KIT | KIT-Bibliothek | Impressum | Datenschutz

Al$_{1‐x}$Sc$_{x}$N‐Based Ferroelectric Domain‐Wall Memristors

Lu, Haidong; Schönweger, Georg; Wolff, Niklas; Ding, Ziming ORCID iD icon 1,2; Petraru, Adrian; Streicher, Isabel; Kohlstedt, Hermann; Kübel, Christian ORCID iD icon 1,2; Leone, Stefano; Kienle, Lorenz; Fichtner, Simon; Gruverman, Alexei
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)

Abstract:

Emerging wurzite-structured ferroelectrics can help satisfy the demand for high-performance ferroelectrics compatible with III-nitride and Si technology. One of their particularly appealing properties is related to the presence of conducting domain walls, which can be used as functional elements in the devices with electrically tunable resistance–memristors. Using a combination of piezoresponse force microscopy (PFM) and conductive atomic force microscopy (CAFM) techniques, the electrical conductivity of the head-to-head (H-H) domain walls in the Al0.85Sc0.15N thin films on the n-GaN substrate is directly demonstrated. Transmission electron microscopy (TEM) studies of the Al0.85Sc0.15N films reveal that the conducting nature of these domain walls is likely related to their inclination with respect to the polar axis, resulting in polarization discontinuity at the domain junctions. On the other hand, no increased conductivity has been detected for the tail-to-tail (T-T) domain walls reflecting a semiconducting nature of Al0.85Sc0.15N thin films. Modulation of the domain wall density by voltage pulses with varying amplitude or duration allows realization of multiple stable resistance states with the maximum ON/OFF ratio of over 1500. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000183697
Veröffentlicht am 11.08.2025
Originalveröffentlichung
DOI: 10.1002/adfm.202503143
Scopus
Zitationen: 3
Web of Science
Zitationen: 2
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Karlsruhe Nano Micro Facility (KNMF)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 11.2025
Sprache Englisch
Identifikator ISSN: 1616-301X, 1057-9257, 1099-0712, 1616-3028
KITopen-ID: 1000183697
HGF-Programm 43.35.01 (POF IV, LK 01) Platform for Correlative, In Situ & Operando Charakterizat.
Erschienen in Advanced Functional Materials
Verlag Wiley-VCH Verlag
Band 35
Heft 46
Seiten 2503143
Vorab online veröffentlicht am 27.05.2025
Nachgewiesen in Web of Science
Dimensions
OpenAlex
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page