KIT | KIT-Bibliothek | Impressum | Datenschutz

Causal Climate Emulation with Bayesian Filtering

Hickman, Sebastian; Trajkovic, Ilija; Kaltenborn, Julia; Pelletier, Francis; Archibald, Alex; Gurwicz, Yaniv; Nowack, Peer ORCID iD icon 1; Rolnick, David; Boussard, Julien
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract:

Traditional models of climate change use complex systems of coupled equations to simulate physical processes across the Earth system. These simulations are highly computationally expensive, limiting our predictions of climate change and analyses of its causes and effects. Machine learning has the potential to quickly emulate data from climate models, but current approaches are not able to incorporate physics-informed causal relationships. Here, we develop an interpretable climate model emulator based on causal representation learning. We derive a physics-informed approach including a Bayesian filter for stable long-term autoregressive emulation. We demonstrate that our emulator learns accurate climate dynamics, and we show the importance of each one of its components on a realistic synthetic dataset and data from two widely deployed climate models.


Volltext §
DOI: 10.5445/IR/1000183516
Veröffentlicht am 28.07.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2025
Sprache Englisch
Identifikator KITopen-ID: 1000183516
HGF-Programm 12.11.32 (POF IV, LK 01) Advancing atmospheric and Earth system models
Weitere HGF-Programme 12.11.34 (POF IV, LK 01) Improved predictions from weather to climate scales
Verlag arxiv
Umfang 32 S.
Schlagwörter Machine Learning (cs.LG), Artificial Intelligence (cs.AI), Computational Engineering, Finance, and Science (cs.CE), Atmospheric and Oceanic Physics (physics.ao-ph)
Nachgewiesen in OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page