KIT | KIT-Bibliothek | Impressum | Datenschutz

TUM2TWIN: Introducing the Large-Scale Multimodal Urban Digital Twin Benchmark Dataset

Wysocki, Olaf 1; Schwab, Benedikt; Biswanath, Manoj Kumar 1; Greza, Michael 1; Zhang, Qilin 1; Zhu, Jingwei 1; Froech, Thomas; Heeramaglore, Medhini; Hijazi, Ihab; Kanna, Khaoula; Pechinger, Mathias; Chen, Zhaiyu; Sun, Yao; Segura, Alejandro Rueda; Xu, Ziyang; AbdelGafar, Omar; Mehranfar, Mansour; Yeshwanth, Chandan; Liu, Yueh-Cheng; ... mehr

Abstract:

Urban Digital Twins (UDTs) have become essential for managing cities and integrating complex, heterogeneous data from diverse sources. Creating UDTs involves challenges at multiple process stages, including acquiring accurate 3D source data, reconstructing high-fidelity 3D models, maintaining models' updates, and ensuring seamless interoperability to downstream tasks. Current datasets are usually limited to one part of the processing chain, hampering comprehensive UDTs validation. To address these challenges, we introduce the first comprehensive multimodal Urban Digital Twin benchmark dataset: TUM2TWIN. This dataset includes georeferenced, semantically aligned 3D models and networks along with various terrestrial, mobile, aerial, and satellite observations boasting 32 data subsets over roughly 100,000 $m^2$ and currently 767 GB of data. By ensuring georeferenced indoor-outdoor acquisition, high accuracy, and multimodal data integration, the benchmark supports robust analysis of sensors and the development of advanced reconstruction methods. Additionally, we explore downstream tasks demonstrating the potential of TUM2TWIN, including novel view synthesis of NeRF and Gaussian Splatting, solar potential analysis, point cloud semantic segmentation, and LoD3 building reconstruction. ... mehr


Volltext §
DOI: 10.5445/IR/1000183841
Veröffentlicht am 05.08.2025
Originalveröffentlichung
DOI: 10.48550/arXiv.2505.07396
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Photogrammetrie und Fernerkundung (IPF)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2025
Sprache Englisch
Identifikator KITopen-ID: 1000183841
Verlag arxiv
Umfang 50 S.
Schlagwörter Computer Vision and Pattern Recognition (cs.CV); Machine Learning (cs.LG)
Nachgewiesen in arXiv
Dimensions
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page