KIT | KIT-Bibliothek | Impressum | Datenschutz

Exploring Flow in Real-World Knowledge Work Using Discrete cEEGrid Sensors

Knierim, Michael T. 1; Stano, Fabio ORCID iD icon 1; Kurz, Fabio 2; Heusch, Antonius 2; Wilson, Max L.
1 Institut für Wirtschaftsinformatik (WIN), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract:

Flow, a state of deep task engagement, is associated with optimal experience and well-being, making its detection a prolific HCI research focus. While physiological sensors show promise for flow detection, most studies are lab-based. Furthermore, brain sensing during natural work remains unexplored due to the intrusive nature of traditional EEG setups. This study addresses this gap by using wearable, around-the-ear EEG sensors to observe flow during natural knowledge work, measuring EEG throughout an entire day. In a semi-controlled field experiment, participants engaged in academic writing or programming, with their natural flow experiences compared to those from a classic lab paradigm. Our results show that natural work tasks elicit more intense flow than artificial tasks, albeit with smaller experience contrasts. EEG results show a well-known quadratic relationship between theta power and flow across tasks, and a novel quadratic relationship between beta asymmetry and flow during complex, real-world tasks.


Verlagsausgabe §
DOI: 10.5445/IR/1000183587
Veröffentlicht am 01.08.2025
Originalveröffentlichung
DOI: 10.1145/3706598.3713512
Scopus
Zitationen: 2
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Wirtschaftsinformatik (WIN)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 25.04.2025
Sprache Englisch
Identifikator ISBN: 979-84-00-71394-1
KITopen-ID: 1000183587
Erschienen in CHI '25: Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems
Veranstaltung Conference on Human Factors in Computing Systems (CHI 2025), Yokohama, Japan, 26.04.2025 – 01.05.2025
Verlag Association for Computing Machinery (ACM)
Seiten Art.-Nr.: 112
Schlagwörter Flow Experience, Knowledge Work, Field Study, Experience Sampling, Ear-EEG, open-cEEGrid
Nachgewiesen in Dimensions
OpenAlex
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page