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Fig. 1. Left: A game scene from the Arcane Dimensions Quake mod with path traced 2-bounce indirect
lighting and single scattering from many dynamic light sources rendered in real-time on an AMD Radeon RX
7900 XTX at 1920 x 1080. From left to right: path tracing with BSDF importance sampling, our new unbiased
estimator, our estimator with SVGF denoising. Right: A custom pool scene showing rendering of underwater
caustics using our estimator, from left to right: path tracing using phase function importance sampling, equal
error render using our estimator, equal sample render using our estimator.

We present a lightweight and unbiased path guiding algorithm tailored for real-time applications with highly
dynamic content. The algorithm demonstrates effectiveness in guiding both direct and indirect illumination.
Moreover, it can be extended to guide single scattering events in participating media. Building upon the
screen-space approach by Dittebrandt et al. [2023], the incident light distribution is represented as a von
Mises-Fisher mixture model, which is controlled by a Markov chain process. To extend the procedure to world
space, our algorithm uses a unique Markov chain architecture, which resamples Markov chain states from
an ensemble of hash grids. We combine multi-resolution adaptive grids with a static grid, ensuring rapid
state exchange without compromising guiding quality. The algorithm imposes minimal prerequisites on scene
representation and seamlessly integrates into existing path tracing frameworks. Through continuous multiple
importance sampling, it remains independent of the equilibrium distribution of Markov chain and hash grid
resampling. We perform an evaluation of the proposed methods across diverse scenarios. Additionally, we
explore the algorithm’s viability in offline scenarios, showcasing its effectiveness in rendering volumetric
caustics. We demonstrate the application of the proposed methods in a path tracing engine for the original
Quake game. The demo project features path traced global illumination and single scattering effects at frame
rates over 30 FPS on NVIDIA’s GeForce 20 series or AMD’s Radeon RX 6000 series without upscaling.
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Fig. 2. High-level schematic of our Markov chain path guiding scheme: we use hash grids to store a set
of Markov chains controlling von Mises-Fisher distributions in world space. To reconstruct an estimator
for the incident light field, we resample states from the grid and the resulting stochastic mixture model is
evaluated using stochastic multiple importance sampling (SMIS) [West et al. 2020]. The mixture is updated
with maximum likelihood estimation and MCMC acceptance tests.

1 Introduction

Over the years, path tracing has emerged as a cornerstone technique in the pursuit of visually
stunning graphics in the visual effects industry [Droske et al. 2023]. The fundamental idea involves
tracing rays of light through virtual environments, similar to how photons interact with matter,
and employing numerical integration techniques to estimate the light received on a virtual camera
sensor. This approach grants high flexibility and generality to photorealistic visual effects workflows,
while allowing the rendered results to accurately replicate the visual characteristics of the real world.
Recently, the possibility of incorporating path tracing into real-time applications has emerged,
driven by the widespread adoption of hardware-accelerated ray tracing on GPUs [NVIDIA 2018].
However, even with modern hardware, only a limited number of paths per pixel can be traced while
maintaining real-time frame rates. To make the technique applicable, algorithmic improvements
have been proposed to gather as much information as possible. For example, ReSTIR-based methods
share light samples between neighboring pixels and frames using resampling techniques [Bitterli
et al. 2020]. However, these methods often suffer from correlation artifacts, additional rays are
required to maintain unbiasedness, and reasoning about convergence is challenging [Lin et al.
2022]. Additionally, denoisers are employed to alleviate the remaining noise.

In offline rendering, path guiding stands out as a standard technique for handling complex scenes
[Vorba et al. 2019]. Nevertheless, a significant portion of current techniques require costly fitting
procedures, depend on hierarchical spatial data structures, which apply only to static scenes or
necessitate complex structural updates, which has proven to be inefficient on GPU architectures.
We explore a dynamic game environment where light lists are not available, and emissive surfaces
can appear and disappear anywhere and anytime. This setting imposes minimal prerequisites on
scene representation and animation, but limits discovery of lights to hemisphere sampling.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 15. Publication date: May 2025.


https://doi.org/10.1145/3728296

Real-Time Markov Chain Path Guiding for Global [llumination and Single Scattering 15:3

We introduce Markov Chain Path Guiding (MCPG), a real-time path guiding method tailored for
such dynamic environments based on von Mises-Fisher (vMF) mixture models, which we select
for their efficient and robust online fitting procedure [Ruppert et al. 2020]. The parameter space is
controlled via a population of Markov chains, which are stored in an ensemble of world-space hash
grids (see Figure 2). A stochastic resampling process, integrating into the Markov chain equilibrium,
exchanges states with adjacent world-space cells. Our method is based on the work of Dittebrandt
et al. [2023], which uses continuous multiple importance sampling [West et al. 2020] to ensure
independence from the equilibrium distribution. More specifically, our contributions are:

e an extension to indirect illumination by storing Markov chain states in an ensemble of world
space hashed grids at a constant memory footprint, a stochastic resampling process selects
the most important states while maintaining diversity,

e estimators which are stable in highly dynamic environments, using an irradiance cache for
online training on a GPU,

e fast adoption of the guiding distribution in dynamic environments without tracing additional
rays using an empirical prior as well as an effective heuristic to invalidate states when light
sources disappear,

e an extension to single scattering, including underwater volumetric caustics.

The resulting algorithm can produce smooth, temporally stable path traced images, including
indirect lighting and single scattering in a few milliseconds at full HD resolution, even on previous

generation hardware from AMD’s Radeon RX 6000 series or NVIDIA’s GeForce 20 series such as
the AMD Radeon RX 6800 XT or the NVIDIA GeForce RTX 2080 Ti.

2 Background

In the following, we summarize the most important concepts from physics and Monte Carlo theory.

Rendering Equation. The emitted radiance at a surface point z in direction w is described by the
surface rendering equation [Kajiya 1986]

Lzo) = L(zo) + / £z w5 0)Li(2,00) In(2) - ] de, )
SZ

where L.(z, w) describes the emitted radiance at the surface point z in direction @ and the integral
over the unit sphere S? describes the amount of incident radiance L; that is reflected towards w. f;
is the BSDF and |n(z) - w;] is a foreshortening term due to the incident radiance direction w; and
the surface normal n(z). For volume rendering, we also collect the emitted L. and in-scattered L
contributions from all points y along the ray (x, —®) up to the first surface point z in the medium:

llz—xIl
L(x, @) = /0 T(x,y) [1a(y)Le(y, ) + pis(y) Ls(y, @) ] dy + T (x, 2)L(2, @) , )

where y = x — yw, [ta, U5 the collision coefficients for absorption, and scattering and T the transmit-
tance in the medium [Novak et al. 2018].

Parametric mixture models. Parametric mixture models are a type of statistical model that assumes
that the data is generated from a mixture of several probability distributions, each with its own
fixed and finite set of parameters. These underlying distributions are characterized by a specific
probability distribution. The probability density function of the mixture model

K
px|m0) =) mp(x|0), m=(m....7),0=(0...,0k) (3)

i=1
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is a weighted sum of the individual component probability density functions, where r; represents
the mixing proportion of the i-th component, and p;(x | §;) is the probability density function of
the i-th component with parameters 6;. The von Mises-Fisher distribution is a probability density
on the hypersphere, suitable to model directional data. Its PDF is defined as

plo]6)= exp(kipt] w) ()

1
4ssinhk;
where 0; = (u;, x;), and p; and k; are the mean direction and concentration parameter of the i-th
component. For small x the distribution approaches the uniform distribution. Special care has to be
taken to ensure numerical stability in finite precision arithmetic [Jakob 2012; Tokuyoshi 2025].

3 Previous Work

ReSTIR. Building on resampled importance sampling [Talbot et al. 2005] and weighted reservoir
sampling [Chao 1982], Bitterli et al. [2020] introduced ReSTIR, a resampling algorithm for direct
illumination. In order to enhance sample quality, light samples are reused from previous frames
and exchanged with nearby pixels. ReSTIR utilizes a screen-space data structure that maintains a
reservoir for each pixel, which can be merged to achieve higher quality sample sets while preserving
computational efficiency. The unbiased variant necessitates meticulous selection of neighbors and
additional shadow rays for each neighboring pixel, thereby increasing computational demands.
ReSTIR demonstrated a significant reduction in error relative to previous light sampling techniques.
As a resampling scheme, ReSTIR is constrained to explicit light source information or hemisphere
samples and can suffer from correlation artefacts. Sawhney et al. [2023] alleviated these artifacts
using MCMC mutations of the reservoirs. Furthermore, the resampling process requires an explicit
BSDF evaluation, potentially impacting performance with more sophisticated material models.
Although the original ReSTIR algorithm is limited to direct illumination, its fundamental principles
provide a foundational framework for recent research, exploring the reuse of samples in world
space and longer paths for global illumination and volume rendering [Boissé 2021; Boksansky et al.
2021; Lin et al. 2021; Majercik et al. 2021; Ouyang et al. 2021]. However, implementation efforts and
considerations regarding unbiasedness and convergence in dynamic scenes become increasingly
complex [Lin et al. 2022].

Path Guiding. There is a wide plethora of techniques which use an estimate of the scene’s light
distribution, acquired either on-the-fly during rendering or pre-learned in advance, to guide paths
into important directions. The techniques differ in the spatial data structure that is used to store the
caches [Bashford-Rogers et al. 2012; Hey and Purgathofer 2002; Jensen 1995; Lafortune and Willems
1995; Lu et al. 2024; Miller et al. 2017], the data structure and domains of the caches themselves
[Dodik et al. 2022; Miiller et al. 2017; Reibold et al. 2018; Ruppert et al. 2020; Vorba et al. 2014; Zheng
and Zwicker 2019] and the approximated target function [Herholz et al. 2016; Rath et al. 2020]. Deep
learning [Bako et al. 2019; Miiller et al. 2019; Zheng and Zwicker 2019] and reinforcement learning
[Dahm and Keller 2017] have also been applied to path guiding. However, most offline path guiding
methods prove impractical for real-time applications. For example, these methods may employ
tree-like data structures [Droske et al. 2023; Lafortune and Willems 1995; ler et al. 2022; Miiller
et al. 2017], which are inefficient to traverse on GPU architectures. Some require computationally
demanding fitting of mixture models [Ruppert et al. 2020; Vorba et al. 2014] or training of neural
networks [Dong et al. 2023], and some may involve dedicated learning phases [Miiller et al. 2017;
Vorba et al. 2014] and lack the adaptability to accommodate dynamic changes in scene geometry
or lighting conditions. Path guiding might even be disabled in production environments to avoid
overhead in simpler cases [Vorba et al. 2019].
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Table 1. Overview of data that is stored for every Markov chain state at hash grid vertices. We use luminance
weighted mean light source positions y and mean cosines of directions 7 for our fitting procedure [Ruppert
et al. 2020]. The values are reconstructed by dividing y and 7 by w, respectively.

Symbol Meaning

luminance estimate of Equation (1), used as resampling weight
number of samples

luminance-weighted mean of light source positions
luminance-weighted mean cosine of light source directions
time of last update

last known velocity of the light source

hash  hashed grid position for collision detection

SEES TR R

Markov Chain Mixture Models. In the recent research of Dittebrandt et al. [2023], a real-time
guiding method for direct light was presented, using screen-space mixture models. Each pixel stores
the state of a Markov chain that runs in the parameter space of a vMF distribution. The components
of neighboring pixels are combined in a randomized mixture model to obtain an estimate of the full
distribution. The corresponding vMF component is updated using a maximum likelihood estimation
step, and a Markov chain Monte Carlo acceptance test decides whether the new state should be
shared with neighboring pixels. Temporally dependent samples are decorrelated using a shuffle of
Markov chain states between neighboring pixels after every update, which can be implemented
as an efficient operation on modern GPUs. Stochastic multiple importance sampling (SMIS) is
employed to seamlessly integrate the model into the path tracer without knowing the equilibrium
distribution of the Markov chain process, since the PDF cancels in the estimator. The Markov
chain mixture model guiding method quickly adapts to new lighting conditions, at a computational
overhead similar to that of ReSTIR. A notable downside is the tendency to overuse dominant light
sources and parameter-space proximity bias when sharing lobes of occluded light sources, which
manifests as increased variance at shadow edges. A drawback of utilizing a screen space data
structure is the absence of information about off-screen surfaces, leading to potentially unstable
results when moving the camera. Additionally, the approach cannot effectively guide multi-bounce
global illumination.

4 Hashed Markov Chain Path Guiding (MCPG)

Overview. Figure 3 illustrates the sampling and update procedure of our method, which we
detail in the following sections for a surface interaction at hit. The system consists of three main
components: (a) an ensemble of world space hash grids, storing Markov chain states, operating on
sufficient statistics of a vMF distribution, which approximate the incident light field as a continuous
mixture model. (b) a four-step sampling and update procedure, involving a stochastic resampling
process, a maximum-likelihood estimation of the vMF lobes, and a Markov chain Monte Carlo
(MCMC) acceptance step, and (c) an irradiance cache to prevent backtracking of light paths on the
GPU for training and to stabilize the maximum-likelihood estimation of the individual lobes.

Hash Grid. Inspired by multi-resolution hash grid encodings for neural networks [Miiller et al.
2022], we store Markov chain states at the vertices of a multi-resolution hash grid, which we refer
to as the adaptive grid. The grid adaptively selects the appropriate resolution level for each world
space point based on the camera distance, thereby ensuring a roughly constant projected area on the
screen. To exchange states between cells and to access preexisting states during camera movement
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Fig. 3. Left: Overview of our Markov chain path guiding system procedure in four steps: (1) a stochastic
mixture is obtained by resampling from near-by positions in the hash grid, (2) the mixture is sampled,
and an indirect ray is traced, (3) the SMIS estimator is evaluated, and (4), the result is used to update
the local irradiance cache, the guiding distribution is adjusted by maximum likelihood estimation, and an
MCMC acceptance step is performed before potentially writing back to the grid. Right: lllustrations from our
technique; from left to right: the learned mean cosine and mean direction of a converged guiding distribution,
the final render and the target level of our adaptive grid. Frequency limitations arise from the hash grid
resolution only, not scene geometry.

and grid refinement, we incorporate stochastic access to coarser levels. We choose a target grid
resolution that matches the level of detail and lighting frequency of the scene, as illustrated in
Figure 3 (right). Additionally, to ensure efficient and reliable exchange between adaptive grid
borders, we introduce a coarse hash grid with a constant cell width, which we refer to as the
static grid. To alleviate block artifacts, we interpolate between grid vertices through a stochastic
process, accessing a vertex with a probability proportional to the trilinear interpolation weight. For
a buffer of size B, we obtain the buffer index of a grid vertex by hashing its integer grid coordinate x
according to hash(x) = @?:1 mix; mod B, with 7; being large prime numbers and @ the bit-wise
XOR operation. Miiller et al. [2022] use m; = 1 for better cache coherency. To prevent information
from leaking through surfaces and around sharp corners, where the lighting is likely to change, we
incorporate the surface normal into the hash for the adaptive grid buffer. For that, we computed the
cube map index based on the surface normal and hash the result along with the grid coordinates.
We conducted experiments to augment the hash with a random number within the range [0, i],
thereby implicitly storing i Markov chain states at each vertex. This approach aligns with the
concepts introduced in the context of jittered spatial hashing [Boissé 2021]. However, our findings
did not reveal any discernible benefit from this adjustment. In addition to the statistics required
to operate the Markov chain, we store the grid position, hashed with a separate hash function, to
detect collisions between two grid vertices that map to the same buffer index, similar to the concept
proposed in the work by [Binder et al. 2018]. An overview of the data stored for every Markov
chain state can be found in Table 1.

Step 1: Grid Resampling. In the first step, the algorithm chooses a promising state s from the
Markov chain hash grids out of Np. candidates, as outlined in Algorithm 1. The selection process em-
ploys weighted reservoir resampling [Chao 1982], choosing a state with a probability proportional
to its luminance estimate w of the incident light (Equation (1)) in a single pass. This methodology
shares similarities with the resampling procedure utilized in ReSTIR. Regardless of the specific
state selected, the distribution parameters of all accessed states are retained in memory for SMIS in
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Step 3. The candidates are obtained independently: Based on a fixed probability, the grid.load(...)
procedure selects the static or adaptive grid (we use padaptive = 0.7) and an exponential distribution
is sampled to select a level that is coarser than the target level of the adaptive grid. In particular,
duplicate states in multiple grid locations are not explicitly prohibited for the sake of simplicity
and efficiency. The hash grid already ensures proximity, therefore we reject Markov chain states
only based on the surface normal to mitigate variance. This rejection is implicitly enforced in
the adaptive grid by hashing the normal states and discarding the states upon hash collision, as
elaborated in the previous section. In the case of the static grid, where the normal is not part of
the hash, we employ a threshold criterion involving the disparity between the surface normal and
the mean direction of the vMF distribution derived from the Markov state. This combination of
strategies enables the exchange of information among surfaces with normals corresponding to
distinct cube indices.

Algorithm 1: Grid Resampling

1 S « array of Ny, Markov chain states

2 s« {0} /* empty Markov chain state */
3 SUMpe < 0

4 foreach i < 0to Np.-1do

5 S[i] « grid.load(hit.x,hit.n)

6 if hash grid collision then

7

| slilw=0
8 SUMpe — SUMpe + S[i].w
9 & « uniform random in [0, 1)
w0 | if & < Y then

11 L s « S[i]

Step 2: Sampling and Tracing. In order to facilitate the sharing of Markov chain states across grid
vertices, the states do not store the vMF parameters directly. Instead, they retain sufficient statistics
including a weighted mean of the positions of the light source y and a weighted mean cosine
of directions to the light source 7 from which the distribution parameters can be reconstructed
in a way that is more robust compared to using a direction and a distance [Ruppert et al. 2020].
Furthermore, the number of samples N that went into the state is used to stabilize the parameters
by incorporating a prior of the mean cosine, which vanishes over time (see Algorithm 2, Line 7).
We used a prior mean cosine r, = 0 with N, = 1/||s.y/s.w — hit.x||?, which facilitates faster
convergence to small distant light sources. For infinite distant light sources, directions can still be
used and the type can be encoded in the sign of the resampling weight. However, to reduce code
divergence we used virtual points displaced in the direction of the light source and did not observe
any difference since states are only exchanged locally. In instances where the resampling process
fails to produce a valid state, specifically when w = 0 for all states, the sampling procedure reverts
to BSDF importance sampling. This happens frequently when exploring a new part of the scene or
when a bright light source disappears (see Section 5). To detect new light sources, BSDF sampling
is also used independently of the resampled state with low probability phsqr. Using the sampled
direction, a ray is traced from the current surface point to acquire the next intersection hityex. The
sampling procedure along with the reconstruction of vMF parameters is outlined in Algorithm 2.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 15. Publication date: May 2025.



15:8 Alber et al.

Algorithm 2: Sampling and Ray Casting

1 & « uniform random in [0, 1)

2 if s'w =0 /% invalid */ or £ < ppg4r then

3 p(w) « fi(wi,hit.n) or [hit.n - w|

4 s « {0} /* empty Markov chain state */
5 else

6 u «— normalize(s.y/s.w —hit.x)

7 re (s.N?-sF/sw+N,-rp) /(s.N*+ Np)

8 k— (3r=r¥/(1-r? /% [Banerjee et al. 2005, eq. 4.4] */
9 p(w) « p(w|p, ) /* Equation (4) */

10 sample ® ~ p(w)
11 hitpeyx ¢ trace ray (hit.x, w)

Step 3: Evaluating the Estimator. The ensemble of hash grid, resampling process (Step 1) and the
Markov chain transitions, described with more detail in step 4, result in an equilibrium distribution
p(t) of vMF lobe parameters t = (p, k) and the probability density of our estimator is described by
the continuous mixture

() = /T p(Dple | 1) dr. )

To achieve independence from the equilibrium distribution without the need to estimate recip-
rocal probabilities, we utilize continuous multiple importance sampling [West et al. 2020]. Let
X = (x1,...,xx) be a surface path at pixel j with measurement contribution function f; and S,
the accessed Markov states during the resampling phase at a vertex x,, then the estimator for
Equation (1) is

fix)
(D)sws = B : ©)
(S, PO 19)
The estimator for the incident light which is evaluated for Markov chain updates is
L(hitpext, —®) - fr(hit, hitpex) - |hit.n -
(Li(hit.x, @))spis = (i tnert, ~0) - fe(hi, Ml br) - NIt 12 w|. 7)

S.sp(@]5)

Note that the estimator contains the term L(hit,ext, —@) which needs to be estimated by itself, due
to the recursive nature of the render equation. To address this issue, we employ an irradiance cache,
as explained in more detail in the following. In contrast to Metropolis-Hastings MCMC methods
which require carefully selected acceptance probabilities to converge towards a specific equilibrium
distribution [Hastings 1970], our approach provides flexibility in tuning various aspects of the
algorithm for efficiency, temporal adaptation, or quality, depending on the scene and use case.

Step 4: Markov Chain Update. In the final stage of the path guiding procedure, the Markov state is
transitioned and written on the hash grid, based on a MCMC acceptance test. Unlike conventional
approaches that modify the existing state in memory, our approach calculates a new buffer position,
analogous to the resampling procedure. Subsequently, we store the transitioned state at this new
position, potentially overwriting another pre-existing state. Thereby, the stochastic interpolation
when reading or writing allows information to spread between neighboring cells.
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The acceptance probability which dictates whether a transition occurs is computed as
L, 1) , (8)
(summe/Nmc)

where fi,c is a luminance estimate of the incident light (Equation (7)). In common Markov chain
methodologies the acceptance probability usually only depends on the current state, here we use the
mean score of all states accessed during resampling, which improves the likelihood of acceptance
in scenarios where the grid is empty, in particular during warm-up phases. Upon accepting a
transition, the state is mutated using a maximum likelihood estimation step. For the first few
samples, a luminance-weighted arithmetic average is computed, while for subsequent samples, we
compute an exponential average, which allows to dynamically adjust to changes. The complete
procedure is detailed in Algorithm 3.

Paccept = Min (

Algorithm 3: State Transition and Maximum Likelihood Estimation
Jme < Tum((Li(hit.x, ®))sps)

=

2 ¢ « uniform random in [0, 1)

3 if € < fine/(summe/Nme) /* MCMC acceptance test, Equation (8) */ then

4 s.N « min(s.N + 1, Njpax)

5 a «— max(1/s.N,amin) /* blend factor, cf. Dittebrandt et al. [2023] */
6 1 < normalize(s.y/s.w —hit.x)

7 S W — mix(s.W, fine, @)

8 5.y «— Mix(s.Y, fimc - hitpext-x, @)

9 S.7 = mix(s.7, fmc - dot(normalize(hitpex.x — hit.x), g), @)

10 sT«T /* current time, see Section 5 %/
11 5.0  (hitpex.x — hitpext-Xprev) /(T = Tprev)

12 | gridstore(s)

In addition to maximum likelihood estimation, the grid resampling and acceptance steps form a
stochastic process that controls the population of Markov chains in the grid, similar to a genetic
algorithm. This optimizes the learned radiance distribution across states beyond what the maximum
likelihood estimation of a single state is able to represent.

Irradiance Caching. A crucial detail, briefly mentioned in the preceding section, is that an estimate
of incident light, including emitted and reflected light at hityeyt, is required in Algorithm 3, Line 1.
However, due to the recursive nature of the render equation, the term L(hitpeyt, —@) in the estimator
(Equation (7)) is unknown when processing individual path vertices independently and would
require storing and backtracking full paths. To address this issue, we employ an irradiance cache,
which can be queried for an estimate of L(hi tpex, —@) when training the Markov chain. We used
a Lambertian BSDF and assume that it successfully approximates the radiance transfer in the scene,
while acknowledging that the path guiding may be suboptimal in scenarios where the path length
is constrained, since the cache approximates infinite-bounce radiance transfer. Note that in our
implementation, the cache is exclusively used for training and plays no role in the computation of
the final render. Nevertheless, it could still be utilized for other purposes, like as a control variate or
to obtain an estimate of the path tail [Miiller et al. 2021]. Our irradiance cache is implemented using
an adaptive hash grid, aligning closely with the the guiding datastructure. However, coarser levels
are accessed only upon hash collisions. To ensure responsiveness to changing lighting conditions,
we employ a small accumulation factor.
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Fig. 4. Temporal adaption to a fast-moving rocket in a 20 frame animation. In frame 00 the rocket has not been
fired, subsequent frames illustrate the tracking behavior. In frame 01 the rocket has already been captured,;
top-to-bottom workgroup execution leads to better a guiding distribution at the bottom of the frame, by frame
10, the light source information has distributed across all surfaces. Our algorithm remains unbiased even
with dynamic geometry and light sources. Average frame time: 13.0 ms on an AMD Radeon RX 7900 XTX.

Comparision to Dittebrandt et al.. In contrast to the screen-space path guiding method [Dittebrandt
et al. 2023], our approach exhibits four notable differences. The screen space method uses a distinct
score based on the last incident irradiance estimate, while we reuse the mean of luminance estimates.
Our prior depends on the distance to the light source, showing a faster adaption to small, distant
light sources. Furthermore, Dittebrandt et al. [2023] suggest incorporating additional knowledge,
such as mean light source size; however, we observed inferior performance in this case. To decrease
variance, their method obtains larger SMIS sets by reusing samples spatially and temporally. Markov
chain states are shuffled between nearby pixels after every update to prevent correlation arising
from dependent temporal sampling. In contrast, to simplify support for multi-bounce paths, our
approach employs independent SMIS estimators for each sample. Lastly, we used an irradiance
cache to estimate incident radiance, allowing for paths of arbitrary length without additional
register memory.

Extension to Single Scattering. Our path guiding algorithm is versatile and requires only minimal
modifications to the sampling procedure for rendering of single scattering volumes in real-time:
In addition to generating initial vertices within the medium, 1) the BSDF is replaced by the phase
function of the volume; this is possible without changing the state space, as the vMF distribution is
inherently defined on a spherical domain. 2) we substitute the normal in the hash of the adaptive
hash grid with the reverse camera direction, to better handle anisotropic phase functions that
exhibit a dependence on the view direction. To share states between grid vertices with different
incident directions and to avoid artifacts, we jitter the direction before hashing according to a
cosine lobe. For the static grid, the normal threshold is simply removed. Furthermore, for guiding
direct single scattered light only, the irradiance cache can be omitted. This modification is reflected
in Equation (7) by replacing the emitted and reflected radiance L with the emitted radiance L.
Otherwise, if a bias is acceptable, the irradiance cache can be used to in-scatter from all surfaces
into the volume. For caustics, sharing positions of light sources behind refractive interfaces is
especially challenging because the angle of refraction depends on the incident direction. To mitigate
the training error resulting from this effect, we apply a correction to the target point according to
[Ruppert et al. 2020]. This displaces the target point along the incident direction, aligning it with
the apparent distance rather than the actual distance.

Synchronization. In our light cache update, we explicitly synchronize access to memory regions
to prevent the occurrence of invalid data. In contrast, explicit synchronization is not enforced on
the Markov chain to enhance performance by eliminating the latency associated with locking and
unlocking. We operate the Markov chain under the assumption that data corruptions follow a
certain distribution and that inflicted perturbations are part of the equilibrium of the Markov chain.
A precise knowledge of the distribution is not required as it cancels out in the SMIS estimator.
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5 Improvements for Dynamic Content

In the following, we discuss strategies to improve handling dynamic content to ensure effective
sampling and tracking, even with occlusions and high-speed movements.

Discarding Light Sources. In dynamic game scenes, dominant light sources often disappear. For
instance, particles may vanish, the sun might be occluded by a moving object, or a muzzle flash
may disappear. This presents a challenge for the current algorithm, where the resampling step
continues to designate the old bright light source as the sampling target, resulting in poor sampling
behavior and increased noise. Furthermore, older states are unlikely to be replaced, as the substantial
contribution of the outdated light source reduces the acceptance probability of other light sources.
A straightforward approach involves retracing rays to ensure the Markov state’s ongoing validity.
However, this strategy would reduce the sampling budget for every frame and increase memory
consumption, particularly since multi-bounce rays might need to be stored alongside the vMF
distribution parameters. Instead, we employ a heuristic to discard states: When the new luminance
estimate (Algorithm 3, Line 1) is significantly smaller than the current luminance estimate w, we
set the weight of the current state to zero. To prevent premature discarding while the guiding
distribution has yet to converge, we impose two conditions: first, the stored time point T must
differ from the current time, indicating that the light source has not been observed at the current
moment. Second, the condition yTa) > r (refer to Algorithm 2) must be satisfied, ensuring that
the outgoing ray direction is sufficiently aligned with the mean target direction; this suggests
that the light source would have been detected if it were still present. Consequently, sumy, is
reduced in subsequent samples, increasing the acceptance probability of other states and leading to
more intensified non-guided sampling if no valid state is discovered during the resampling step,
thereby facilitating the discovery of new light sources. This also encourages the algorithm to learn
distributions that do not accommodate multiple spatially independent features in a single state.

Dynamic Geometry. If the geometry has moved across multiple grid vertices, the resampling
process might not yield a valid Markov chain state, resulting in observable flickering. To overcome
this issue and to prevent relearning the guiding distribution, we use the previous world space
position hit.x,., when loading states in Algorithm 1, Line 5 during the first sample of a frame.
This transfers Markov chain states of important light sources reliably to the new grid position. In
most cases, geometry movement is limited such that learned incident light distribution remains
valid between two frames. When this assumption does not hold, the acceptance test ensures that
Markov chain states are only stored in the new grid position if they still contribute to the incident
light estimate.

Dynamic Light Sources. Thanks to the maximum-likelihood step, the Markov chain guiding
method is inherently capable of tracking moving light sources, especially if they are sampled in
every frame. To enable the tracking of even very small and fast-moving light sources, we attempt
to predict the location where the light source will appear in the current frame. For that, every time
a Markov chain state is updated, we store the current velocity of the light source

v = (hitnextnx - hitnext-xprev)/(T - Tprev) > (9)

which we estimate from the current hitpey.x and previous hityext.Xprev World space position, as
well as the current T and previous Ty, time. This way, the mean target position can be updated
when the state is loaded in Algorithm 1, Line 5 as

S[i].g = S[il.y + S[i]l.w - (T = S[i].T) - S[i].0. (10)
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The validity of this approach relies on the assumption that the velocity remains constant between
two frames. However, we have observed effective tracking even for small, rapidly accelerated light
sources, such as glowing particles affected by gravity, which we attribute to our update mechanism
and the cooperative nature of our algorithm. Figure 4 shows renders of a 20-frame animation of a
rapidly moving rocket that is reliably tracked by our algorithm.

6 Results

We implemented our method in our custom game engine for the original Quake game, which
will be released alongside this work as Merian-Quake', including source code. Performance was
measured on an AMD Radeon RX 7900 XTX graphics card. Frame times describe the full pipeline
cost, including G-Buffer creation, acceleration structure builds for dynamic geometry, and denoising
for images annotated with SVGF [Schied et al. 2017]. We report the root mean squared error (RMSE)
and FILIP [Andersson et al. 2020] compared to references with a high sample count.

Please refer to the videos in the supplementary material for animations. For reproducibility, we
rendered at a constant rate of 60 frames per second (FPS). In most scenes, the actual frame times
were lower, ensuring that the recordings accurately depict the learning rate and tracking behavior.

For still images, we allow the guiding distribution in our method to converge, which on average
requires approximately 100 frames; refer to Figure 5. For ReSTIR, we present results after a 20-frame
warm-up phase, thus avoiding the artificial error reduction resulting from temporal reuse; this is
in accordance with the evaluation setting described in [Bitterli et al. 2020]. We use a resampling
set size Ny, of 5 for all scenes except for Poor, where we use 15. All methods use BSDF or phase
function importance sampling to discover light sources, i.e., no next event estimation was used and
no explicit light information is required. We evaluated our method in a range of scenes from the
Arcane Dimensions?, Alkaline®, and The Immortal Lock* mods as well as a custom pool scene with
animated water surface normals for underwater caustics. For single scattering, we sampled the
transmittance from the camera.

Figure 5 shows the RMSE of the accumulated images for three of our scenes. We compare our
estimator with and without the warm-up phase against path tracing with BSDF importance sampling
and ReSTIR DI for direct light. In TEARs and AzAD, our algorithm is competitive with ReSTIR DI
even at low sample counts. ReSTIR suffered from outlier samples and correlation artifacts, which
slowed down convergence. In many light scenarios, such as ALKALINE, our algorithm performs
worse, due to the limited size of the SMIS set. Note that our algorithm remains unbiased, even if
the guiding distribution has not yet converged.

Figure 6 shows a comparison of rendering a blend of direct and indirect light in real-time with our
technique. In both scenes, our method consistently produces temporally stable outputs without any
correlation artifacts resulting from Markov chain state sharing, which can be effectively denoised
using SVGF [Schied et al. 2017]. We observe effective product sampling of moderately glossy
reflections as a result of the integration of the BSDF into the resampling weight (Equation (7)). This
is demonstrated in the reflections of the candles in the background of Azap.

Figure 7 shows rendering of single scattering using our method. The left side compares two-
bounce indirect lighting combined with single scattering to path tracing with BSDF and phase
function importance sampling, at real-time frame rates. The right side shows a rendering of
underwater caustics with a larger 8192 sample budget, our estimator reaches the equal error
with phase function importance sampling after only 32 samples.

Thttps://github.com/LDAP/merian-quake
https://www.moddb.com/mods/arcane-dimensions
Shttps://alkalinequake.wordpress.com/
4https://www.moddb.com/mods/the-immortal-lock
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Fig. 5. Accumulation error (root mean squared error) for three of our scenes. We compare our estimator
with (blue) and without (orange) warm-up phase against path tracing with BSDF importance sampling and
ReSTIR DI. ReSTIR DI can only be used for estimating direct light (top row). The bottom row shows errors for
two-bounce indirect lighting. Our guiding distribution usually converges within 100 frames. In TEARs and
AzAD, ReSTIR DI suffered from outlier samples and correlation artifacts, slowing down convergence.

Figure 4 presents a 20-frame animation that includes both a rapidly moving dynamic light source
(rocket) that must be tracked by the guiding algorithm and dynamic geometry (particles) between
which information about the light source must be shared. In frame 00, the rocket is not yet launched;
in subsequent frames the tracking behavior is demonstrated: In frame 01, the rocket has already
been successfully captured, and in frame 10, the information has been effectively shared across
all surfaces. The algorithm remains unbiased despite the presence of dynamic geometry and light
sources. Frame 01 also demonstrates sharing of Markov chain states across workgroup (pixel block)
executions in our algorithm: Since workgroups on our GPU are scheduled from top to bottom, we
can observe an improved guiding distribution in the lower portion of the frame.

Figure 8 presents equal-time renders, evaluating our method applied to direct light against the
screen-space technique of Dittebrandt et al. [2023] and ReSTIR DI using unbiased MIS [Bitterli
et al. 2020]. For this experiment, the irradiance cache in our algorithm was deactivated. Our
method demonstrates competitive performance in both execution time and approximation error in
environments with simple guiding distributions, as shown in TEARs (left). Extensive implementation
effort and limiting temporal influence were necessary to achieve stable and unbiased results with
ReSTIR. Our method remains unbiased even in fully dynamic scenes, using only a single ray per
pixel, while ReSTIR requires an additional ray for each reuse pass. Our method is less effective in
scenarios with many light sources, as illustrated in ALKALINE (right). In these situations, it adapts
its sampling distribution to prioritize dominant light sources and maintains a stable output over
time. For a detailed examination of this behavior, see Section 7. ReSTIR remains orthogonal to our
method and MCPG could be used to guide paths in ReSTIR PT [Lin et al. 2022] for even lower error
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Fig. 6. Two scenes illuminated by a mix of direct and indirect light, rendered in real-time with our estimator
at 1920 x 1080, with and without SVGF denoising [Schied et al. 2017]. Left: Azap is primarily lit by small
particles, candles and indirect light from the window border. Right: PorRTAL is primarily lit by indirect light
coming from the portal, the portal itself is lit by a small strip of light around its borders.

MCPG (ours) | ALIP: 0.787 | MCPG (ours) ALIP: 0.652 | MCREIEu) 0. WICING (omrs)
aspp < 33.74 ms |4 SPP, SVGE 9 3544 ms 3

4SPP 3 . 2343ms 3 8k SPP 14.52 s
Path Tracing, “ JLIP: 0.814 rence Path Tracing ALIP: 0.200

Fig. 7. Rendering of single scattering using our estimator. Left: Rendering of a game scene from the Arcane
Dimensions Quake mod real-time at 1920 X 1080, with and without SVGF denoising [Schied et al. 2017]. Right:
Rendering of underwater caustics with a larger sampling budget of 8k samples, our estimator reaches equal
error with phase function importance sampling after only 32 samples.

output. Dittebrandt et al. [2023] suffers from high register usage for CMIS and correlation between
temporal samples, reducing performance and sample quality, respectively.

Figure 9 (left) shows the impact of varying the resolutions of the adaptive hash grid and the
corresponding buffer sizes. The resolution is specified in degrees relative to the camera. Higher
resolution improves sampling around more detailed geometric structures. Increasing the resolution
of the grid beyond the level of detail in the scene does not improve quality. Finer resolutions
require larger buffer sizes to avoid frequent hash collisions. In Quake, we found that good quality is
achieved in most scenes with a grid resolution of 0.6° and a buffer size of 10°, resulting in a memory
usage of 44 MB. This assessment is based on our encoding for Markov chain states, which requires
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Fig. 8. Roughly equal-time renders, comparing the effectiveness of direct light rendering with the the screen-
space technique of Dittebrandt et al. [2023] and the unbiased MIS variant of ReSTIR DI [Bitterli et al. 2020]
using one temporal and four spatial reuse passes. Our method demonstrates competitive performance in
terms of both execution time and approximation error in environments characterized by simple guiding
distributions (left). However, it exhibits limitations in scenarios with many light sources (right) compared
to ReSTIR. Nonetheless, our method is capable of adapting its distribution to prioritize the most significant
light sources, thereby delivering a temporally stable output.

44 Bytes. For scenes with single scattering, a larger hash buffer of approximately 500 MB is required.
Gameplay is enhanced by using larger hash buffers, as this avoids the need to re-learn the guiding
distributions upon revisiting a scene. Regarding the static grid, no differences were measured with
hash buffers exceeding 10 MB. However, a larger cell size facilitates faster information spread.

In practice, we found 2 SPP for 2-bounce surface paths and 2 SPP for volume paths (7 rays in
total: 1 for G-Buffer creation, 2 X 2 surface rays, 2 volume rays) an optimal compromise between
performance and quality, resulting in around 60 FPS in most scenes of Arcane Dimensions. For
older hardware, the surfaces can also be traced with only 1 SPP or, if a slight bias is acceptable,
the path length can even be reduced to trace direct light only, and the path tail is read from the
irradiance cache. Although this method is biased, it results in more than 120 FPS in most scenes,
even on previous generation hardware, while achieving a similar error at low sample counts.

7 Limitations

Proximity Bias and Frequency Limitations. We observe increased variance at locations where
states are shared under varying lighting conditions. This phenomenon occurs when a neighboring
state with seemingly high contribution is utilized, yet, from the new position, the light source
becomes occluded. In contrast to screen-space approaches, our hash grid is inherently designed to
ensure proximity, and information is exchanged exclusively with neighboring vertices. In Quake,
the incorporation of the surface normal into the hash proves to be effective in alleviating variance
across geometry edges. Proximity bias remains an issue at shadow boundaries and surfaces with
high frequency incident lighting, as can be seen in Azap (Figure 6, left). Note that this biases the
state space only, the final SMIS estimator remains unbiased. The limiting frequency of incident
lighing thereby depends on the hash grid resolution, not scene geometry. However, no artifacts or
issues due to increased variance were observed in conjunction with our implementation of SVGF,
and contact shadows remained sharp after denoising (see for example Figure 3, right).
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Fig. 9. Influence of algorithm parameters on the approximation error (RMSE). Left: Exploring the impact
of different hash grid resolutions and buffer sizes in Azap. The adaptive grid has its target resolution set
in degrees from the camera, finer grids achieve lower error but require larger hash buffers to mitigate
hash collisions. Right: Influence of resampling set sizes Ny in ALKALINE, results reveal diminishing returns
attributed to the limited states accessible from a world space point, complex scenes with many light sources
benefit most from larger resampling sets.

SMIS in Many Light Scenarios. To effectively control outliers and variance, the mixture model
must acurately represent the incident light distribution and every visible light source must be
included in the SMIS set. In our case, using a relatively small set of Ny, = 5, we observe overall
darkening and energy concentrating in outlier samples due to the unbiased nature of our estimator.
This can be seen in ALKALINE (Figure 8, right) or at the pillar in Azap (Figure 6, left). Although a
spatial MIS scheme as in [Dittebrandt et al. 2023] could enhance the situation for the first vertex, a
more sophisticated approach is required to perform MIS on subsequent path vertices. As illustrated
in Figure 9 (right), an increase in the sample set enhances error reduction; however, diminishing
returns become evident with larger sets. Apart from a limited number of light sources in the scene,
this limitation arises from the finite number of states accessible from a given world space position.
In simpler scenes like TEARs (Figure 8, left), where a single light source predominantly illuminates
the scene, minimal darkening is observable. The size of the SMIS set requires careful consideration
to strike a balance between quality and runtime performance, given the additional cost of more
hash grid buffer accesses. In practice, when focusing on the most important light sources suffices,
acceptable image quality can be obtained using an SMIS set as small as 3 when coupled with a
firefly filter and a denoiser. This combination proves to be effective in eliminating residual noise,
and compensation for any resulting darkening is achieved through an elevated exposure. For single
scattering, we found that a set size of 5 is an acceptable compromise.

8 Conclusion

We introduced a lightweight and unbiased path guiding algorithm designed for real-time appli-
cations with highly dynamic content and showcased its effectiveness in guiding both direct and
indirect illumination. It seamlessly extends to guide single scattering events in participating media
while maintaining real-time performance. Compared to ReSTIR, our method requires less implemen-
tation effort, extends naturally to longer paths, remains unbiased even in fully dynamic scenes, and
only falls short in scenes with many light sources. However, it is capable of adapting its distribution
to prioritize the most significant light sources, thereby delivering a temporally stable output. We
implemented our method as a custom game engine for the original Quake game, demonstrating
path traced indirect lighting and single scattering in real-time.
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