KIT | KIT-Bibliothek | Impressum | Datenschutz

Numerical study of enhanced cooling in active elastocaloric regenerators with porous woven structures

Wang, Kun 1; Kohl, Manfred 1; Xu, Jingyuan ORCID iD icon 1
1 Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)

Abstract:

Elastocaloric cooling is an emerging solid-state technology that leverages the reversible latent heat of phase transformation in superelastic shape memory alloys to achieve efficient and environmentally friendly refrigeration. The performance of the regenerator, where elastocaloric effect and heat transfer occur, critically depends on the elastocaloric material and structural design. This study employs a 1-D numerical active elastocaloric regenerator model to evaluate the cooling performance of different woven-structure regenerators. Three typical woven structures—plain weave, twilled weave, and dutch weave—are investigated across varying porosities. The results indicate that a plain weave regenerator with 30 % porosity achieves the highest performance, delivering a maximum cooling power of 485 W, a specific cooling power of 11.3 W/g, and a COP of 1.48 under a 20 K temperature span. Twilled weave regenerators exhibit comparable performance, whereas dutch weave regenerators show significantly lower cooling capabilities. Both plain and twilled weave regenerators outperform the parallel plate regenerator, increasing cooling power by a factor of 3.3, due to enhanced heat transfer and specific heat transfer area. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000183679
Veröffentlicht am 12.08.2025
Originalveröffentlichung
DOI: 10.1016/j.apenergy.2025.126180
Scopus
Zitationen: 1
Web of Science
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mikrostrukturtechnik (IMT)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 10.2025
Sprache Englisch
Identifikator ISSN: 0306-2619, 1872-9118
KITopen-ID: 1000183679
Erschienen in Applied Energy
Verlag Elsevier
Band 395
Seiten 126180
Nachgewiesen in OpenAlex
Dimensions
Web of Science
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page