KIT | KIT-Bibliothek | Impressum | Datenschutz

Application of dynamic pricing for variant production using reinforcement learning

Stamer, Florian ORCID iD icon 1; Henzi, Matthias 1; Lanza, Gisela 1
1 Institut für Produktionstechnik (WBK), Karlsruher Institut für Technologie (KIT)

Abstract:

In the context of variant production, the increasing volatility and customer requirements challenge the profitability of manufacturers. A promising approach to mitigate these challenges could be a dynamic pricing. An intelligent design of a continuous delivery-time-price function allows customers to choose based on their preferences and demand may be shifted to level any peaks. This way, profit, service level, and capacity usage could be improved. This work develops a dynamic pricing model based on reinforcement learning applied to a use case of the automation industry. The results show that the dynamic pricing model performs better than current methods in practice.


Verlagsausgabe §
DOI: 10.5445/IR/1000183559
Veröffentlicht am 05.08.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Produktionstechnik (WBK)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 09.2025
Sprache Englisch
Identifikator ISSN: 1755-5817, 1878-0016
KITopen-ID: 1000183559
Erschienen in CIRP Journal of Manufacturing Science and Technology
Verlag Elsevier
Band 60
Seiten 248 – 259
Nachgewiesen in OpenAlex
Web of Science
Scopus
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page