KIT | KIT-Bibliothek | Impressum | Datenschutz

Classical and Quantum Machine Learning for Anomaly Detection at the CMS Experiment and Beyond

Bal, Aritra ORCID iD icon 1
1 Institut für Experimentelle Teilchenphysik (ETP), Karlsruher Institut für Technologie (KIT)

Abstract:

This thesis presents two novel methodologies for anomaly detection in particle collision events, utilising both classical and quantum machine learning techniques. The first approach employs an unsupervised, data-driven variational autoencoder (VAE), trained on collision data recorded by the CMS detector at the Large Hadron Collider during Run 2, with a center-of-mass energy of $\sqrt{s}=13\,\mathrm{TeV}$. Events containing at least two large-radius jets are analysed, and the VAE-derived anomaly score is subsequently decorrelated from the dijet invariant mass ($m_\mathrm{jj}$) through a novel machine learning-based approach. A systematic search for potential anomalies that deviate from the expected smoothly falling background distribution is performed in the $m_\mathrm{jj}$ range from $1.8$ to $6\,\mathrm{TeV}$. No significant excess above the SM expectation is observed, with the highest observed local significance being $2.3\sigma$ at $4.9\,\mathrm{TeV}$. This method is subsequently used to derive exclusion limits on a large number of exotic signal models derived from BSM physics.

The second approach introduces a novel quantum machine learning framework, named 1P1Q, for encoding jet kinematic features onto two-level quantum bits (qubits). ... mehr


Volltext §
DOI: 10.5445/IR/1000183576
Veröffentlicht am 01.08.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Experimentelle Teilchenphysik (ETP)
Publikationstyp Hochschulschrift
Publikationsdatum 01.08.2025
Sprache Englisch
Identifikator KITopen-ID: 1000183576
Verlag Karlsruher Institut für Technologie (KIT)
Umfang xiv, 166 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Physik (PHYSIK)
Institut Institut für Experimentelle Teilchenphysik (ETP)
Prüfungsdatum 11.07.2025
Schlagwörter machine learning, quantum machine learning, CMS, HEP, physics, particle physics, BSM, anomaly detection, autoencoder, VAE, LHC, CERN
Nachgewiesen in OpenAlex
Globale Ziele für nachhaltige Entwicklung Ziel 10 – Weniger UngleichheitenZiel 16 – Frieden, Gerechtigkeit und starke InstitutionenZiel 17 – Partnerschaften zur Erreichung der Ziele
Referent/Betreuer Klute, Markus
Wolf, Roger
Maier, Benedikt
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page