KIT | KIT-Bibliothek | Impressum | Datenschutz

Selecting Data Assets in Data Marketplaces – Leveraging Machine Learning and Explainable AI for Value Quantification

Martin, Dominik ORCID iD icon 1; Heinz, Daniel ORCID iD icon 1; Glauner, Moritz 2; Kühl, Niklas ORCID iD icon
1 Karlsruhe Service Research Institute (KSRI), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract:

In the era of digital transformation, data is a critical asset driving innovation and competitive advantage for businesses. Data marketplaces have emerged as a key solution for data sharing, yet they face significant challenges, including competitive concerns, matchmaking between data providers and consumers, and a lack of appropriate market mechanisms. This study introduces a data asset value quantification and selection mechanism (DQSM) as an innovative feature for data marketplaces to address these concerns. The DQSM uses Machine Learning and Explainable AI methods to assess the value of data assets, aiding consumers in making informed purchasing decisions. This mechanism addresses the inherent complexities of data asset valuation and selection, thereby increasing marketplace efficiency. Using a design science research approach, the study identifies design principles for the development of the DQSM as a feature of data marketplaces, which are validated through technical experiments with industry and public datasets, as well as interviews with experts in this field. The findings highlight the potential of the DQSM to optimize the discovery and implementation of viable data sharing use cases and to incentivize the adoption of data marketplaces, thereby contributing to more viable and sustainable data ecosystems.


Verlagsausgabe §
DOI: 10.5445/IR/1000183689
Veröffentlicht am 11.08.2025
Originalveröffentlichung
DOI: 10.1007/s12599-025-00940-8
Scopus
Zitationen: 2
Web of Science
Zitationen: 3
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Karlsruhe Service Research Institute (KSRI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2363-7005, 1867-0202
KITopen-ID: 1000183689
Erschienen in Business and Information Systems Engineering
Verlag Springer
Vorab online veröffentlicht am 02.06.2025
Nachgewiesen in Web of Science
OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page