2257 0.1714 20.2357 0.1394 4.6972 2.681
0 2 1 |0.0021 0.0051 |20.0821 0.1121 20.1101 0.1261 5.0114 1.7513
0 2 2 |0.0022 0.0051 |20.2548 0.1482 20.2777  0.2308 6.2563  2.1298
2 2 1 |0.0023 0.0053 |20.2513 0.1365 20.2573  0.1251 3.4895  1.8147
2 2 2 100021 0.0052 |20.2383 0.1401 20.1892  0.1269 4.176 1.7741
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Table C.12: Evaluation scenario 2: Results on the Levenshtein distance (mean and standard deviation) for
the modifications of task insertion and task deletion.

-8' Reoptimization GA-based Conventional Branch-and-
S Level heuristic reoptimization GA price
c v d mean SD mean SD mean SD mean SD
0 0 O 1.0 0.0 1.0 0.0 9.18 28614 | 3.72 4.0745
1 0 0 1.0 0.0 1.0 0.0 954 27583 | 5.22 4.5223
2 00 1.0 0.0 1.0 0.0 824 22677 | 428 3.8473
3 00 1.0 0.0 1.12 0.84 556  1.7454 | 248 2.1377
01 0 1.0 0.0 1.0 0.0 9.66 23031 | 276 3.338
< 020 1.0 0.0 1.0 0.0 824 2294 2.76 2.6348
g2 210 1.0 0.0 1.0 0.0 772 19083 | 4.14 3.6933
822 0 1.0 0.0 1.18 1.26 7.66  1.976 2.84 2.5248
g0 0 1 1.0 0.0 1.0 0.0 9.5 2.8302 | 3.78 4.0264
f‘r@ 0 0 2 1.0 0.0 1.0 0.0 8.96  3.1746 | 4.18 3.9633
F 201 1.0 0.0 1.0 0.0 774 22344 | 40 3.5944
2 0 2 1.0 0.0 1.0 0.0 796  2.0392 | 3.32 3.379
0 2 1 1.0 0.0 1.0 0.0 838  1.875 2.46 2.4836
0 2 2 1.0 0.0 1.0 0.0 8.9 1.9 2.64 2.575
2 21 1.0 0.0 1.0 0.0 746  1.8353 | 3.14 3.0332
2 2 2 1.0 0.0 1.0 0.0 738  1.9687 | 3.06 3.2212
0 0 O 1.0 0.0 1.0 0.0 10.08  2.8484 | 4.74 4.4758
1 0 0 1.0 0.0 1.0 0.0 10.54 24997 | 5.16 5.2129
2 00 1.0 0.0 1.0 0.0 9.92 22525 | 3.14 3.3106
3 00 1.0 0.0 1.16 0.88 574 20766 | 3.28 2.6156
01 0 1.0 0.0 1.0 0.0 11.14  2.8845 | 3.58 3.4934
s 020 1.0 0.0 1.0 0.0 1022 2.0812 | 34 3.1749
£ 210 1.0 0.0 1.0 0.0 1032 3.0948 | 3.06 3.101
< 220 1.0 0.0 1.0 0.0 9.08 22257 | 454 3.8637
E 0 0 1 1.0 0.0 1.0 0.0 994 2716 4.8 4.4091
2 0 0 2 1.0 0.0 1.0 0.0 10.7 2.6401 | 4.48 4.392
200 1 1.0 0.0 1.0 0.0 872 22004 |42 3.7148
2 0 2 1.0 0.0 1.0 0.0 9.56  2.0607 | 226 2.4067
0 2 1 1.0 0.0 1.0 0.0 1052 2.3853 | 3.3 3.1448
0 2 2 1.0 0.0 1.0 0.0 10.56 24262 | 3.24 3.0434
2 21 1.0 0.0 1.0 0.0 8.68 21581 | 3.3 3.1702
2 2 2 1.0 0.0 1.0 0.0 9.2 1.8868 | 3.82 3.5704
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Table C.15: Evaluation scenario 2: Results on the Levenshtein distance (mean and standard deviation) for
the modifications of agent capability variation and agent velocity variation.

'8' INI GA-based Conventional Branch-and-
S Level heuristic reoptimization GA price
¢ v d | mean SD mean SD mean SD mean SD
0 0 0100 0.0 0.0 0.0 9.5 2.8513 | 2.28 3.2499
1 0 0|00 0.0 0.0 0.0 10.08 3.1102 | 3.98 6.0216
2 0 0|00 0.0 0.0 0.0 8.36 25904 | 1.36 3.7135
= 3 0 0100 0.0 0.6 2.4819 6.8 24 2.38 3.5094
-% 0 1 0100 0.0 0.0 0.0 10.76 2.7317 | 2.76 5.1983
s 0 2 0100 0.0 0.0 0.0 9.0 1.8974 | 0.84 2.301
= 2 1 000 0.0 0.0 0.0 9.26 3.2051 | 2.12 4.7229
E 2 2 0100 0.0 0.24 1.68 8.48 2.256 2.98 5.4863
% 0 0 1100 0.0 0.0 0.0 10.36 29649 | 1.36 2.784
%* 0 0 2100 0.0 0.0 0.0 10.72 2.8428 | 2.16 3.1455
= 2 0 1100 0.0 0.0 0.0 9.22 2.7371 | 1.64 3.9332
&% 2 0 2[00 0.0 0.0 0.0 8.34 2.0747 | 1.16 2.8661
< 0 2 1100 0.0 0.0 0.0 9.06 1.9017 | 1.08 2.6895
0 2 2100 0.0 0.0 0.0 9.44 1.8128 | 1.92 3.4167
2 2 1100 0.0 0.0 0.0 8.52 2.36 3.08 5.6704
2 2 2100 0.0 0.0 0.0 8.74 1.9059 | 1.46 4.1338
0 0 0|00 0.0 0.9 3.1512 | 10.2 2.1726 | 7.56 6.6578
1 0 0|00 0.0 0.72 2.8708 | 10.44 2.7434 | 7.28 6.8616
2 0 000 0.0 0.0 0.0 9.16 2.8869 | 3.9 5.3413
. 3 0 0100 0.0 0.0 0.0 5.52 1.6154 | 2.06 2.6938
S 0 1 0100 0.0 0.28 1.96 10.94 2.8873 | 6.96 6.8701
g 0 2 0100 0.0 0.0 0.0 9.16 22747 | 5.08 6.2477
S 2 1 0100 0.0 0.0 0.0 9.06 29354 | 3.26 49712
22 2 0100 0.0 0.26 1.82 8.02 2.1493 | 2.88 4.6632
§ 0 0 1100 0.0 0.58 2.8572 | 10.12 2.84 7.76 6.5652
20 0 2[00 0.0 0.28 1.96 10.04 2.6755 | 7.76 6.6259
“é 2 0 1100 0.0 0.2 14 8.18 2.3468 | 4.2 5.1962
éb 2 0 2100 0.0 0.22 1.54 8.16 1.88 3.28 5.0082
0 2 1100 0.0 0.0 0.0 9.64 1.7408 | 5.42 6.2067
0 2 2100 0.0 0.0 0.0 9.3 25788 | 5.1 6.265
2 2 1100 0.0 0.0 0.0 8.0 2.126 2.06 4.0714
2 2 2100 0.0 0.0 0.0 7.8 1.7436 | 1.72 3.6444
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C.3 Evaluation Scenario 3 — Temporal Constraints

A depiction of the additional results of evaluation scenario 3 is given in this section.
They contain the results for the modifications of task insertion, task deletion, task
position variation, task duration variation, agent capability variation, agent velocity
variation, precedence constraint insertion, synchronization constraint insertion, prece-
dence constraint deletion and synchronization constraint deletion. The results on the
approximation ratios are given in Tables C.16 to C.18 followed by the results on the
calculation times in Tables C.19 to C.21 and on the Levenshtein distances in Tables C.22
to C.24.

Table C.16: Evaluation scenario 3: Results on the approximation ratio # (mean and standard deviation) for
the modifications of agent capability variation and agent velocity variation.

-8' Constraints INI GA-based reopt. Conventional
s inZ heuristic with INI GA
sync. prec. | mean SD mean SD mean SD

2 0 0 1.0 0.0 1.0 0.0 1.3232  0.1145
= 0 1 1.0002  0.0011 | 1.0002  0.0011 1.3032  0.1033
% % 0 2 1.0003  0.0019 | 1.0003  0.0019 1.3465  0.0945
2 E 1 0 1.0013  0.0054 | 1.0013  0.0054 12184  0.0747
g > 2 0 1.0012  0.0041 | 1.0012  0.0041 1.2481  0.0971
<?:D 1 1 1.0008  0.0027 | 1.0006  0.0024 1.2747  0.0928
= 0 0 1.1094 0.1536 | 1.1048 0.1409 14811  0.1543
'§ g 0 1 1.1134 0.1562 | 1.0934 0.1291 14011  0.1549
'Tg £ 0 2 1.1326  0.1698 | 1.1293 0.1621 14426 0177
£ E 1 0 1.1136  0.1387 | 1.1005 0.1149 1.2374  0.1028
& 2 0 1.0884 0.0844 | 1.0804 0.0746 1.2361  0.1043
< 1 1 1.1031  0.1478 | 1.0903  0.1147 1.3455  0.1374
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Table C.18: Evaluation scenario 3: Results on the approximation ratio # (mean and standard deviation)
for the modifications of precedence constraint insertion, synchronization constraint insertion,
precedence constraint deletion and synchronization constraint deletion.

'g Constraints | Reoptimization GA-based Conventional
S inZ heuristic reoptimization GA

sync. prec. | mean SD mean SD mean SD

0 0 1.0412  0.0459 | 1.0412 0.0459 | 1.3043  0.1087

1.0313  0.0781 | 1.0302  0.0737 | 1.3338  0.1007
1.0316  0.0495 | 1.0316  0.0495 | 1.3633  0.128

1.0358 0.0732 | 1.0354 0.0717 | 1.2729  0.0852
1.0425 0.0913 | 1.0404 0.0867 | 1.3118 0.1131
1.0252  0.0464 | 1.0252 0.0464 | 1.3252  0.0857

11837 0.1348 | 1.1278 0.0786 | 1.2161  0.088
11611 0.1434 | 1.1263  0.0822 | 1.2957 0.1148
11792 0.1927 | 1.1443 0.1329 | 1.3405 0.16
1.1 0.0848 | 1.0863 0.0671 | 1.2232  0.0904
11162  0.1085 | 1.1039  0.093 1.2556  0.1215
1.1021  0.1085 | 1.0944 0.0842 | 1.2872  0.1146

Precedence

constr. insertion | constr. insertion

Synchronization

1.0042 0.0199 | 1.0042 0.0199 | 1.3217 0.1066
1.0179  0.0319 | 1.0179 0.0319 | 1.3081 0.103

Precedence
constr. deletion

1.0196 0.0352 | 1.0196  0.0352 | 1.2204  0.0985

11033  0.0799 | 1.1033  0.0799 | 1.339 0.1092
1.2286 0.1673 | 1.2052  0.138 1.2962  0.1287
1.1327  0.0921 | 1.1289  0.091 1.3063  0.1092

P NP OO0 | RPN, OO RPNPFRPROODO| R, NRPFR OO
— OO NP O RPOONRFROIFRPROONRFRP,O| R OONR-

Synchronization
constr. deletion
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Table C.19: Evaluation scenario 3: Results on the calculation time in seconds (mean and standard deviation)
for the modifications of agent capability variation and agent velocity variation.

-g Constraints INI GA-based Conventional Branch-and-
= inZ heuristic reoptimization GA price

sync. prec. | mean SD | mean SD | mean SD | mean SD
iy 0 0 |0.0009 0.0033 | 19.676 0.27 19.674 0.174 7.77 2.03
T e O 1 ]0.0027 0.0058 | 10.797 0.261 |10.807 0.281 1266  11.04
§ -% 0 2 10.0019 0.0051 | 9.837 0.227 | 9.807 0.234 5253  62.0
o8 1 0 |0.0028 0.006 |10.357 0.271 |10.29 0.242 | 428.74 401.95
§o -2 0 |0.0023 0.0054 | 8948 0.27 8.933 0.397 |2022.9 1948.39
< 1 1 ]0.0034 0.0058 | 9.642 0.186 9.585 0.226 53143 61429
2 0 0 ]0.0025 0.0052 | 19.542 0.148 |19.538 0.14 6.9 2.26
g 0 1 ]0.0019 0.0051 |10.749 0.301 |10.749 0.233 12.86  14.32
] % 0 2 | 0.0031 0.0062 | 9.803 0.255 9.757 0.215 44.0 53.28
=5 1 0 |0.0037 0.0067 | 10.332 0.208 |10.239 0.2 648.45  839.03
o~ 2 0 |0.0016 0.0047 | 8.938 0.321 8.929 0.358 |2638.04 2862.99
< 1 1 ]0.005 0.0073 | 9.609 0.228 9.573 0.209 | 473.81 387.26
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Table C.21: Evaluation scenario 3: Results on the calculation time in seconds (mean and standard deviation)
for the modifications of precedence constraint insertion, synchronization constraint insertion,

precedence constraint deletion and synchronization constraint deletion.

*g Constraints | Reoptimization| GA-based Conventional Branch-and-
S inZ heuristic reoptimization GA price
sync. prec. | mean  SD mean  SD mean  SD mean SD
g 0 0 |0.0125 0.0037 |10.809 0.246 |10.788 0.298 17.8 21.56
é '-g 0 1 ]0.0137 0.006 9.89 0.201 9.839 0.244 4376 53.43
a2 0 2 |0.0144 0.0042 | 9.838 0.259 9.803 0.261 76.88  80.64
§ ; 1 0 |0.0134 0.0054 | 9.737 0.234 9.73 025 539.66  550.01
g2 2 0 |0.0124 0.0062 | 9.213 0.174 9.205 0.167 |1807.73 1872.11
g 1 1 ]0.0147 0.0048 | 9.699 0.203 9.678 0.234 733.85  630.01
gg O 0 ]0.0169 0.0023 | 10.076 0.244 9.999 0.21 412.75  375.96
EE 0 1 ]0.0176 0.0056 | 9.523 0.201 9.553 0.212 630.2  954.67
E § 0 2 10.0167 0.0045 | 9.684 0.202 9.614 0.204 670.29  616.11
§ ; 1 0 ]0.0142 0.0057 | 9.027 0.128 8.958 0.138 |2025.56 1881.62
22 2 0 ]0.0129 0.0075 | 8.644 0.116 8.639 0.116 | 6370.99 5513.63
&S 1 1 10015 0.0071 | 9.203 0.224 9.121 0.196 |2697.25 2749.53
z 0 0
g '% 0 1 ]0.0022 0.0054 | 19.691 0.085 |19.702 0.1 7.82 2.7
) E’ 0 2 | 0.0022 0.0054 |11.502 2.466 |11.514 2.485 1936 2941
gz 10
&2 2 0
g 1 1 ]0.0037 0.0064 | 10.144 0.193 |10.101 0.216 37544  520.82
g5 0 O
2200 1
232 0 2
§ 5 1 0 ]0.0022 0.0054 |19.871 0.109 |19.848 0.098 7.88 2.71
22 2 0 ]0.0019 0.0051 |15.837 4.605 |15.76 4.622 191.21  491.49
e 1 1 ]0.0036 0.0064 |10.726 0.315 |10.732 0.239 9.68 3.55




XLIV C Additional Evaluation Results

Table C.22: Evaluation scenario 3: Results on the Levenshtein distance (mean and standard deviation) for
the modifications of task insertion and task deletion.

'g Constraints | Reoptimization| ~GA-based Conventional Branch-and-
= inZ heuristic reoptimization GA price
sync. prec.| mean SD | mean SD | mean SD | mean SD
< 0 0 |10 0.0 1.0 0.0 9.18 2861 |3.72 4.075
g 0 1 |10 0.0 1.0 0.0 9.06 2983 |242 3.634
g 0 2 |10 0.0 1.0 0.0 8.58 2.801 |244 3.281
& 1 0 |10 0.0 1.02 014 74 2324 |286 3.007
f@ 2 0 |10 0.0 1.0 0.0 6.36 2152 |3.14 3.175
= 1 1 |10 00 |10 00 73 2256 |294  3.036
s 0 0 |10 0.0 1.0 0.0 10.08 2.848 |4.74 4.476
g 0 1 |10 0.0 1.0 0.0 10.68  3.088 | 3.82 4.155
= 0 2 |10 0.0 1.0 0.0 10.7  3.055 |3.86 4.699
E 1 0 |10 0.0 1.0 0.0 796 2297 |4.84 4.032
2 2 0 |10 0.0 12 14 7.84 2275 |3.98 3.314
= 1 ]1.0 0.0 1.0 0.0 93 2715 |4.14 4.128
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C.3 Evaluation Scenario 3 — Temporal Constraints



XLVI C Additional Evaluation Results

Table C.24: Evaluation scenario 3: Results on the Levenshtein distance (mean and standard deviation) for
the modifications of precedence constraint insertion, synchronization constraint insertion, prece-
dence constraint deletion and synchronization constraint deletion.

'g Constraints | Reoptimization| GA-based Conventional | Branch-and-
S inZ heuristic reoptimization GA price
sync. prec. | mean  SD mean  SD mean  SD mean  SD
g O 0 |116 0.987 |1.16 0.987 |10.54 2.685 |4.38 4.024
é 'g 0 1 092 0.997 |1.26 2143 | 1026 2999 |3.76 5.339
g2 0 2 | 1.08 0.997 | 1.08 0.997 |10.44 2988 |4.68 5.931
§ ; 1 0 |12 0.98 1.36 1.572 852 2532 |3.28 3.904
g2 2 0 |0.84 0987 |11 1.652 812 2188 |2.56 3.401
g 1 1 1088 0.993 |0.88 0.993 812 2312 |2.56 3.054
gg O 0 |1.84 0543 |54 4.927 9.88 2372 |8.14 3.784
EE 0 1 192 0.392 |3.78 3.874 9.88 2597 |8.04 3.72
E § 0 2 | 1.88 0475 | 4.54 4.704 9.9 2.563 | 8.0 3.561
§ ; 1 0 |18 0.6 2.62 2.331 814 1.822 |642 3.269
22 2 0 |1.88 0475 |2.98 2.565 766 2036 |548 2.67
&S 1 1 192 0.392 |2.34 1.762 778 1.847 |5.88 3.037
= 0 0
g ‘% 0 1 |00 0.0 0.0 0.0 10.04 3.256 |4.76 3.598
) E" 0 2 100 0.0 0.0 0.0 9.86 3.169 |6.34 6.614
gg 1 0
& % 2 0
s 1 1 |00 0.0 0.0 0.0 8.08 2827 |3.32 3.997
55 0 0
E Ej 0 1
22 0 2
§ 5 1 0 |00 0.0 0.0 0.0 838 2465 |7.72  4.099
22 2 0 |00 0.0 2.38 3.888 8.02 2267 |7.94 3.652
Fo 1 1 |00 0.0 0.66 2.122 814 2482 |8.16 3.982
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Combining the strength of the human and the automation in interactive multi-robot task
allocation (MRTA) optimization systems is a promising approach to the coordination of mul-
ti-robot systems to fully exploit their potential. To enable interactive MRTA optimization
systems, reoptimization approaches are very auspicious. However, so far no reoptimization
approaches with performance guarantees have been proposed for MRTA problems. To close
this gap, this work focuses on reoptimization approaches for heterogeneous, time-extended
MRTA problems with precedence and synchronization constraints. Reoptimization heuristics
are introduced for ten relevant problem modifications which are all guaranteed to yield fea-
sible solutions. Furthermore, guarantees on the solution quality in the form of upper bounds
on the resulting approximation ratios are given for the modifications of inserting a task to
and deleting a task from a problem instance. A metaheuristic reoptimization framework that
combines the proposed reoptimization heuristics with any metaheuristic suitable for heter-
ogeneous, time-extended MRTA problems with precedence and synchronization constraints
is proposed to further exploit the solution space. Moreover, a specificimplementation of the
framework is presented. It is based on a genetic algorithm and preserves the afore given

performance guarantees. Finally, an extensive evaluation of the proposed reoptimization
approaches comparing them to two optimization approaches is conducted. The evaluation
results clearly indicate the reoptimization approaches to be superior to the optimization ap-
proaches w. r. t. the combination of solution quality, responsiveness and solution stability, all
of which are characteristics relevant for the application of solution approaches in interactive
MRTA optimization systems.
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