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Abstract

Work performance evaluation of heavy-duty mobile machines (HDMMs)

The construction industry is crucial for economic growth, but its productivity has not im-

proved much despite its importance. Heavy-duty mobile machines (HDMMs), particularly

excavators, play a central role in construction projects, with their productivity directly

impacting projects’ productivity and costs. This dissertation aims to tackle several chal-

lenges regarding the automatic productivity estimation of an excavator in earth-moving

operations, such as loading, trenching, and grading.

In the beginning, the significance of the construction industry and the critical role of

HDMMswithin it are discussed. It highlights the challenges faced by the industry, including

low productivity growth and outdated practices, emphasizing the need for automated

productivity estimation and progress monitoring. Then, an excavator is introduced as the

main application in the research study. In the next phase, existing research studies for the

productivity estimation of HDMMs are thoroughly explored to identify research gaps and

to design multiple research questions that drive the dissertation’s focus.

Capturing motion information using inertial measurement units (IMUs) holds promise for

recognizing activities and automatically estimating cycle time and productivity. Also, the

importance of analysis of working conditions and estimating theoretical cycle time and

productivity is stated. In addition, 3D sensors and building information modeling (BIM)

can be integrated to enhance the productivity estimation and progress monitoring of an

excavator in quality-centered tasks, such as grading and trenching operations.

First, an activity recognition method is proposed to identify the excavator working cycle

using supervised classification methods and motion information, such as angular veloci-

ties and joint angles, obtained from four IMUs attached to moving parts of an excavator,

including the swing body, boom, arm, and bucket. Human operators perform tasks using

a medium-rated excavator under different working conditions, such as different types of

material, swing angle, digging depth, and weather conditions to collect a dataset. The

proposed method can effectively recognize the working cycles of an excavator. Task recog-

nition can aid management teams in monitoring productivity and progress, optimizing

resource allocation, and scheduling. Using the results of the task recognition algorithm,

productivity can be calculated based on task-specific metrics.

Next, an approach is designed to automatically determine the productivity and operational

effectiveness of an excavator in the loading operation. Firstly, an algorithm is proposed to

recognize the excavator’s sub-tasks using supervised learning and motion data obtained
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from IMUs. Then, a method is presented to estimate the actual cycle time based on the

sequence of activities detected using the trained classification model. The actual cycle time

cannot solely reveal themachine’s performance since operating conditions can significantly

influence the cycle time. Therefore, a reference is required to analyze the actual cycle time.

Secondly, the theoretical cycle time of an excavator is automatically estimated based on

the operating conditions, such as swing angle and digging depth. Thirdly, the relative

cycle time is obtained by dividing the theoretical cycle time by the actual cycle time.

The relative cycle time index can effectively monitor the performance of an excavator in

loading operations and can be useful for worksite managers to monitor the performance

of each machine in worksites.

In the next step, a technique is proposed to estimate the excavator’s actual productivity

in trenching and grading operations. In these tasks, the quantity of material moved is

not significant; precision within specified tolerances is the key focus. The productivity

definitions for trenching and grading operations are the trench’s length per unit of time

and graded area per unit of time, respectively. In the method, a height map from working

areas is constructed. Also, BIM is utilized to acquire information regarding the target

model and required accuracy. The productivity is estimated using the map comparison

between the working areas and the desired model. The method can effectively estimate

productivity and monitor the progress of these operations. The obtained information can

guide managers to track the productivity of each individual machine and modify planning

and time-scheduling.

This dissertation employs advanced technologies, such as IMUs, machine learning tech-

niques, elevation terrain mapping algorithms, and BIM. It aims to streamline productivity

estimation and progress monitoring for excavators, ultimately contributing to more effi-

cient and successful construction projects. It underscores the potential for future research

to enhance these methodologies, expand their applicability to other HDMMs and tasks,

and address remaining challenges to propel the construction industry towards greater

productivity and sustainability.

Keywords: Excavator, Productivity Estimation, Progress Monitoring, Loading Operation,

Grading Operation, Trenching Operation, Activity Recognition, Actual Cycle Time Esti-

mation, Theoretical Cycle Time, Relative Cycle Time Index, Swing Angle, Digging Depth,

Building Information Modeling (BIM), Elevation Terrain Mapping
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Kurzfassung

Arbeits leistungsbewertung von hochleistungs-mobilmaschinen (HDMMs)

Die Bauindustrie ist entscheidend für das Wirtschaftswachstum, doch trotz ihrer Bedeu-

tung hat sich die Produktivität nicht wesentlich verbessert. Schwere mobile Maschinen

(HDMMs), insbesondere Bagger, spielen eine zentrale Rolle in Bauprojekten, wobei ihre

Produktivität die Produktivität und Kosten der Projekte direkt beeinflusst. Diese Disserta-

tion zielt darauf ab, mehrere Herausforderungen bei der automatischen Produktivitätss-

chätzung eines Baggers bei Erdbewegungsarbeiten wie Laden, Graben und Planieren zu

bewältigen.

Zunächst wird die Bedeutung der Bauindustrie und die kritische Rolle der HDMMs in-

nerhalb dieser Branche erörtert. Es werden die Herausforderungen hervorgehoben, mit

denen die Branche konfrontiert ist, einschließlich des geringen Produktivitätswachstums

und veralteter Praktiken, und der Bedarf an automatischer Produktivitätsschätzung und

Fortschrittsüberwachung wird betont. Anschließend wird der Bagger als Hauptanwen-

dungsobjekt der Forschungsarbeit vorgestellt. In der nächsten Phase werden bestehende

Forschungsstudien zur Produktivitätsschätzung von HDMMs gründlich untersucht, um

Forschungslücken zu identifizieren und mehrere Forschungsfragen zu formulieren, die

den Fokus der Dissertation lenken.

Die Erfassung von Bewegungsinformationen mithilfe von Inertial Measurement Units

(IMUs) verspricht, Aktivitäten zu erkennen und automatisch die Zykluszeit und Produktiv-

ität zu schätzen. Außerdem wird die Bedeutung der Analyse von Arbeitsbedingungen und

der Schätzung theoretischer Zykluszeiten und Produktivitäten betont. Darüber hinaus

können 3D-Sensoren und Building Information Modeling (BIM) integriert werden, um die

Produktivitätsschätzung und Fortschrittsüberwachung eines Baggers bei qualitätsorien-

tierten Aufgaben wie Planieren und Graben zu verbessern.

Zunächst wird eine datengetriebene Methode zur Erkennung von Arbeitszyklen unter

Verwendung von überwachten Klassifikationsmethoden und Bewegungsinformationen,

wie Winkelgeschwindigkeiten und Gelenkwinkel, die von vier an beweglichen Teilen

eines Baggers angebrachten IMUs erfasst werden, vorgeschlagen. Menschliche Bediener

führen Aufgaben mit einem mittelgroßen Bagger unter verschiedenen Arbeitsbedingun-

gen, wie unterschiedlichen Materialtypen, Schwenkwinkel, Grabtiefe und Wetterbedin-

gungen, aus, um einen Datensatz zu sammeln. Die vorgeschlagene Methode kann die

Arbeitszyklen eines Baggers effektiv erkennen. Die Aufgabenerkennung kann Manage-

mentteams dabei helfen, die Produktivität und den Fortschritt zu überwachen, Ressourcen
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optimal zuzuweisen und Zeitpläne zu erstellen. Mithilfe der Ergebnisse des Aufgabenerken-

nungsalgorithmus kann die Produktivität basierend auf aufgabenspezifischen Metriken

berechnet werden.

Als nächstes wird ein Ansatz entwickelt, um die Produktivität und betriebliche Effizienz

eines Baggers beim Ladevorgang automatisch zu bestimmen. Zunächst wird ein überwachter

Lernalgorithmus vorgeschlagen, um die Unteraufgaben des Baggers anhand von Bewe-

gungsdaten, die von IMUs erfasst wurden, zu erkennen. Anschließend wird eine Meth-

ode vorgestellt, um die tatsächliche Zykluszeit basierend auf der Sequenz der erkannten

Aktivitäten unter Verwendung des trainierten Klassifikationsmodells zu schätzen. Die

tatsächliche Zykluszeit allein kann die Leistung der Maschine nicht vollständig wider-

spiegeln, da die Betriebsbedingungen die Zykluszeit erheblich beeinflussen können. Daher

ist eine Referenz erforderlich, um die tatsächliche Zykluszeit zu analysieren. Zweitens wird

die theoretische Zykluszeit eines Baggers basierend auf den Betriebsbedingungen, wie

Schwenkwinkel und Grabtiefe, automatisch geschätzt. Drittens wird die relative Zykluszeit

durch Division der theoretischen Zykluszeit durch die tatsächliche Zykluszeit ermittelt.

Der Index der relativen Zykluszeit kann die Leistung eines Baggers bei Ladeoperationen

effektiv überwachen und für Baustellenmanager nützlich sein, um die Leistung jeder

Maschine auf Baustellen zu überwachen.

Im nächsten Schritt wird eine Technik vorgeschlagen, um die tatsächliche Produktivität

eines Baggers bei Graben- und Planierarbeiten zu schätzen. Bei diesen Aufgaben ist die

Menge des bewegten Materials nicht entscheidend; die Präzision innerhalb festgelegter

Toleranzen steht im Mittelpunkt. Die Produktivitätsdefinitionen für Graben- und Planier-

arbeiten sind die Grabenlänge pro Zeiteinheit bzw. die planierte Fläche pro Zeiteinheit.

In der Methode wird eine Höhenkarte der Arbeitsbereiche erstellt. Außerdem wird BIM

genutzt, um Informationen zum Zielmodell und den erforderlichen Genauigkeiten zu er-

halten. Die Produktivität wird durch den Vergleich der Karte der Arbeitsbereiche mit dem

gewünschten Modell geschätzt. Die Methode kann die Produktivität effektiv schätzen und

den Fortschritt dieser Operationen überwachen. Die erhaltenen Informationen können

Managern helfen, die Produktivität jeder einzelnen Maschine zu verfolgen und die Planung

und Zeitplanung anzupassen.

Diese Dissertation verwendet fortschrittliche Technologien wie IMUs, maschinelle Lern-

techniken, Höhenkarten-Algorithmen und BIM. Sie zielt darauf ab, die Produktivitätss-

chätzung und Fortschrittsüberwachung für Bagger zu rationalisieren und letztlich zu

effizienteren und erfolgreicheren Bauprojekten beizutragen. Es wird betont, dass zukün-

ftige Forschung diese Methoden verbessern, ihre Anwendbarkeit auf andere HDMMs

und Aufgaben erweitern und verbleibende Herausforderungen angehen könnte, um die

Bauindustrie zu größerer Produktivität und Nachhaltigkeit zu führen.

Schlagworte: Bagger, Produktivitätsschätzung, Fortschrittsüberwachung, Ladevorgang,
Planierarbeit, Grabarbeit, Aufgabenerkennung, Schätzung der tatsächlichen Zykluszeit,

Theoretische Zykluszeit, Index der relativen Zykluszeit, Schwenkwinkel, Grabtiefe, Build-

ing Information Modeling (BIM), Höhenkarten-Erstellung
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Abbreviations and Symbols

Symbols
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐶𝑇 Accuracy of cycle time estimation −
𝑡𝑎𝑐𝑡𝑢𝑎𝑙 Actual cycle time 𝑠

𝜔 Angular velocity rad/𝑠
𝑎 Area of graded surface 𝑚2

ℎ𝑑 Digging depth 𝑚

𝑓𝑑𝑒𝑝𝑡ℎ Digging depth factor −
𝑓 𝑝𝑠 Frames per second 𝐻𝑧

𝑉𝐶𝐸𝐶𝐸 Heaped bucket capacity according the CECE standard 𝑚3

𝑉𝑆𝐴𝐸 Heaped bucket capacity according the SAE standard 𝑚3

ℎ Hour 3600 𝑠

𝑙 Length of trench 𝑚

𝑡𝑜𝑛𝑛𝑒 Metric ton 1000 kg

𝑚𝑖𝑛 Minute 60 𝑠

𝜃 Pitch (rotation around 𝑦-axis) rad

𝑄𝑔𝑟𝑎𝑑𝑖𝑛𝑔 Productivity of grading operation 𝑚2/𝑠
𝑄𝑡𝑟𝑒𝑛𝑐ℎ𝑖𝑛𝑔 Productivity of trenching operation 𝑚/𝑠
𝑡𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 Relative cycle time −
𝜙 Roll (rotation around 𝑥-axis) rad

𝑓𝑠 Sampling frequency 𝐻𝑧

𝜃𝑠𝑤 Swing angle
◦

𝑓𝑠𝑤𝑖𝑛𝑔 Swing angle factor −
𝑡𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 Theoretical cycle time 𝑠

𝑡 Time 𝑠

𝜓 Yaw (rotation around 𝑧-axis) rad

Abbreviations
AHRS Attitude and Heading Reference System

AI Artificial Intelligence

ALS Aerial Laser Scanning

AMC Automated Machine Control

AMG Automated Machine Guidance

ANN Artificial Neural Network
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BiLSTM Bidirectional Long Short-Term Memory

BIM Building Information Modeling

BoF Bags-of-Features

BPNN Back Propagation Neural Network

CAD Computer-Aided Design

CAN Controller Area Network

CECE Committee for European Construction Equipment

CNN Convolutional Neural Network

CSK Circulant Structure of tracking-by-detection with Kernels

CV Computer Vision

DCF Dual Correlation Filter

DES Discrete Event Simulation

DNN Deep Neural Network

DT Decision Tree

DTW Dynamic Time Warping

EKF Extended Kalman Filter

Faster R-CNN Faster Region-based Convolutional Neural Network

FOV Field-Of-View

GIS Geographic Information System

GMM Gaussian Mixture Model

GNSS Global Navigation Satellite System

GPS Global Positioning System

HDMM Heavy-Duty Mobile Machine
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1 Introduction

The construction industry is one of the most crucial and critical industries for economic

growth. In most countries, it contributes to the economy by 8–10% on average [1] and

acts as a bridge connecting the economy to other industries. The construction sector is

the engine of growth and generates a flow of services and goods with other industries.

Increasing construction productivity allows businesses to earn more money while also

reducing costs per capita [1].

In the construction industry, a project undergoes various stages in its life cycle, including

design, planning, scheduling, execution, monitoring, control, and demolition. Effectively

monitoring and controlling play a pivotal role in reducing time and cost overruns in

construction projects [2]. It has long been a recurring topic that the construction industry

needs to perform better. The industry has a bad reputation for using ineffective practices,

and its productivity has increased by just 1% in over 20 years [164]. Moreover, the

construction industry faces significant challenges, including a lack of skillful human

operators, harsh environmental conditions, and safety [3].

Heavy-duty mobile machines (HDMMs), such as excavators and wheel loaders, play a key

role in various construction projects. The total cost of a construction project is greatly

impacted by the costs of HDMMs. Studies show that equipment costs can make up as much

as 40% of direct costs in highway construction projects and as much as 5% to 10% of direct

costs in building construction projects [4]. Evaluating and improving the productivity of

construction machinery contributes to enhancing overall construction productivity and

subsequently can bring about significant savings in total project expenses [2].

The well-known saying, “If you cannot measure it, you cannot improve it” [5], holds

significant relevance for enhancing the performance of HDMMs and subsequently the

construction industry. Within construction project management, productivity estimation

and progress monitoring serve as pivotal elements, forming the basis for effective man-

agement and decision-making [6]. Monitoring the productivity of HDMMs is integral to

fostering more cost-effective and successful construction projects and marking a critical

step toward semi or fully autonomous worksites. Productivity estimation of HDMMs

enables worksite managers to anticipate potential issues, pinpoint areas for enhancement,

optimize resource allocation, refine planning and operating parameters, accurately budget

for upcoming projects, and enhance overall management and financial conditions. Addi-

tionally, human operators can enhance their skills by taking advantage of the provided

productivity feedback [174]. Traditional techniques for performance evaluation of HD-

MMs are labor-intensive, costly, and prone to human error because they rely on manual

data collection and on-site observations [7]. Therefore, automated approaches are highly
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required to precisely track the productivity of HDMMs in construction projects under

different operating conditions.

1.1 Applications

There are various kinds of HDMMs, and the hydraulic excavator is one of the most signifi-

cant pieces of equipment in the construction industry since different types of excavation

work are required for almost all construction projects, including industrial and residential

buildings, highways, and airports [175]. An excavator, which is a human-operated machine

primarily driven by a hydraulic system, can perform various earth-moving activities, such

as digging, trenching, and grading. Human operators use their senses and reasoning-based

knowledge to control and monitor operations. Figure 1.1 depicts a typical hydraulic ex-

cavator. An excavator consists of three main parts, the front digging manipulator, the

Traveling body

Swing body

Boom actuator

Boom

Arm actuator

Arm

Bucket actuator

Bucket

Figure 1.1: A typical hydraulic excavator [176].

swing body, and the traveling body. The boom, arm, and bucket comprise the machine’s

front digging manipulator. Three revolute joints connect the swing body, boom, arm, and

bucket of an excavator [176].

According to a survey of research in this field, three of the most frequent duty cycles carried

out by an excavator are loading (or dig & dump), trenching, and grading [8]–[10]. The

simple schematics of these tasks are demonstrated in Figure 1.2. Loading operation is one

of the most essential tasks in mining and construction projects. In this operation, materials

are picked up and moved from one place to another using the excavator’s manipulator.

This can involve loading materials onto trucks for transportation or digging materials from

the ground in order to prepare the site for construction [174]. Also, the loading operation

can be subdivided into two categories based on the swing angle: 90
◦
and 180

◦
loading

cycles. During a 90
◦
loading cycle, an excavator undergoes acceleration of approximately

60
◦
and deceleration of roughly 30

◦
throughout the swing motion. Conversely, within a
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(a) Loading (b) Trenching (c) Grading

Figure 1.2: Typical excavator duty cycles [10].

180
◦
loading cycle, both acceleration and deceleration phases span around 90

◦
[11]. The

second important duty cycle of an excavator is the trenching. In the trenching operation,

an excavator is used to dig ground trenches for the installation of underground utilities,

such as sewage and water pipes. The human operator digs a trench corresponding to

the desired size and depth. Another important and challenging task that an excavator

can perform is the grading operation. In the grading operation, an excavator is used to

level and smooth the surface of the ground. This is frequently performed to create a

level surface for paving or to prepare a site for construction, landscaping, or building

purposes. To create a level surface, the excavator moves and distributes the material using

its bucket [175], [165].

1.2 Research Hypothesis

This dissertation aims to define and estimate the actual or absolute productivity of an

excavator in different earth-moving tasks, including loading, trenching, and grading

operations. The next goal is to automatically evaluate the theoretical productivity or

maximum capability of an excavator in these operations based on ongoing working

conditions. Finally, the relative productivity or performance level of an excavator in these

operations can be obtained using actual and theoretical productivity. At the core of our

investigation lies the research hypothesis that the relative productivity of an excavator

can be estimated in earth-moving tasks.

1.3 Thesis Outline

Chapter 1 presented the introduction and motivation of the dissertation. A short overview

of the research hypothesis is discussed as well. Chapter 2 describes proposed methods for

activity recognition and productivity estimation methods for different HDMMs in various

earth-moving tasks. Chapter 3 outlines the proposed research framework and existing
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research gaps and presents the research questions. Chapter 4 proposes a data-driven

method to recognize the tasks of an excavator in earth-moving operations using motion

information obtained from different moving parts of an excavator. Chapter 5 presents

a method for sub-task recognition of an excavator in the loading operation. Then, the

actual cycle time is estimated using the proposed sub-task recognition algorithm. Also,

the working conditions, such as swing angle and digging depth, are estimated using the

detected activities. Then, the theoretical cycle time of an excavator in the loading operation

is estimated based on the ongoing working conditions. Finally, the performance level

or operational effectiveness is evaluated. Chapter 6 describes two automatic methods

to monitor the operation progress and calculate the productivity of an excavator in the

trenching and grading operations. Firstly, the elevation terrain mapping algorithm is

explained. Then, the productivity is estimated using a comparison of the actual map with

the target model obtained from building information modeling (BIM). Lastly, chapter 7

concludes the dissertation with a summary and an outlook.
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2 State of Research

Efficiently monitoring the productivity of HDMMs is essential for enhancing overall con-

struction productivity and cost control. Nevertheless, traditional methods for equipment

productivity monitoring still heavily rely on labor-intensive manual observations and

record-keeping, which prove time-consuming, expensive, and prone to errors. To address

these limitations, numerous research studies have been conducted on integrating infor-

mation technology to automatically collect productivity-related data and monitor the

productivity of construction equipment [3]. This chapter provides an in-depth exploration

of the latest developments in this field.

Over the past few years, various information technologies, including machine learning [12],

[13] and real-time location systems (RTLS) [14], [15], have been utilized in earth-moving

equipment productivity monitoring and analyzing the influencing factors of equipment

productivity. Thesemethods can be classified into two groups based on the type of collected

data: computer vision (CV)-based techniques and sensor-based techniques. Figure 2.1

illustrates the conceptual process of these methods. Some research studies [17], [18]

Figure 2.1: The conceptual process for equipment productivity monitoring: (a) data col-

lection; (b) data processing; (c) operation monitoring; and (d) productivity analysis [16].

focused on evaluating the productivity of HDMMs through either CV-based or sensor-

based techniques, while others [12], [19] emphasized the monitoring of factors that impact
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productivity. CV-based approaches acquire operational data from surveillance cameras on

construction sites. On the other hand, sensor-based methods involve the deployment of

various sensors or tags, such as radio-frequency identification (RFID), global positioning

system (GPS), ultra-wideband (UWB), inertial measurement unit (IMU), light detection and

ranging (LiDAR), etc., on both the equipment and the construction site to capture position

and pose information. Analysis of data from cameras or sensors enables the identification

of work states or activities of the equipment. For instance, the location and trajectory data

of a dump truck obtained from sensors can be directly utilized for identifying activities.

Visual data is typically processed using CV-based techniques, such as deep learning, to

recognize equipment activities. Finally, based on this activity information, the equipment

productivity can be estimated in the form of the operation time, cycle time, operation

quality, or soil quantity [16].

2.1 CV-Based Productivity Monitoring

The utilization of CV-based technologies for equipment productivity monitoring has

become popular in recent years due to advancements in object detection and tracking

algorithms within computer science. A typical CV-based productivity monitoring method

comprises several key steps. Initially, equipment detection is employed to identify a

specific type of equipment within image or video frames. Secondly, continuous tracking

of different pieces of equipment is implemented across all video frames. The detection and

tracking methods provide spatial position and movement information of the equipment.

Consequently, activity recognition and pose estimation are performed to analyze the work

states of the equipment, which is necessary for productivity analysis [16].

2.1.1 Detection Methods

The implementation of CV-based methods in equipment productivity monitoring begins

with equipment detection methods. These methods typically initiate the process by

extracting features that represent the visual characteristics of the equipment. In the next

step, classifiers are trained to recognize the equipment by categorizing vectors generated

from the features. The histogram of oriented gradients (HOG) serves as a widely used

feature descriptor in equipment detectionmethods. In [12], [20], the HOG feature alongside

a support vector machine (SVM) classifier is utilized for dump truck detection in videos.

In [21], HOG with color features is combined with hue-saturation-values (HSV) to identify

workers, excavators, and trucks in video frames employing an SVM classifier. In [22], HOG

features and an SVM classifier are utilized to recognize five types of equipment (backhoe,

dozer, excavator, loader, and roller) in images. In [23], a part-based model focusing on the

boom is introduced to detect excavators, achieving fewer misclassifications compared to

general HOG-based methods.

Several approaches identified moving equipment by subtracting it from the background.

In [24], color space values are employed to recognize the excavator in images with snow
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and soil backgrounds. In [25], the Gaussian mixture model (GMM) algorithm is utilized to

segment regions of moving objects from the image. Secondly, two classifiers, including the

Bayes classifier and a four-layer neural network, are utilized to categorize the segmented

parts into workers, backhoes, and loaders. In [26]–[28], GMM and Bayes networks are used

to recognize excavators and trucks in video frames. However, the background subtraction

method is constrained to detecting moving and idling objects, which may not be sufficient

for identifying other activities of the equipment. Earlier approaches faced a challenge

in distinguishing specific equipment within a fleet. To address this limitation, in [29], a

marker-based recognition method is designed to identify individual excavators and trucks

in videos. This approach involves the attachment of markers onto the equipment, enabling

their detection through marker recognition.

The developments of deep learning methods employing a convolutional neural network

(CNN) have significantly impacted equipment detection algorithms. A fundamental dis-

tinction between feature-based methods and CNN lies in their approaches to learning

the features of objects. While CNNs can automatically learn representative features from

images in the dataset, feature-based methods rely on manually designed features, which is

challenging in the complex construction environment [30]. Numerous CNNs have been

employed for different equipment detection tasks, demonstrating superior performance

compared to feature-based methods [31], [32]. In [33], a faster region-based CNN (Faster

R–CNN) is utilized for excavator detection. In [30], the residual neural network (ResNet)-50

is trained using 2,920 images to recognize four pieces of equipment, including a loader,

excavator, dump truck, and concrete mixer truck. In [34], Faster R-CNN [33], single shot

detector (SSD) [35], and You Only Look Once (YOLO) [36] models are trained using the

same dataset to recognize excavator, truck, forklift, and loader.

In [13], [37], without training a classifier for the recognition of a particular type of

equipment, a tracking-based approach known as tracking-learning-detection (TLD) [38] is

designed to detect the target equipment in video frames. This method initially chooses the

target equipment for identification using a bounding box. Then, a tracker and a detector

are trained online to locate the target in the next video frame based on trajectory, spatial

information, gray-value variance, and pixel variance.

2.1.2 Tracking Methods

The tracking methods focus on associating and capturing the trajectory of each piece

of equipment across all video frames. Different techniques have been employed for

equipment tracking, including mean-shift tracking [39], a Kanade and Lucas tracker

(KLT) [12], contour-based and point-based algorithms [40], kernel covariance [41], and

Kalman filtering [26], [42].

In [40], three widely used tracking methods, including the contour-based, kernel-based,

and point-based methods, are assessed to track workers, equipment, and materials in

construction sites. It has been highlighted that the kernel-based method proves more

suitable for tracking construction-related resources considering occlusion, illumination,
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and scale variation conditions. In [43], the accuracy and robustness of 15 visual track-

ing methods across 20 distinct construction scenarios are evaluated. There have been

challenges in tracking excavators due to self-occlusion, and only the dual correlation

filter (DCF) [44] and circulant structure of tracking-by-detection with kernels (CSK) [45]

methods could effectively track under heavy occlusions. In [46], a particle-based tracking

system is introduced that is capable of continuous tracking of workers and equipment,

including rollers, trucks, and dozers, even during extended periods of collisions. The

target objects are represented using a set of particles, and offline training is not needed.

In [47], the point tracking method [48] is enhanced by incorporating a failure-checking

technique for tracking excavators. Initially, the optical flow images of an excavator are

generated, and then key points are tracked under the assumption that the target’s image

brightness is constant between two consecutive frames. In [13], hybrid methods, includ-

ing the median-flow algorithm [49] and the pyramidal Lucas-Kanade algorithm [50], are

integrated to estimate object motions across consecutive frames, enabling the tracking

of excavators in long videos. Hybrid tracking methods are also used to solve challenges

regarding long-term occlusion and interclass variations. In [32], a deep simple online and

real-time (SORT) tracker [51] is utilized, which combines a CNN and Kalman filter to track

excavators and trucks.

2.1.3 Activity Recognition Methods

Numerous research studies moved toward developingmore practical approaches tomonitor

operation and equipment productivity utilizing equipment detection and tracking methods.

Activity recognition stands out as a key aspect of equipment monitoring since it has a

direct relationship with productivity analysis. There are three primary methods in CV-

based activity recognition: (1) feature-based methods, (2) rule-based analysis, and (3)

spatial-temporal CNN methods (refer to Fig. 2.2).

Figure 2.2: Workflow for equipment productivity analysis using CV-based methods [16].
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Feature-based activity recognitionmethods share similarities with feature-based equipment

detection approaches. Once spatial features are gathered in each video frame, these

features in consecutive video frames are transformed into a vector or matrix for activity

recognition. In [52], a three-dimensional (3D)-Harris corner detector is employed for

identifying interest points. The HOG and histogram of optical flow (HOF) descriptors are

utilized to characterize interest points in consecutive frames. Subsequently, a Bayesian

neural network [53] is trained to classify different types of backhoe activities, including

relocating, excavating, and swinging. The results demonstrate that the HOG feature

outperforms HOF. In [17], 3D HOG as spatio-temporal features and an SVM as a classifier

are utilized to identify excavator activities, including digging, hauling, dumping, and

swinging, and truck activities, including filling, dumping, and moving. In [31], neural

networks are employed to obtain the bounding boxes for excavators and trucks in frames

of a video filmed at ground level. In the next step, the HOG, HOF, and motion boundary

histograms (MBH) features of excavators and trucks are extracted every 20 frames. Finally,

an SVM classifier is used to categorize the activities of an excavator (idling, swinging,

loading, moving, and dumping) and a truck (idle, moving, filling, and hauling).

Rule-based methods find extensive applications in productivity analysis. These approaches

identify activities by relying on the outcomes of detection and tracking steps. Initially,

pixel coordinates of equipment in video frames are extracted from the detection and

tracking results. Then, activities are detected by investigating the changes in coordinates

within video frames or relative distances between different pieces of equipment. In [24],

a color features detector based on HSV color space and a centroid tracker are utilized to

acquire the excavator coordinates in video frames. The distinction between the idling and

stopping activities of an excavator is established by comparing the changes in centroid

coordinates across consecutive video frames. The percentage of working time in the

total operation time is determined as productivity. In [12], HOG-based detectors are

employed to obtain the coordinates of excavators and trucks. In the next step, utilizing

vectors derived from the distances between the base point of the excavator and the four

corners of the dump truck, an SVM classifier is trained to recognize loading activities. The

cycle time is determined as the duration between two loading activities. In [54], a CV-

based method is proposed for the identification of excavator activities, such as swinging,

digging, dumping, idling, and moving, using highly varying long-sequence videos obtained

from fixed cameras. In [27], [28], a construction site is partitioned into multiple interest

regions. Then, the feature-based method, proposed in [17], is employed to distinguish

between static and moving activities of excavators and trucks. Activity is classified as

filling if both excavator and truck are detected within the earth-moving region and their

distance falls below a defined threshold. Utilizing information on the excavator’s bucket

volume and hourly bucket numbers, the productivity as the volume of excavated soil is

computed. In [55], five types of equipment (bulldozer, excavator, truck, grader, and roller)

are identified using the HOG-based classifier. Then, a Bayesian network is employed to

compute the probability of activities based on the other contents detected in the same frame.

In [56], based on the assumption that the excavator and truck are within a certain distance

during the loading phase, the loading activity is detected by comparing the changes in

distance between the two pieces of equipment against predefined thresholds. In [57], a
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vision-based technique is proposed to detect excavator activities (working, traveling, and

idling) using TLD and bags-of-features (BoF). In [37], activities are identified by tracking

changes in centroid coordinates across consecutive video frames. The interaction between

excavators and trucks is analyzed to enhance accuracy. For example, if an excavator is

in operation while the nearest truck is stationary, the activity of that truck is labeled as

working. The presented method consists of four key steps: (1) equipment detection and

tracking, (2) action recognition of individual equipment, (3) interaction analysis, and (4)

post-processing.

The techniques can identify consecutive activities in long video sequences based on detec-

tion and tracking outcomes and can estimate the duration of each activity for equipment

productivity calculation. Nonetheless, these methods still exhibit certain limitations. They

rely on two-dimensional (2D)-pixel distance for proximity estimation instead of utilizing

the more accurate 3D real distance. Since the cameras on construction sites are typically

installed at inclined angles, the 2D-pixel distance fails to accurately represent the actual

spatial relationships among different pieces of equipment in a real construction site. Addi-

tionally, these methods require adjusting the thresholds with changes in camera positions,

which is very inconvenient [16].

Spatial-temporal neural networks are also utilized for the direct identification of equipment

activities. In [58], a CNN and a long short-term memory (LSTM) network are integrated

to identify excavator activities such as digging, hauling, dumping, and swinging. The

approach is based on the assumption that excavators typically follow the sequence of

digging, hauling, dumping, and swinging during operation [59]. Consequently, a hybrid

neural network comprising a 10-layer CNN for visual features and a two-layer LSTM for

sequential features is developed. However, due to the gradient descent issue of LSTM, this

method faces challenges in achieving high accuracy in long videos. In [60], a 3D CNN is

proposed to recognize the excavator activities using temporal and spatial information. In

[61], a deep learning-basedmethod is presented to recognize the activities of excavators and

dump trucks from video frame sequences. In the method, image and temporal features are

extracted using CNN and LSTM, respectively. In [32], a 101-layer 3D ResNet is employed

to capture spatial-temporal features of activities within every set of 16 consecutive video

frames. The model successfully identifies the digging, swinging, and loading activities

of an excavator with an accuracy of 87.6%. Also, the activity durations and productivity

are estimated. However, a notable limitation of this method is its requirement for a

large dataset for effective training of the 3D ResNet. In [62], a deep learning-based

excavator activity analysis and a safety monitoring system are proposed that can detect

the activities, recognize the surrounding environment, and determine poses. In [63],

a method is presented to recognize the activities of an excavator. First, the sequential

patterns of visual features are extracted from the video frames using a pre-trained CNN

model. Then, the activities are recognized using a bidirectional LSTM (BiLSTM) and the

output of the pre-trained CNN. In [64], a vision-basedmethod is described for automatically

analyzing equipment productivity in earth-moving tasks by adopting zero-shot learning for

activity recognition. The proposed method can identify activities of general construction

machines (e.g., excavators and loaders) without pre-training or fine-tuning.
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2.1.4 Productivity Analysis Methods

The majority of current studies computed productivity by identifying the equipment

activities. Some studies determined productivity by assessing the ratio of working or idling

times within the entire operation time. For instance, in [24], it has been investigated that

the excavator was 3,590 𝑠 idling within 10,800 𝑠 operation time, resulting in a working rate

of 66.8%. In [12], it has been determined that the excavator is involved in loading activities

for 95𝑚𝑖𝑛 within an excavation video with a length of 147𝑚𝑖𝑛. Certain studies focused

on identifying the number of work cycles performed by excavators or trucks. Using the

provided bucket volume data, the volume of excavated soil is computed. In [27], [28], by

incorporating information about the duration of loading activities, the excavator bucket

volume, and the number of buckets per hour, the volume of excavated soil is computed

as productivity. In [56], utilizing this activity information, a technique for simulating

processes is developed to estimate the cycle number of trucks and to determine the

productivity of earth-moving operations. In [32], the work cycle number of an excavator

is determined by analyzing the sequential relationship of identified activities. Then, the

productivity is computed using bucket volume.

Rather than relying on activity recognition for productivity analysis, certain research

studies employed other information to calculate productivity. In [65], a region-based

fully convolutional network (R-FCN) [66] is utilized for the identification of license plate

numbers on dump trucks as they enter and exit the construction site gate. It allows

the calculation of truck cycles and the total volume of earth-moving by measuring the

time intervals for each truck’s arrival and departure. In [67], a productivity monitoring

approach utilizing multiple cameras is introduced. In this method, two cameras are placed

at different locations, one at the entry and the other at the loading zone. Through queueing

discipline analysis, dump trucks captured by both cameras are matched, and then, cycle

time and total number of cycles are determined.

Multiple CV-based methods have been proposed for the activity recognition and produc-

tivity monitoring of HDMMs, particularly excavators. Even though recorded videos can be

utilized as trustworthy documentation [68], these approaches have significant limitations

and practical challenges in real-world construction scenarios. These methods are highly

sensitive to illumination conditions (i.e., too bright or too dark) and environmental condi-

tions, including dust, snow, rain, fog, and wind, since they can cause the blurring of images

or shaking of cameras. The length of daylight in autumn and winter in several countries,

such as Finland, Sweden, and Norway, is very short, which can cause challenges [39], [69].

The methods face significant challenges in crowded and congested worksites with a lot of

noise, such as background movements [70], [71]. It is highly challenging to keep a direct

line of sight to resources. A network of cameras is required to cover large worksites [72].

Moreover, huge storage spaces are required to save images and video data. Also, the meth-

ods need comparatively more computing power than alternative methods [73]. Another

challenge is the shortage of training datasets, which can significantly reduce the perfor-

mance of the methods. The methods might not be possible to be used in some worksites

due to privacy reasons. Furthermore, CV-based methods are relatively expensive since
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the expenses of cameras in small-sized worksites are within the range [$1,000–$10,000]

and in medium-sized worksites are within the range [$10,000–$100,000] [174], [16], [74].

Because of these challenges, CV-based methods cannot be considered as a robust and

realistic solution in various construction sites.

2.2 Sensor-Based Productivity Monitoring

Sensor-based techniques involve attaching various sensors to equipment for localization

and movement tracking. Through the analysis of position and pose data obtained from

these sensors using classification or simulation methods, it becomes possible to estimate

the equipment productivity. In this section, proposed sensor-based methods are divided

into four categories based on the type of sensors: (1) RTLS sensors capable of identifying

the positions and trajectories of the equipment; (2) vibration and orientation sensors that

capture movement and pose information of the equipment; (3) audio sensors which can

record sounds during operations; and (4) hybrid sensors that employ multiple types of

sensors for equipment productivity monitoring. Ambient weather sensors are also utilized

to observe the impact of weather conditions, such as temperature, humidity, and wind, on

productivity [16], [75]–[77].

2.2.1 RTLS Sensors

GPS, RFID, and UWB are commonly utilized RTLS sensors capable of providing location

and trajectory information of the equipment. GPS, as a satellite-based navigation system,

acquires the longitude, latitude, and altitude data of the equipment. In [14], [78], [79], GPS

sensors are employed to gather the trajectories of trucks and to determine the durations

of the activities, such as load, travel, return, etc., through the analysis of the trajectories

on the map. In [80], GPS is similarly utilized to acquire the trajectories of trucks on the

map, aiming to estimate transportation costs. Certain GPS-based approaches divide the

construction site into various work zones, such as excavation and loading areas. The

activities or cycle time can be estimated using the analysis of the equipment’s location

in specific work zones. In [81], GPS sensors are attached to trucks to calculate loading

and travel times by analyzing the locations of trucks on construction sites. In [82], the

site is divided into work and non-work zones to determine the operational time of trucks.

In [83], excavators and skid steer loaders are equipped with GPS, and the construction

site is divided into gravel and excavation zones. The durations for excavation and loading

activities are determined based on the equipment’s locations. In [15], [76], the construction

site is divided into excavation and dump zones to recognize the trucks’ activities, such as

entry, exit, and load.

UWB is a radio frequency positioning system employing a triangulation technique to

determine the equipment’s location by analyzing the signal propagation durations from the

tag to the receivers [84]. In [85], the feasibility of commercially available UWB systems for

tracking equipment, materials, and workers within a large construction site is investigated.
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In [73], UWB and an attitude and heading reference system (AHRS) are utilized to record

the positions and boom angles of trucks. In [86], the construction site is divided into

dumping, hauling, loading, and excavation zones according to the locations derived from

UWB sensors to identify the activities of a truck and an excavator.

RFID employs electromagnetic transmission for detecting and tracking tags attached to

objects. The RFID system comprises readers and tags, with tags attached to equipment

transferring digital data to readers using radio waves. RFID finds applications in distance

estimation, scene analysis, and proximity. The distance from the tag to the readers can

be calculated utilizing the triangulation algorithm based on signal propagation time. In

equipment monitoring, readers with predetermined power levels define specific detection

ranges for RFID tags. Consequently, equipment locations can be calculated by placing

tags in various work zones [16]. In [87], RFID readers are deployed at the entry points

of loading and dumping zones. The loading and dumping durations are estimated by

capturing the entrance and exit times recorded by the RFID system. Then, the work cycle

of the truck is estimated according to the sequential relations of activities.

The proposedmethods using RTLS sensors, includingGPS, RFID, andUWB, have significant

challenges that limit their applications in real-world construction sites and extensions

to other HDMMs. One constraint associated with these positioning sensors is that the

collected data are restricted to location and time information, which makes it challenging

to distinguish between productive and idling states of the equipment. Additionally, these

records lack sufficient information for estimating the cycle time, the quantities of excavated

soil, and operating conditions [16].

2.2.2 Vibration and Orientation Sensors

In contrast to RTLS, accelerometers measure the vibration signals produced by the equip-

ment, and gyroscopes measure the orientations of the equipment. Processing the data

obtained from the vibration and orientation sensors allows for the estimation of the pose

and state of the equipment. The IMU sensor, comprising an accelerometer, a gyroscope, and

a magnetometer, acquires acceleration and orientation data of the equipment. Typically,

machine learning algorithms are employed to classify the movement data collected by

IMUs, aiming for the recognition of the activity and the work cycle of the equipment [16].

In [88], two accelerometers are installed inside the excavator cabin. Three activities,

including working, idling, and engine off, are distinguished by examining the overall

patterns of the vibration signals, such as increasing and decreasing trends. In [89], IMU

sensors are installed on the bed of a truck and the boom of a loader to identify activities

using orientation and acceleration data. For instance, an increase in the boom angle relative

to the horizontal line, combined with a stable bed angle near zero, shows that the loader is

lifting its boom while the truck awaits loading. In the next step, a discrete event simulation

(DES) model is employed to simulate the work cycle of both pieces of equipment based on

the detected activities. In [90], two smartphones are utilized to gather accelerometer and

gyroscope data from a loader. Firstly, raw data are characterized using 12 features, such
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as mean, variance, peak, root mean values, etc. Then, an SVM and a CNN are employed

to categorize these features and identify the activities of the loader, including engine off,

idling, moving, scooping, and dumping. The results of the activity recognition algorithm

are utilized as input, and the durations are estimated by considering the logical relationship

between the activities. In [18], the possibility of assessing operational efficiency is explored

by utilizing accelerometer data to categorize engine off, idling, and working states of four

types of excavators. Four supervised learning methods, including Naive Bayes (NB),

instance-based learning (IBL), decision tree (DT), and multi-layer perceptron (MLP) are

employed in this research study. In [91], a smartphone is installed in the excavator cabin

to record the 3D acceleration. In the next step, eight supervised classifiers are trained

to estimate the excavator cycle time based on activity modes (e.g., wheel-base motion,

cabin rotation, and arm/bucket movement of the excavator). The accuracy of cycle time

estimation is equal to 75.96%. In [92], a smartphone equipped with an IMU sensor is

installed onto the excavator’s front window. In the proposed method, the dynamic time

warping (DTW) technique and four classifiers, such as random forest, Naive Bayes, decision

tree, and sequential minimal optimization (SMO), are employed to identify the excavator’s

activity. In the next step, the cycle time of the excavator is estimated based on the order of

the activities. The accuracy of cycle time estimation is equal to 91.83%. In [93], DTW is

employed to recognize the task of an excavator, including digging, leveling, and trenching,

using joystick signals. In [94], two IMU sensors are installed on the body of a roller to

identify six activities using LSTM. In [95], synthetic training data are generated using time-

series data augmentation techniques on acceleration and orientation data. A recurrent

neural network (RNN) is employed for the activity classification of four different types of

excavators and front-end loaders. In [96], three IMU sensors are installed on the bucket,

arm, and boom of an excavator to recognize different activities utilizing an SVM, a k-

nearest neighbor (KNN), and an artificial neural network (ANN). The results demonstrate

that the best place to collect motion information is the bucket. In [97], accelerometer data

and a CNN are used to automatically identify the activities of an excavator, including idling,

traveling, scooping, dropping, and rotation (left/right), and a roller compactor, including

forward (high/low/no vibration) and backward (high/low/no vibration). In [98], a random

forest classifier is integrated with the fractional calculus-based feature augmentation

technique to identify construction equipment activities. The method is applied to several

case studies, such as two different models of excavators, a scaled remotely controlled

excavator, and a roller. In [69], a deep learning-based algorithm is presented to determine

equipment productivity using kinematic data collected from smartphone sensors installed

in an excavator. The excavator activities are classified into active and inactive classes to

estimate the utilization ratio.

Vibration and orientation sensors, such as IMUs, can provide a promising solution to the

challenges of CV-based and other sensor-based methods in activity recognition, cycle

time estimation, and productivity monitoring. Even though IMUs require to be directly

attached to the equipment, which is time-consuming in a large fleet, these sensors have

many advantages since they are affordable, not restricted, can be easily installed, or have

been already installed on different machines. IMUs are robust and resilient in challenging

environments, in contrast to CV-based methods [99]. These methods can work easily
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without any lines of sight. Moreover, the accuracy of IMUs is satisfactory. The methods can

achieve a high level of accuracy, around 80–100%, in activity recognition and cycle time es-

timation. Also, they do not need high computational power and can be easily implemented

in real-time [70]. The costs in small-sized worksites are within the range of [$100–$1,000],

and in medium-sized worksites are within the range of [$1,000–$10,000]. Furthermore, in

recent years, in order to estimate the bucket position for automated machine guidance

(AMG) or automated machine control (AMC) systems, equipment manufacturers [166]

and third-party businesses [167], [168] have begun mounting IMUs on the equipment. The

sensors can be utilized for activity recognition and productivity monitoring purposes [174],

[16], [74]. Although there are some approaches for the activity recognition and cycle

time estimation of HDMMs using IMUs, still there are many potentials in using machine

learning and IMUs for the activity recognition in different levels of detail and improving

cycle time estimation. Also, IMU sensors, alongside other onboard sensors, can be utilized

for automatic theoretical productivity and working conditions estimations.

2.2.3 Audio Sensors

Recently, audio-based methods have been introduced which are capable of identifying

the activities of HDMMs utilizing the sounds produced by the equipment. Audio signals

encompass diverse acoustic patterns associated with the equipment’s operational processes.

This identification comprises four key steps: (1) collecting sound data from equipment

using a microphone; (2) filtering or augmenting the signals; (3) extracting features; and

(4) training supervised classifiers [100]. In [72], [101], audio signals are employed to

distinguish between major and minor activities of excavators, loaders, and dozers through

the utilization of short-time Fourier transform (STFT) features and an SVM classifier.

In [102], STFT and continuous wavelet transform (CWT) features are combined with an

SVM classifier to identify the activities of an excavator and a dozer. In the next step, a

Markov chain filter is employed to assess the cycle time and the number of cycles per

hour. Then, the productivity of the backhoe as the volume of excavated soil per hour is

determined based on the average fill factor.

Compared to CV-based methods, the obstacles in worksites cannot affect the quality of the

recorded data in audio-based methods, and neither high computational power nor large

storage space is needed. The audio-based methods have the ability to cover relatively large

areas and record sounds from multiple machines. Unlike some sensor-based methods,

there is no need to attach several sensors to each machine. The costs of microphones

in small-sized worksites are within the range of [$300–$3,000], and in medium-sized

worksites are within the range of [$3,000–$30,000]. Nevertheless, the audio-based methods

face substantial challenges in crowded and noisy construction sites, which can decrease

the accuracy of the methods. Also, some equipment does not generate distinct sound

patterns, making it challenging to detect its activities. Moreover, the audio-based methods

do not have the ability to accurately distinguish between detailed activities of a machine

and then estimate the cycle time. Furthermore, the methods cannot be easily extended

to other machines, such as tower cranes, which do not generate sounds [174], [16], [74].
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Because of the challenges, the audio-based methods cannot be a solution for cycle time

and productivity estimation purposes.

2.2.4 Hybrid Sensors

Hybrid sensors are also employed to obtain more accurate information about equipment

and operations. In [103], displacement and pressure sensors are installed on the cylinders

of the boom, arm, and bucket of the excavator to record its movements, pose, and actual

bucket load. In [104], IMU and microphones are utilized to gather vibration and audio

data during excavators’ operations. In the next step, two types of data are manually

synchronized based on the similarity of signal spikes. Then, an SVM classifier is utilized to

distinguish excavator activities, such as stop, shove, move, and turn, achieving an accuracy

20% higher than using only IMU or audio data. In [105], an algorithm is proposed to

automatically classify the working stages of an excavator based on the main pump pressure

waveform. Threemachine learning algorithms, an SVM, a back propagation neural network

(BPNN), and logistic regression (LR), are utilized in this research study. In [106], three

classifiers, an LSTM network, an RNN, and an SVM, are trained using the control signals of

operating handles to recognize the activities of an excavator. In [107], a deep learning-based

hybrid kinematic-visual sensing algorithm is designed for equipment activity recognition.

Kinematic and visual data are collected using built-in sensors, gyroscopes, accelerometers,

and cameras of a smartphone that is installed inside the cabin of an excavator. In [108],

a deep neural network (DNN) model is presented to determine the volume of excavated

earth per day using telematic data, including equipment weight, bucket volume, volume

excavated, fuel rate, total fuel consumed, engine on time, engine on (no dig), engine on

(no move), digging, swing time, travel time, and not operating, from 21 days of operation.

The main drawback of DNNs is the high computational complexity and requirement for a

large dataset. In [109], a method is proposed to identify activities of an excavator, such as

excavation, leveling, rock excavation, and drive, using a fusion network that combines

sensor and video-based models. This research continues, and in [110], a DNN ensemble

called FusionNet is introduced to identify the activities of excavators, including slope

digging, ditch digging, rock digging, leveling up-down, leveling front-back, leveling left-

right, deep digging, drive, and digging. This algorithm employs the extracted features

from sensor data and video frames of on-site excavators.

Additionally, hybrid sensors are applied for monitoring various productivity-related factors.

In [111], a decision support system called WEATHER is designed to determine the effect of

weather conditions on equipment productivity. In [75], GPS, strain gauges, an accelerom-

eter, and barometric pressure are employed to track equipment location, estimate the

load weight of the truck, identify loading and dumping activities of the loader and trucks,

and measure weather conditions, respectively. Utilizing the sensor data, an automated

data processing algorithm is developed for the near-real-time estimation of earth-moving

productivity. In [112], GPS is employed to track the positions of trucks, pavers, and rollers.

Also, the temperature of the asphalt mat is monitored utilizing temperature sensors on the

pavers. In [113], GPS, IMU, soil water content sensors, and load cells are utilized to assess
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the factors affecting earth-moving productivity. These factors included soil conditions,

hauling and road conditions, equipment operational conditions, and weather conditions.

2.2.5 Productivity Analysis Methods

Construction equipment commonly operates within diverse and complex construction

sites. Equipment productivity can be either predicted using data-oriented methodologies,

such as statistical regression models and neural networks if historical data from similar

operations are available, or using process-oriented methodologies if no historical data is

available [19].

Process-orientedmethodologies have been proposed in (a) equipment manufacturers’ hand-

books [114]–[117], (b) editions from contractors’ associations or individual researchers in

Germany [118]–[124] and (c) textbook editions [125], [126]. In the process-oriented models,

operating conditions, such as swing angle (i.e., the angle between digging and dumping

points), digging depth, bucket capacity, skill of human operators, etc., are transformed

into several factors to be able to predict productivity. The factors include the rated bucket

capacity, the cycle time, the swell factor, the bucket fill factor, the job efficiency factor,

the operator skill factor, the equipment availability factor, the swing angle factor, the

excavation depth factor, the combined swing angle and digging depth factor, the bucket

dump factor, the excavator-truck volumes match factor, the bucket teeth wear factor, and

the altitude factor [19].

In data-oriented methodologies, the main productivity influencing factors are supposed

known and employed as models’ inputs to predict productivity. The models are trained

using historical data or using synthetic data generated using process-oriented method-

ologies. In [127], a linear regression model is designed to determine the productivity of

earth-moving equipment. It has been highlighted that the bucket volume, truck travel

time, number of trucks, and haul length are key parameters that influence productivity.

In [128], a two-layer CNN is utilized to predict the excavator productivity based on the

cycle time. The machine weight, digging depth, and swing angle are introduced as three

main influencing factors in productivity estimation. Also, in [129], [130], swing angle, ma-

chine weight, and digging depth are recognized as the key factors in the productivity of an

excavator. In [131], a feed-forward neural network is designed to predict the productivity

of excavators using multiple factors, including relative positions between excavators and

materials, site obstructions, the skill of the human operator, and the type of soil. In [132], a

conjugate gradient algorithm and the feed-forward propagation network are integrated to

estimate the earth-moving productivity using the number of excavators and trucks, bucket

volume of the excavator, loading capacity of the truck, and type of material. In [133], the

loading time of excavators with respect to the relative position with trucks is evaluated.

The study highlights that the loading time is influenced by factors such as horizontal and

vertical distances and swing angles between the excavator and the truck. In [134], the

skill of human operators plays a crucial role in the productivity of an excavator and can

influence other factors. The correlation between the skill level of the operator and the

productivity of the excavator is investigated using the Caterpillar excavator productivity
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model. To enhance the accuracy of productivity estimation, the operator’s skill level is

incorporated into the model as a factor. In [135], a computer dispatch system is employed

to investigate the primary elements impacting the productivity of excavators and trucks

in mining projects. The outcomes of the study reveal that the matching between the

excavator and truck, such as loading position and truck-shovel combinations, can signifi-

cantly influence loading efficiency and, consequently, overall productivity. In [76], a linear

regression method and various sensors are used to evaluate the impact factors, including

humidity, wind speed, temperature, idle time, average speed, etc., on the earth-moving

productivity. In [113], a fuzzy model based on expert investigation is designed to detect

and assess different factors influencing the productivity of earth-moving operations. The

skill of the human operator, snowy road conditions, foggy weather, the water content of

the soil, and waiting times are recognized as the most important productivity factors.

Influencing factors, including the excavator’s relative position in relation to the truck

and soil (i.e., swing angle and digging depth), relative height between the excavator and

truck, and site congestion, pose challenges for both sensors and cameras to accurately

estimate. These parameters have not yet been estimated through any automated methods

and proposed productivity analysis methods only assume that they are known.

Traditionally, surveyors have been responsible for collecting information to monitor

progress and conducting surveys at construction sites. The demand for automated moni-

toring tools has led to the incorporation of 3D sensing technologies, enabling the precise

and accurate gathering of on-site data. This data can then be integrated with a planned

model based on BIM to evaluate the advancement of the project [136].

Researchers are exploring the usage of BIM and 3D sensing technologies for real-time

progress monitoring to address issues related to schedule and cost overruns [137]. This

integration was driven by the utilization of BIM across various dimensions. For example, a

4D BIM-based model, also referred to as a schedule model, has been established to sequence

activities over time. Another dimension of BIM, the 5D BIM-based model, specifically

focuses on tracking activity costs over time [136]. In [138], an object recognition algorithm

is designed to evaluate construction progress by matching on-site photographic images

with 3D BIM models. This method identifies particular objects in the site images using

advanced image processing algorithms to compare them with corresponding 3D objects

in the BIM model. In [139], managing and transferring information are introduced as

major benefits of BIM that can improve our understanding of planned activities. In [140],

modeling and augmented reality are employed to compare the plan with what is actually

happening on-site.

Some research studies proposed techniques for processing point cloud data in construction

and infrastructure applications [141]. In [142], excavation changes are estimated based

on depth differences of the surface using a LiDAR sensor. Obstructions such as piles that

block the sensor’s vision may reduce the precision and accuracy of volume estimation.

In [143], a method is designed using a stereo camera and a LiDAR sensor to establish a 3D

visualization of a construction site. In [144], a method is introduced that utilizes point cloud

data obtained from a laser mobile mapping system (LMMS) to automatically evaluate the

excavation volume required for road widening. In [145], a network-based cloud system is
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presented to manage soil volume progress in a construction site. The daily progress volume

is determined using the bucket cutting-edge historical data that is gathered from sensors

installed on heavy equipment. In [146], a coordinate-based volumetric computational

method is proposed to estimate the volume of stockpiles utilizing data from a laser scanner.

Also, three mining industry surveyingmethods, photogrammetry, terrestrial laser scanning

(TLS), and aerial laser scanning (ALS), are compared and analyzed. In [147], point clouds,

image data, sensors, and computer-aided design (CAD) models are integrated to estimate

the excavation volume and monitor the excavation progress at a worksite.

The productivity estimations of quality-centered tasks, including trenching and grading

tasks, have been overlooked in the literature review. Recent progress in 3D sensing

technologies and BIM can be a promising solution to automatic productivity estimation

and progress monitoring in these tasks [175].
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In this chapter, firstly, the proposed research framework to automatically estimate the

productivity of an excavator in different tasks, including loading, trenching, and grading,

is elaborated. Afterward, the research gaps and practical challenges identified in the

literature review are comprehensively discussed. Then, multiple research questions that

are the main targets of the dissertation are introduced.

3.1 Research Framework

In the context of this dissertation, “productivity” means the production rate at the activity

level of an operation. Since productivity is defined based on the objective of the task, the

definitions of productivity vary for different tasks. Generally, the quantity of material

and the operation cycle time are the main factors for the productivity of most cyclical

types of machinery. The productivity of an excavator in the loading operation means the

quantity of transferred material per unit of time. Although this productivity definition

can effectively represent the productivity of an excavator in the loading operation, it

cannot correctly show the productivity of an excavator in the trenching and grading

operations since quality plays the main role in these operations rather than quantity. In

the grading operation, only a small amount of materials are added or removed. Hence,

the amount of material cannot reflect the productivity. The productivity of an excavator

in a grading operation is defined as the area of the graded surface per unit of time. In

the graded area, the error between the model and the actual terrain should be within the

specified accuracy requirements. In the trenching operation, it is highly significant that

the characteristics and size of the actual trench should be based on the designed model. In

this task, contractors typically estimate the productivity in terms of the linear length of

the trench per unit of time [115], [148]. Therefore, prior to productivity estimation, an

automatic task recognition method is required to identify the duty cycle of the excavator.

In the next step, the productivity should be estimated based on the detected duty cycle.

There are different types of productivity definitions that must be taken into account:

• The absolute or actual productivity that shows the real productivity of a machine.

The actual productivity is estimated using multiple sensors installed on the machine

or the worksite. Another key metric is the actual cycle time, which represents the

duration of a work cycle.
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• The second productivity definition is the nominal or theoretical productivity that

shows the expected productivity level of a machine. The theoretical productivity

should be estimated based on the capabilities and characteristics of the machine and

ongoing operating conditions. Another important metric is the theoretical cycle time,

which represents the duration the machine is capable of performing a particular task

under specific working conditions.

• The third productivity definition is the relative productivity or production perfor-

mance ratio (PPR), which represents the performance level or operational effective-

ness of a machine. The relative productivity is obtained by comparing the actual

productivity against the theoretical productivity. Another metric is the relative cycle

time which is obtained by dividing the theoretical cycle time by the actual cycle time.

As earlier discussed, the actual productivity of an excavator is highly influenced by different

parameters and working conditions, such as swing angle, digging depth, size of the

excavator, bucket capacity, dumping conditions, type of materials, weather conditions, and

skill of human operators. The actual productivity of an excavator cannot lonely represent

the performance of a machine since working conditions can significantly impact it. To

assess the actual productivity, a benchmark or the theoretical productivity of an excavator

is highly required. Then, the relative productivity can effectively illustrate the performance.

Hence, automatic methods are needed to estimate the actual and theoretical productivity

of an excavator in different tasks, including loading, trenching, and grading operations.

In addition, to be able to automatically determine the theoretical productivity, operating

conditions, such as swing angle and digging depth, should be automatically estimated.

3.2 Research Gaps

As described in Chapter 2, several methods have been proposed to recognize activities,

estimate cycle time, analyze working conditions, and monitor the productivity of an

excavator using different types of sensors and data. Still, some challenges should be

addressed.

Several approaches have been introduced to detect the activities of excavators, mainly

focusing on sub-tasks or low-level information. However, only three research studies [93],

[109], [110] have aimed to identify the primary tasks or major activities performed by

excavators. In [93], a DTW is suggested for recognizing the main working cycles of an

excavator, such as digging, trenching, and leveling, by analyzing joystick measurements.

However, the approach encounters significant challenges when applied in real-world

scenarios. Joysticks used in different excavator models vary among manufacturers, ne-

cessitating substantial time and effort for calibration to interpret joystick output values.

Furthermore, the precision of joystick measurements can differ significantly between ma-

chines, and the method’s accuracy may be heavily influenced by operators’ behaviors and

skills. Additionally, the proposed technique relies on a complex post-processing algorithm

to address errors in the primary algorithm. In [109], [110], a method based on deep learning
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is developed to recognize excavators’ tasks by integrating sensor data and video frames.

Nonetheless, this method faces two main challenges. Firstly, CV-based methods present

numerous challenges that have been introduced in Section 2.1.4. Secondly, deep learning

models have high computational complexity and demand extensive datasets. Therefore, a

method for the excavator’s task recognition should be developed to solve the challenges.

Additionally, the majority of presented sensor-based methods focus on recognizing the

individual sub-tasks of excavators without providing estimates for cycle time and pro-

ductivity. The primary challenge lies in accurately estimating the actual cycle time of

an excavator during the loading operation. Only two research studies have attempted

to estimate excavator cycle time. In [91], the cycle time estimation achieved a low accu-

racy of 75.96%, which could significantly impact productivity estimation due to errors.

In [92], a cycle time estimation accuracy of 91.83% has been achieved. However, in 20%

of cycles, the difference between the estimated cycle time and the ground truth obtained

from videos exceeded 3 𝑠 , leading to substantial errors in productivity estimation. Hence,

a method should be designed to improve sub-task recognition and cycle time estimation

of an excavator in the loading operation.

Another notable challenge is the lack of a benchmark for assessing estimated cycle time.

Because working conditions can impact cycle time, solely relying on actual cycle time

cannot accurately indicate whether the machine is operating at optimal performance levels.

Hence, there is a necessity for a reference point to evaluate actual cycle time. To establish

a theoretical cycle time, it is imperative to automatically estimate working conditions,

such as swing angle and digging depth, during the operation.

Based on the literature review, there exists a significant research gap concerning the

integration of real-time data with models to offer insights into ongoing activities at

construction sites. Moreover, current studies predominantly prioritize the quantity of

material, overlooking automated methods for evaluating productivity during grading or

trenching operations using BIM. In grading and trenching operations, the paramount focus

lies in ensuring quality and accuracy.

3.3 Research Questions

This dissertation aims to develop a series of approaches for the automatic productivity

estimation of an excavator in different earth-moving tasks, including loading, trenching,

and grading operations, using IMUs and machine learning techniques. In particular, the

main focus is on the following research questions:

• How can the task recognition of an excavator be improved using IMUs and machine

learning techniques?

• How can the sub-task recognition of an excavator in the loading operation be im-

proved using IMUs and machine learning techniques, and then cycle time be esti-

mated using detected activities?
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• How can the operating conditions, including swing angle and digging depth, be

automatically estimated using detected activities?

• How can the theoretical productivity of an excavator in the loading operation be

automatically estimated based on the operating conditions to determine the relative

productivity?

• How can the actual productivity of an excavator be estimated in quality-centered

tasks, including trenching and grading operations, using 3D sensing technologies

and BIM?

Several methodologies will be proposed to address the research questions outlined. The

dissertation’s scientific contributions are summarized in Table 3.1. Nevertheless, certain

aspects remain unexplored and could be subjects of future investigation. Specifically, the

quantification (either in volume or weight) of materials during the loading operation has

not been examined within this dissertation because of the extensive existing research on

this topic and the satisfactory performance of the proposed methodologies. Additionally,

the definition of relative productivity for an excavator during the loading operation has

been refined to encompass relative cycle time. This implies that the material quantity in

both actual and theoretical productivity is regarded as equivalent. Moreover, the automatic

methodologies for estimating the theoretical productivity of an excavator in trenching

Table 3.1: The summary of the scientific contributions for the productivity estimation of

an excavator in earth-moving tasks.

Excavator’s tasks recognition

Loading

operation

Trenching

operation

Grading

operation

Productivity

definition

𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜 𝑓 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

𝑇𝑖𝑚𝑒

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜 𝑓 𝑡𝑟𝑒𝑛𝑐ℎ

𝑇𝑖𝑚𝑒

𝐴𝑟𝑒𝑎 𝑜 𝑓 𝑔𝑟𝑎𝑑𝑒𝑑 𝑠𝑢𝑟 𝑓 𝑎𝑐𝑒

𝑇𝑖𝑚𝑒

Actual

productivity

(1) Excavator’s sub-

tasks recognition

(2) Actual cycle

time estimation

(1) Integration of

elevation terrain

mapping and BIM

(2) Actual productivity

estimation

(1) Integration of

elevation terrain

mapping and BIM

(2) Actual productivity

estimation

Theoretical

productivity

(1) Swing angle

estimation

(2) Digging depth

estimation

(3) Theoretical cycle

time estimation

(4) Relative cycle

time estimation

– –
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and grading operations have not been explored. This area warrants consideration in

subsequent research endeavors.

In Chapter 4, an automatic task recognition method using IMUs is proposed to answer

the first research question. In Chapter 5, firstly, a method is proposed to estimate the

cycle time of the loading operation using a sub-tasks recognition algorithm. Then, the

theoretical productivity of an excavator in the loading operation is estimated using a

process-orientedmethod and automatic working condition estimations. Finally, the relative

productivity is estimated. In this chapter, the second, third, and fourth research questions

are answered. In Chapter 6, two methods are designed using 3D sensing technologies and

BIM to automatically estimate the actual productivity of an excavator in the grading and

trenching operations to answer the fifth research question.
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4 Excavator Task Recognition

Task recognition is essential for productivity estimation, maximizing efficiency, ensuring

safety, maintaining equipment, collecting data, and enhancing training and skill develop-

ment in construction and excavation operations. In this chapter, a method is designed

to automatically recognize the excavator’s tasks, including loading, trenching, and grad-

ing, using supervised learning algorithms and motion information obtained from IMUs

attached to different moving parts of the machine, such as the bucket, arm, boom, and

swing body.

4.1 Introduction

Task recognition is a crucial step prior to productivity monitoring since productivity is

defined based on the objectives of the tasks. The schematics of the three most impor-

tant tasks of an excavator, including loading, trenching, and grading, are illustrated in

Fig. 1.2 [8]–[10]. The loading task is pivotal in construction and mining industries, which

typically consist of four primary activities such as scooping, swinging loaded, dumping,

and swinging empty. The productivity of the loading task is defined as the quantity of

transferred materials per unit of time [174]. The next important task is the trenching

operation. In this task, an excavator is employed to dig trenches according to specified

dimensions for the placement of underground utilities. The definition of productivity in

this task is equal to the length of the trench per unit of time [115], [148]. The next critical

task is the grading (or leveling) operation. In this task, an excavator is used to smooth

the ground’s surface for building, landscaping, and paving purposes. The productivity of

the grading operation is defined as the graded area per unit of time. In the grading and

trenching operations, quality is the highest priority instead of quantity [175]. Hence, task

or working cycle recognition of an excavator is one of the essential and primary steps

before the productivity analysis.

Only three research studies [93], [109], [110] have been proposed to identify the tasks or

major activities (loading, trenching, and grading) of an excavator. In [93], a DTW system

is proposed to recognize the excavator’s working cycles using joystick measurements.

The presented approaches face significant challenges in practical implementations. Used

joysticks in different machines vary across different manufacturers, and considerable time

and effort are required for adjustments to interpret joystick output values. Moreover, the

precision of joystick measurements varies among different machines, and the method can

be highly susceptible to the behaviors and skills of operators. In addition, the proposed
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technique uses an intricate post-processing algorithm to mitigate errors in the primary

algorithm. In [109], [110], a deep learning-based method is designed to identify the tasks

of an excavator using the integration of sensor data and video frames. However, CV-

based methods face several practical limitations in real-world construction sites. They are

highly sensitive to lighting and environmental conditions (e.g., dust, snow, rain, fog), and

require a clear line of sight, which is difficult to maintain on congested sites. The need for

multiple cameras, large storage space, high computational power, and access to diverse

training datasets further complicates their use. Privacy concerns and high costs—ranging

from $1,000 to $100,000 depending on site size, also limit their applicability [174]. In

addition, deep learning models have a high computational complexity and require very

large amounts of data.

To address these limitations, our research study proposes an automatic method to recognize

the tasks of an excavator, including loading, trenching, and grading, using multiple low-

cost IMUs installed on moving parts of the excavator. IMUs offer several advantages, they

are affordable, easy to install, already integrated into many machines, and robust against

environmental challenges. Their costs range from $100–$1,000 in small-sized worksites to

$1,000–$10,000 in medium-sized ones. Major equipment manufacturers and third-party

providers have already adopted IMUs for estimating bucket position in AMG or AMC

systems. Furthermore, IMUs have low power consumption and are well-suited for use

in harsh construction environments, making them a practical and scalable alternative to

vision-based systems. The main contribution of this work is the development of a machine

learning-based method for automatic task recognition of excavators using IMUs. To the

best of our knowledge, this is the first study that applies machine learning techniques

to classify excavator’s working cycles (loading, trenching, and grading) based on IMU

measurements. This sets our approach apart from prior studies that rely on vision data or

joystick inputs.

4.2 Methodology

In the proposedmethod, the excavator’s working cycles, including (1) loading, (2) trenching,

(3) grading, and (4) idling, are recognized using four IMUs that have been installed on

different moving parts of an excavator, including the bucket, arm, boom, and swing

body. A dataset lasting 3 ℎ is collected using a medium-rated excavator operated by one

experienced and one inexperienced operator. Different operating conditions, such as

different swing angles, digging depths, types of material, weather conditions, and the

skill levels of operators, have been covered in the dataset to increase the robustness of

the data-driven method. In the next step, four machine learning techniques, including

a support vector machine (SVM), a k-nearest neighbor (KNN), a decision tree (DT), and

Naive Bayes (NB), are trained using the collected dataset. The flowchart of the proposed

method is illustrated in Fig 4.1. Then, the effects of different configurations, including

time window, overlapping, and feature selection methods, on classification accuracy are
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Figure 4.1: Flowchart of the activity recognition algorithm [174].

extensively investigated. Finally, the results show the presented algorithm has the ability

to automatically recognize the major tasks or working cycles of an excavator.

4.2.1 Field Data Collection

Firstly, field data was collected using the crawler excavator shown in Fig. 4.2. Although the

excavator is old, it has been kept in good condition since it has received regularmaintenance

and inspections every 500 working hours. The model is a Komatsu
®
PC138US with a mass

of 13.4 tonnes and a typical mono boom structure that is equipped with a Novatron Xsite
®

machine control system. The bucket was attached to the arm using quick couplers and a

tiltrotator. The tiltrotator was not used during the data collection. There was no active

construction project in the worksite during the data collection.

There are two standards for heaped bucket capacity, the Society of Automotive Engineers

(SAE) standard and the Committee for European Construction Equipment (CECE) standard.

The schematics of SAE and CECE standards are illustrated in Fig. 4.3. The angles of repose

for material above the strike-off plane in SAE and CECE standards are 1:1 (45◦) and 1:2 (∼

Figure 4.2: Excavator used in data collection. In the picture, (1) cabin, (2) boom, (3) arm,

and (4) bucket are highlighted with red boxes [176].
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Figure 4.3: Heaping according to the SAE and CECE standards [174].

27
◦), respectively. It has been observed that 𝑉𝑆𝐴𝐸 [𝑚3] ≈ [1.10 − 1.20] ×𝑉𝐶𝐸𝐶𝐸 [𝑚3] [148].

The heaping bucket capacity of the used excavator in the data collection is equal to 0.37𝑚3

according to the SAE standard J-296.

The operations represent realistic construction scenarios, which means no direction is

provided to operators on how to do the operations to increase the robustness of the

presented method. The collected dataset covers various operating conditions, such as

swing angle, digging depth, weather conditions, and types of material. Several types of

material, such as sand, gravel, clay, and mixed, were used in the data collection phase.

The digging depth increased up to 2𝑚, and the swing angle varied from 60
◦
to 120

◦
. The

operations were performed in different seasons during 18 months by two operators with

different levels of competence in a private worksite. The inexperienced operator performed

47% of the experiments, and the rest of the dataset was gathered by the experienced

operator.

An IMU is a versatile sensor module widely utilized in different applications, such as orien-

tation tracking, gesture recognition, robotics, and virtual reality, which is equipped with a

3-axis accelerometer and gyroscope. The accelerometer and gyroscope simultaneously

measure acceleration along three orthogonal axes and angular velocity, respectively. These

two units enable the IMU to capture complex motion dynamics in 3D space to facilitate

precise motion analysis and improve the capabilities of various devices ranging from

smartphones to unmanned aerial vehicles [97]. The used IMU in the data collection step

is shown in Fig. 4.4. This sensor was produced by Novatron
®
Ltd. and placed in robust

casings.

Figure 4.4: The IMU used in the data collection phase [177].
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Four IMUs were attached to the moving parts, including the bucket, arm, boom, and swing

body, to measure the orientation and angular velocities of the excavator. Attaching the

sensor directly to the bucket increases the risk of damage. Therefore, instead of mounting

the IMU directly on the bucket, it is positioned on the side link. The configuration of IMUs

on the excavator is demonstrated in Fig. 4.5. IMUs were precalibrated utilizing the Xsite
®

machine control system. The sensor data is transferred with the sampling frequency 𝑓𝑠
of 200 𝐻𝑧 using the controller area network (CAN) bus. The CAN bus is connected to

the MathWorks
®
Simulink model using a Kvaser leaf light CAN to USB interface. The

length of the dataset is around 3 ℎ, which means that based on the sampling frequency 𝑓𝑠 ,

approximately 2,160,000 data points were collected for each sensor’s channel. The amount

of data corresponding to each label is presented in Table 4.1.

Table 4.1: The duration of different working cycles in the collected dataset.

Working Cycle

Loading Trenching Grading Idling

Duration [𝑚𝑖𝑛] 68.43 41.14 35.26 37.27

Each sensor unit measures the quaternion orientation based on the accelerometer and

gyroscope’s measurements. Afterward, the quaternion measurements are utilized to

determine the joint angles between each moving component of the machine connected by

the revolute joints. The quaternion to Euler angles conversion is stated in Eq. (4.1c):

𝑞(𝑡) =
[
𝑞𝑤 (𝑡) 𝑞𝑥 (𝑡) 𝑞𝑦 (𝑡) 𝑞𝑧 (𝑡)

]𝑇
(4.1a)

|𝑞 |2 = 𝑞2𝑤 + 𝑞2𝑥 + 𝑞2𝑦 + 𝑞2𝑧 = 1 (4.1b)


𝜙

𝜃

𝜓

 =


arctan

(
2(𝑞𝑤𝑞𝑥+𝑞𝑦𝑞𝑧)
1−2(𝑞2𝑥+𝑞2𝑦)

)
−𝜋/2 + 2 arctan

(√︂
1+2(𝑞𝑤𝑞𝑦−𝑞𝑥𝑞𝑧)
1−2(𝑞𝑤𝑞𝑦−𝑞𝑥𝑞𝑧)

)
arctan

(
2(𝑞𝑤𝑞𝑧+𝑞𝑥𝑞𝑦)
1−2(𝑞2𝑦+𝑞2𝑧)

)


(4.1c)

where 𝑞 indicates the unit quaternion, and 𝜙 , 𝜃 , and𝜓 represent the roll (rotation around

the 𝑥-axis), pitch (rotation around the 𝑦-axis), and yaw (rotation around the 𝑧-axis),

respectively [149].

The global angular velocities, which are measured using the gyroscope in the IMU, are

utilized to compute the local angular velocity of each moving part. The local angular

velocity is the actual angular velocity of the particular body part, which the movements

of the other machine parts have been subtracted. The local angular velocity illustrates

the movement of the measured body part as a result of the operator’s movement of that

particular body part. However, the global angular velocity comprises all movements caused

by the machine. The local angular velocities and orientation variables are demonstrated in

Fig. 4.6. The task recognition algorithm employs the joint angles and angular velocities of
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Figure 4.5: The configuration of IMUs on the excavator [177].

Figure 4.6: The local angular velocities and orientation variables are visualized on an

excavator’s side profile [177].

the machine parts as input data, and the quaternion data is discarded for further analysis.

The input variables comprise the angular velocities of four IMUs (three axes per sensor

unit), the local angular velocity of the boom (𝜔2), the local angular velocity of the arm

(𝜔3), the local angular velocity of the bucket (𝜔4), the pitch angle of the boom (𝜃2), the

pitch angle of the arm (𝜃3), and the pitch angle of the bucket (𝜃4).

4.2.2 Data Windowing

A data windowing scheme is employed in the presented techniques to recognize the

tasks of an excavator. The position of a moving part is shown by a single data point at a
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single instant of time, while a working cycle is made of sequential motions distributed

over a period of time. For example, the loading operation occurs over a period of time,

not instantly. In the data windowing scheme, time-series data is divided into numerous

smaller and constant-sized pieces using a defined windowing function which is moved

along all data. A window is a group of consecutive data points. Because most research

studies presented in the literature review mostly concentrate on short-term motions or

detailed activities of an excavator, the time window is chosen within a range of [1,5] 𝑠 .

Nonetheless, the tasks, that consist of several sub-tasks and take a much longer time

compared to an individual sub-task, are the main targets in our proposed method. The

cycle time of an excavator is mostly within the range of [10, 20] 𝑠 based on the Komatsu
®

performance handbook [115]. Therefore, a sliding rectangular windowing function with

five different window sizes (10, 12, 15, 18, and 20 𝑠) and four overlapping configurations

(0%, 25%, 50%, and 75% overlap between two consecutive windows) is employed in the

presented technique.

4.2.3 Data Annotation

In the supervised learning algorithms, the data samples must be coupled with so-called

ground truth information. To record operations, an external USB webcam with a frame

rate of 20 𝑓 𝑝𝑠 was attached inside the cabin of the excavator. The webcam is connected

to the MathWorks
®
Simulink model using the Image Acquisition Toolbox. Then, the

dataset is manually labeled using the synced video. During the labeling process, if the

activity changes, the user informs the program, and the label is changed. In the next

step, the most frequent label in each window is selected as the representative label of

that window. The recorded video is used only for the data annotation, and the classifiers

employ only the motion information obtained from IMUs.

4.2.4 Feature Extraction

After segmenting the time series data into windows, feature extraction is performed before

the model training to extract useful information from each labeled data window. Feature

extraction aims to generate variables from raw measurements to maximize the amount of

information related to the phenomenon that a classifier will be used to model. Ten time-

domain statistical features (also called feature vectors), including (1) mean, (2) maximum,

(3) minimum, (4) standard deviation, (5) mean absolute deviation, (6) root mean square, (7)

peak-to-peak, (8) interquartile range, (9) skewness, and (10) kurtosis, are extracted from

each window in the collected dataset.

4.2.5 Feature Selection

Since some features do not contain value-adding information, they cannot be beneficial for

the classification problem and should be discarded for further calculations. In the feature
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selection step, a subset of the initially extracted features that contain the most information

regarding the classification problem is selected to minimize the feature space and provide

a faster and more cost-effective algorithm. In the proposed method, three different subsets

of features: (1) selected features using the ReliefF algorithm, (2) selected features using the

minimum redundancy maximum relevance (MRMR) algorithm, and (3) selected features

using the Chi-squared test, are utilized to train classification models.

4.2.6 Classification Models

Even though activity recognition techniques are presented using both supervised and

unsupervised techniques, supervised learning methods demonstrate higher performance

in activity recognition problems [17]. The characteristics and size of the dataset specify

which classification model should be used. To recognize the tasks based on the given

dataset, four classification models, including an SVM, a KNN, a NB, and a DT, are chosen

based on the most commonly used supervised classifiers in construction resource activity

identification algorithms in the literature review.

4.2.7 Performance Measures

The performance of classificationmodels is evaluated using four standardmetrics: 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦,

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙 , and 𝐹1𝑠𝑐𝑜𝑟𝑒 . The 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 metric is calculated using Eq. (4.2):

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100% (4.2)

where𝑇𝑃 , 𝐹𝑃 , 𝐹𝑁 , and𝑇𝑁 indicate true positives, false positives, false negatives, and true

negatives, respectively. The 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 is a fundamental metric that provides an overall

measure of correct predictions by calculating the ratio of correctly predicted instances to

the total instances. Even though the 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 metric is informative, it may not be sufficient,

particularly in imbalanced datasets, where the class distribution is skewed. The cost of

misclassification is analyzed using the 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑟𝑒𝑐𝑎𝑙𝑙 metrics. The 𝑟𝑒𝑐𝑎𝑙𝑙 metric is

the percentage of true instances (i.e., true positive + false negative) that are accurately

predicted as positive (i.e., true positive), whereas the 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 metric is the percentage

of predicted positive instances (i.e., true positive + false positive) that are truly positive

(i.e., true positive). The 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑟𝑒𝑐𝑎𝑙𝑙 metrics are calculated using the following

equations:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100% (4.3)

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100% (4.4)

High 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑟𝑒𝑐𝑎𝑙𝑙 values are desirable, but it might be challenging to maximize

both metrics for a classification model. The 𝐹1𝑠𝑐𝑜𝑟𝑒 , which is the harmonic mean of

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑟𝑒𝑐𝑎𝑙𝑙 metrics, is computed as follows:

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 (4.5)
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The 𝐹1𝑠𝑐𝑜𝑟𝑒 provides a balanced metric that considers both false positives and false nega-

tives [150].

4.3 Results

In this section, the results of the presented method are demonstrated. Firstly, a small part

of the dataset is used to show the difference between the skill and behavior of experienced

and inexperienced operators. In the next step, the dataset is divided into train and test

subsets, and the most informative features are obtained using the introduced feature

selection techniques. Then, the supervised learning models are trained using selected

features. The impacts of different time windows and overlapping configurations on the

performance of the models are assessed. Moreover, k-fold cross-validation is performed to

illustrate the robustness of the method.

4.3.1 Data Visualization

The pitch angles of the boom, arm, and bucket in two loading operations that were carried

out by experienced and inexperienced operators are illustrated in Fig. 4.7. In order to show

the difference between the way of using the excavator by experienced and inexperienced

operators, the operating conditions of these operations, including swing angle and type of

material are chosen the same. In these two operations, the type of used material is sand,

and the swing angle is around 60
◦
. As shown, the experienced operator can effectively

control the boom, arm, and bucket of the excavator, and the pitch angles show cyclic

behaviors. Nonetheless, the inexperienced operator cannot easily control the manipulator,

and different types of movements can be seen.

4.3.2 Classification Model Training and Evaluation

The presented method has been implemented using Statistics and Machine Learning

Toolbox in MathWorks
®
MATLAB R2021a on a laptop with a 1.8 G𝐻𝑧 Intel Core i7 CPU

and 16 GB of RAM running on aWindows 10 operating system. To assess machine learning

techniques, different subsets of the dataset are employed for model training and testing. In

this step, the dataset is divided into train and test datasets, with 50% of the data used for

the training and 50% used for the test to show the robustness of the proposed method.

Firstly, the feature selection methods introduced in Section 4.2.5 are utilized to select the

most important features from the training dataset. Then, after training the models, the

performancemeasures are calculated using the test dataset. The𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙 ,

and 𝐹1𝑠𝑐𝑜𝑟𝑒 of different classification models utilizing different feature selection algorithms

with associated time windows and overlapping configurations are shown in Table 4.2.

The time window and overlapping configurations indicate the highest 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 for the

corresponding classification model and feature selection algorithm. In addition, the best
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performance (highest 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) is highlighted in bold for each classification model. The

presented results demonstrate that the proposed data-driven algorithm can automatically

recognize the tasks of an excavator with an 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of more than 99%. Moreover, it can be

concluded that the IMU sensors, their placements on moving parts of the machine, and the

motion variables are chosen correctly. The confusion matrices of the twelve classification

algorithms, which are introduced in Table 4.2, are shown in Table 4.3. Two classification

algorithms, including the SVM with MRMR feature selection algorithm, a time window of

20 𝑠 , and 0% overlapping, and the KNN classifier with MRMR feature selection algorithm,

a time window of 20 𝑠 , and 50% overlapping, have the highest 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of 99.62%. Each

matrix shows the number of correctly and incorrectly classified samples for four excavator

activities: loading (L), trenching (T), grading (G), and idling (I). The rows represent the

true classes (actual operations), and the columns represent the predicted classes, allowing

for detailed analysis of classification performance. Diagonal values indicate correctly

classified instances, while off-diagonal entries represent misclassifications. For example,

under the ReliefF feature selection method, the SVM classifier correctly identified 217

loading operations, misclassifying 2 as trenching.
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Figure 4.7: The pitch angles of the boom, arm, and bucket in two loading experiments

operated by experienced and inexperienced operators [177].
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4.3.3 Time Window Analysis

In this step, the effects of the time window on the accuracy of classification algorithms

are evaluated. The classification accuracy of the SVM classifier with the MRMR feature

selection algorithm using different configurations is presented in Fig. 4.8a. On average,

the time windows of 20 𝑠 and 10 𝑠 represent the highest and lowest 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 in different

overlapping configurations, respectively. In Fig. 4.8b, the classification accuracy of the

KNN classifier with the MRMR feature selection algorithm using different configurations

is shown. On average, the time windows of 20 𝑠 and 10 𝑠 illustrate the highest and lowest

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, respectively. The classification accuracy of the Naive Bayes classifier with the

ReliefF feature selection algorithm and the DT with the MRMR feature selection algorithm

are presented in Fig. 4.8c and Fig. 4.8d, respectively. On average, the time windows of 20 𝑠

and 18 𝑠 illustrate higher performance compared to the time window of 10 𝑠 , 12 𝑠 , and 15 𝑠 .

In Table 4.4, the average classification 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of different classification algorithms for

different time windows is shown.

4.3.4 Overlapping Analysis

In this step, the effects of overlapping configuration on the classification algorithm are

analyzed. Figure 4.9a shows the classification 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of the SVM classifier with the

MRMR feature selection algorithm using different overlapping configurations. On average,

the overlaps of 75% and 25% demonstrate the highest and lowest classification 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦,

respectively. The classification 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of the KNN classifier with the MRMR feature

Table 4.2: The performance measures for different classifiers with different configura-

tions.

Classification

models

Feature

selection

Time

window

Over-

lapping

Metrics

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑟𝑒𝑐𝑎𝑙𝑙 𝐹1𝑠𝑐𝑜𝑟𝑒

SVM

ReliefF 18 𝑠 50% 99.31% 99.33% 99.36% 99.34%

MRMR 20 𝒔 0% 99.62% 99.59% 99.50% 99.55%
Chi-squared 20 𝑠 0% 99.24% 99.10% 99.50% 99.30%

KNN

ReliefF 20 𝑠 50% 99.23% 99.18% 99.12% 99.15%

MRMR 20 𝒔 50% 99.62% 99.54% 99.62% 99.58%
Chi-squared 18 𝑠 50% 99.31% 99.36% 99.28% 99.32%

NB

ReliefF 20 𝒔 75% 98.93% 98.76% 98.91% 98.83%
MRMR 20 𝑠 0% 98.86% 98.94% 98.75% 98.85%

Chi-squared 20 𝑠 50% 98.85% 98.93% 98.65% 98.79%

DT

ReliefF 20 𝑠 75% 98.25% 98.01% 98.41% 98.21%

MRMR 15 𝒔 75% 98.71% 98.85% 98.59% 98.72%
Chi-squared 18 𝑠 50% 98.11% 98.05% 98.37% 98.21%
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selection algorithm is illustrated in Fig. 4.9b. On average, the overlaps of 75% and 0%

represent the highest and lowest 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, respectively. The classification 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of the

Naive Bayes classifier with the RelieF feature selection algorithm and the DT classifier with

the MRMR feature selection algorithm are shown in Fig. 4.9c and Fig. 4.9d, respectively.

On average, the overlaps of 75% and 50% demonstrate the highest classification 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦.

The average classification 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of different classification algorithms for different

overlapping configurations is shown in Table 4.5.

Table 4.3: The confusion matrices of different classification algorithms. The time win-

dow and overlapping configurations of the classification algorithms are shown in Ta-

ble 4.2.

Classification

models

Feature selection algorithms

ReliefF MRMR Chi-squared

Tr
a
Pr

b
L T G I L T G I L T G I

SVM

L
c

217 2 0 0 100 0 0 0 98 1 1 0

T
d

1 131 0 0 0 60 0 0 0 60 0 0

G
e

0 1 111 0 0 1 49 0 0 0 50 0

I
f

0 0 0 118 0 0 0 54 0 0 0 54

KNN

L 196 0 0 0 196 0 1 0 218 0 0 1

T 0 118 0 0 0 118 0 0 2 130 0 0

G 0 3 97 0 0 1 99 0 0 0 111 1

I 0 0 0 106 0 0 0 106 0 0 0 118

NB

L 385 2 1 0 99 1 0 0 196 1 0 0

T 1 230 4 0 0 60 0 0 0 118 0 0

G 0 1 197 0 1 1 48 0 2 1 97 0

I 0 0 2 208 0 0 0 54 0 2 0 54

DT

L 378 2 8 0 521 3 1 0 213 5 1 0

T 1 232 1 1 4 311 2 0 3 127 2 0

G 1 4 193 0 6 2 260 0 0 0 112 0

I 0 0 0 210 0 0 0 284 0 0 0 118

a 𝑇𝑟 stands for true.
b 𝑃𝑟 stands for prediction.
c
L stands for loading operation.

d
T stands for trenching operation.

e
G stands for grading operation.

f
I stands for idling.
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4.3 Results

Table 4.4: The average classification accuracy of different classification algorithms in

different time windows (the best performance is highlighted in bold).

Classification

models

Feature

selection

Over-

lapping [%]
Time window [𝑠]

10 12 15 18 20

SVM MRMR [0, 25, 50, 75] 97.38% 97.90% 97.77% 98.62% 99.18%
KNN MRMR [0, 25, 50, 75] 96.35% 97.18% 97.82% 98.58% 98.81%
NB ReliefF [0, 25, 50, 75] 91.81% 93.60% 97.37% 98.11% 97.97%

DT MRMR [0, 25, 50, 75] 95.93% 95.49% 95.38% 96.84% 96.42%
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(a) The 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of the SVM classifier with the

MRMR feature selection algorithm.
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(b) The 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of the KNN classifier with the

MRMR feature selection algorithm.
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(c) The 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of the Naive Bayes classifier

with the ReliefF feature selection algorithm.
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(d) The 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of the DT with the MRMR

feature selection algorithm.

Figure 4.8: The analysis of the impacts of the time window on different classification

algorithms and feature selection algorithms. The combinations of classification meth-

ods and feature selection techniques are chosen based on the highest 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 in Ta-

ble 4.2 [177].
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(a) The 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of the SVM classifier with the

MRMR feature selection algorithm.
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(b) The 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of the KNN classifier with the

MRMR feature selection algorithm.
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(c) The 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of the Naive Bayes classifier

with the ReliefF feature selection algorithm.
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(d) The 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of the DT with the MRMR

feature selection algorithm.

Figure 4.9: The analysis of the impacts of the overlapping configuration on different

classification algorithms and feature selection algorithms [177].

Table 4.5: The average classification accuracy of different classification algorithms in

different overlapping configurations (the best performance is highlighted in bold).

Classification

models

Feature

selection

Time

window [𝑠]
Overlapping [%]

0 25 50 75

SVM MRMR [10, 12, 15, 18, 20] 97.94% 97.40% 98.37% 98.98%
KNN MRMR [10, 12, 15, 18, 20] 96.57% 97.60% 98.16% 98.67%
NB ReliefF [10, 12, 15, 18, 20] 95.05% 95.63% 95.83% 96.57%
DT MRMR [10, 12, 15, 18, 20] 94.92% 94.47% 96.99% 98.09%
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Figure 4.10: Analysis of k-fold cross-validation. Each box chart displays following infor-

mation: median, lower and upper quartiles, and minimum and maximum values [177].

4.3.5 K-Fold Cross-Validation

The k-fold cross-validation is also conducted to show the robustness of the suggested data-

driven method. Cross-validation is a widely used approach in applied machine learning to

evaluate how well a model responds to unseen data. A dataset is randomly divided into

k folds with the same size. One fold is considered the test dataset, while the other k-1

folds are used to train the model. This scheme is performed k times and the performance

is calculated based on the average of the outcomes of the k test datasets. The results of

k-fold cross-validation (k equals 4) for the classification algorithms presented in Table 4.2

are shown in Fig. 4.10. The obtained results are approximately equal to the outcomes

presented in Table 4.2.

4.4 Conclusions

In this chapter, a data-driven method is designed to recognize the major tasks or duty

cycles of an excavator, including loading, grading, trenching, and idling. Initially, a dataset
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4 Excavator Task Recognition

compromising orientation variables and angular velocities is gathered using a medium-

rated excavator equipped with four IMUs mounted on moving parts of the machine,

including bucket, arm, boom, and swing body. The tasks were performed by both an

experienced and an inexperienced operator in different operating conditions, such as

different types of material, swing angles, digging depths, and weather conditions. Four

supervised learning methods, including an SVM, a KNN, a DT, and a Naive Bayes classifier,

with three feature selection algorithms, including the ReliefF algorithm, MRMR algorithm,

and Chi-squared test, are used to automatically recognize tasks. Moreover, the effects of

different time windows and overlapping configurations on the classification accuracy are

assessed. The comprehensive analyses show the resilience and adaptability of the method

in real-world scenarios.

The proposed method can be a robust solution for automating excavator task recognition

to improve productivity, operational efficiency, safety, and control. Task recognition and

productivity monitoring systems can be integrated to show task-specific metrics, such as

task-dependent productivity, completion times for specific tasks, and equipment utilization.

Moreover, managers and operators are capable of monitoring progress and identifying

areas for improvement. Identification of behavioral patterns that may pose safety risks

allows for their incorporation into training programs, ensuring a proactive approach to

safety. For example, the system can trigger an alert for a corrective action if an operator

engages in unsafe task execution.

Task identification also plays a crucial role in improving collaboration between human

workers and automated elements. Task identification data can enhance the accuracy of

predictive maintenance for machinery by examining usage patterns, enabling proactive

scheduling, and reducing downtime. Analyzing task identification data also helps in recog-

nizing trends and patterns, providing valuable insights for making well-informed decisions

regarding resource allocation, equipment upgrades, and process improvements.

In the future, it is proposed to broaden this methodology to encompass other types of

HDMMs, including front-end loaders and compactors. The installation of motion sensors,

such as IMUs on various moving parts of a machine will enable the tracking of different

types of activities. For instance, IMUs can be attached to the bucket, boom, and cabin of

front-end loaders to accurately recognize various activities.

The proposed method faces several limitations and challenges. Firstly, the dataset’s dura-

tion is approximately 3 ℎ, and both the test and training datasets are collected from the

same machine. To enhance the dataset’s effectiveness, it should be expanded by gathering

data from a variety of excavators with different sizes. Additionally, it is important to test

the resulting model with an operator whose data was not included in the training dataset,

as operators utilize machines in different manners. Ensuring the algorithm’s robustness

requires accounting for various operational conditions during data collection, such as

different swing angles, digging depths, material types, and weather conditions. Another

drawback of the suggested approach is the labeling of the dataset, which is a crucial and

time-consuming step in supervised learning techniques.
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5 Excavator Productivity Estimation in
Loading Operation

Cycle time and productivity estimation of an excavator in loading operations are highly

important since they help in project planning and scheduling, cost management, resource

allocation, performance monitoring, optimization opportunities, contractual obligations,

and competitive advantage. In this chapter, a method is designed to automatically deter-

mine the cycle time and operational effectiveness of an excavator in the loading operation.

The proposed method estimates the excavator’s actual, theoretical, and relative cycle times

in the loading operation. Firstly, a supervised learning method is suggested to identify

the excavator’s activities in the loading cycle using motion data obtained from four IMUs

installed on different moving parts of the machine. Then, the actual cycle time is deter-

mined based on the sequence of detected activities. In the next step, the theoretical cycle

time is automatically estimated based on the working conditions, such as swing angle

and digging depth. Two approaches are proposed to automatically estimate the swing

angle and digging depths. Afterward, the relative cycle time is calculated by dividing

the theoretical cycle time by the actual cycle time. The relative cycle time can efficiently

monitor the performance of an excavator in the loading operation.

5.1 Introduction

The loading operation stands as a pivotal task within the construction and mining indus-

tries. It entails utilizing the excavator’s manipulator to pick up and move materials from

one place to another, encompassing activities such as digging or gathering materials for

site preparation or loading them onto trucks for transportation. Precise estimation of an

excavator’s productivity during loading operations offers guidance to contractors and

project managers in effectively planning and budgeting projects. This can result in cost

savings by ensuring efficient resource utilization and timely project completion. Addition-

ally, productivity estimation aids in determining the appropriate size and type of excavator

required for the project, thereby optimizing equipment usage and minimizing downtime.

Also, deviations from expected productivity levels can be identified early, allowing for

corrective actions to be taken to keep the project on track. In many cases, construction

contracts have specific productivity requirements or performance metrics that contractors

must meet. Accurate estimation of productivity helps ensure that contractual obligations

are fulfilled, reducing the risk of penalties or disputes. Construction projects are often

bid on by multiple contractors, and productivity estimates can be a significant factor in
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DumpingScooping

Swinging Loaded

Swinging Empty

Figure 5.1: Excavator loading cycle [32].

winning bids. Contractors who can provide more accurate estimates and demonstrate

higher productivity levels are more likely to secure contracts and gain a competitive edge

in the industry [176].

The productivity of most cyclical types of machinery is commonly estimated by assessing

both the quantity ofmaterial and the cycle time of the operation. For excavators, the loading

operation encompasses four main steps: (1) scooping, (2) swinging loaded, (3) dumping,

and (4) swinging empty. Figure 5.1 illustrates the schematic of an excavator during the

loading task. The cycle time of an excavator in the loading operation depends on the

various working conditions [16], including:

1. Excavator

a) Size of the excavator

b) Bucket capacity

2. Relative position between the excavator and material

a) Digging depth

3. Relative position between the excavator and dumping position

a) Swing angle

b) Relative height

c) Dumping condition

4. Site conditions

a) Type of material

b) Site congestion
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5.1 Introduction

5. Skills of the human operator

6. Weather conditions

In the scooping activity, digging depth and type of material are critical factors. Deeper

excavation or harder materials inherently prolong the scooping sub-task [95]. Additionally,

the swing angle is a crucial parameter affecting the swinging time, both when loaded and

empty, thus impacting the overall cycle time. Furthermore, the size of the machine can

significantly affect the swinging time since smaller machines can generally swing faster

than larger machines. Moreover, the proficiency of the operator also plays an important

role in the excavator’s productivity [98].

As discussed in Chapter 2, multiple approaches have been presented to recognize the

activities of an excavator in the loading operation. CV and audio-based methods have many

challenges that have been completely described. Moreover, most presented sensor-based

methods recognize the sub-tasks of an excavator without estimating the cycle time and

productivity. The first critical challenge is the estimation of the actual cycle time of an

excavator in the loading operation. Only two research studies have been presented that

estimate the excavator’s cycle time. In [91], the cycle time of an excavator is estimated

with a low accuracy of 75.96%. This error can cause a significant error in productivity

estimation. In [92], the cycle time is estimated with an accuracy of 91.83%. In 20% of

cycles, the difference between the cycle time estimation and ground truth obtained from

videos is more than 3 𝑠 , which can bring about a huge error in productivity estimation.

Another significant challenge is the lack of a benchmark to evaluate the estimated cycle

time. Since the working conditions can affect the cycle time, the actual cycle time cannot

solely represent whether the machine is working at high or low performance. Therefore,

a reference is needed to assess the actual cycle time. To determine the theoretical cycle

time, the working conditions, such as swing angle and digging depth, should be estimated

automatically during the operation.

Designing an automatic method for the cycle time estimation of an excavator in the loading

operation is the primary purpose of this chapter. Initially, a machine learning-basedmethod

is proposed to identify the excavator’s sub-tasks in the loading operation using IMUs’

measurements mounted on different moving parts of the machine. Then, based on the

sequence of identified activities, the cycle time is determined. The accuracy of estimated

cycle time using the presented method is approximately equal to 97%, which shows higher

accuracy compared to the proposed methods in the literature review. In the next step, to

estimate the theoretical cycle time based on the operating conditions, the online estimation

of the swing angle, digging depth, and information about the excavatability level of the

material in the operation are highly required. Finally, the relative cycle time is estimated

by dividing the theoretical cycle time by the actual cycle time. The performance of the

machine is divided into three classes (satisfactory, average, and poor performance) based

on the relative cycle time and simple thresholding.

Construction companies, contractors, and worksite managers can monitor and track the

operational effectiveness of each machine during the loading operation using the actual cy-

cle time and relative cycle time index. They have the capability to detect project challenges,
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address issues promptly, refine planning and operational parameters, promote efficient

resource utilization, enhance equipment usage, and accurately forecast future project

budgets. Additionally, the suggested algorithm could serve as a feature for construction

machinery manufacturers, facilitating automatic productivity monitoring. Researchers

could utilize the relative cycle time index to contrast the effectiveness of autonomous

solutions against human operators with varying levels of experience. Demonstrating that

autonomous operations yield higher productivity than manual ones is a crucial and chal-

lenging task. Furthermore, training institutions can utilize the provided data as feedback

to enhance the proficiency of human operators.

5.2 Methodology

Two important variables in defining productivity in the loading operation are the amount

of transferred materials and cycle time. Excavator weighing systems have already been

developed and are commercially available. Therefore, the development of a new weighing

method is not considered necessary, as the area is already mature. Instead, attention is

directed toward the estimation of cycle time, which remains relatively underdeveloped.

Firstly, the activity recognition method for an excavator in the loading operation is intro-

duced. The presented method is very similar to the task recognition method proposed

in Chapter 4. Then, the actual cycle time is estimated based on the sequence of detected

activities. In the next step, two methods are proposed to estimate the swing angle and

digging depth. The proposed methods employ the recognized activities. The theoretical

cycle time is calculated using the BML model [121], information about the excavatability

level of the material, and estimated swing angle and digging depth. Finally, the relative

cycle time is estimated by dividing the theoretical cycle time by the actual cycle time.

5.2.1 Activity Recognition

The initial step of the proposed method involves employing a supervised learning method

to recognize the excavator’s activities. The activities during the loading operation com-

prise (1) scooping, (2) swinging loaded, (3) dumping, (4) swinging empty, and (5) idling.

Motion sensors are employed to capture data concerning various movements and actions

performed by the excavator. Firstly, a dataset is collected to offline train classifiers. The

crawler excavator used in the operations has been shown in Fig. 4.2. The collected dataset

covers different working conditions, such as swing angles, digging depth, weather con-

ditions, and types of material. The swing angles vary from 60
◦
to 120

◦
, and the digging

depths increase up to 2𝑚. Two types of material, such as sand and gravel, are used in

the operations. Two operators with different levels of competence performed the loading

operations in different weather conditions during 18 months. In the experiments, opera-

tors were not given instructions on how to perform the tasks, reflecting real construction

situations. This was done to make the algorithms more robust and reduce the impact of

human behavior on the classification process.
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Four IMUs have been mounted on the bucket, arm, boom, and swing body of the excavator

to measure the orientation and angular velocities of the moving parts of the machine. The

configuration of IMUs on the machine has been illustrated in Fig. 4.5. The duration of

the dataset is around 75𝑚𝑖𝑛, which means that based on the sampling frequency 𝑓𝑠 of

200 𝐻𝑧, approximately 900,000 data points have been collected for each channel of the

sensor. An inexperienced operator performed roughly 35% of the operations, and the rest

of the dataset was collected by an experienced operator.

In Chapter 4, motion variables obtained from IMUs have been completely described. The

joint angles and angular velocities of the machine parts are used as input data in the

activity recognition algorithm. The local angular velocities and orientation variables have

been demonstrated in Fig. 4.6. The input variables comprise the angular velocities of four

IMUs (3 axes per sensor unit), the local angular velocity of the boom (𝜔2), the local angular

velocity of the arm (𝜔3), the local angular velocity of the bucket (𝜔4), the pitch angle of

the boom (𝜃2), the pitch angle of the arm (𝜃3), and the pitch angle of the bucket (𝜃4).

In the next step, data windowing approaches are implemented to recognize sub-tasks or

short-term motions of an excavator. The overlapping configuration is chosen the same as

the task recognition. Nonetheless, the length of time window should be chosen smaller

compared to the task recognitionmethod since a sub-task takes shorter than a task or a duty

cycle. In the method, a sliding rectangular windowing function with four different window

sizes (0.5, 1, 2, 3 𝑠) and with four overlapping configurations (0%, 25%, 50%, and 75% overlap

between two consecutive windows) are used. In the next step, the data annotation step is

performed using the recorded videos to divide the dataset into five groups: (1) scooping,

(2) swinging loaded, (3) dumping, (4) swinging empty, and (5) idling. The extracted features

are completely the same as the task recognition algorithm introduced in Section 4.2.4. Next,

four different subsets of features, including (1) all features, (2) selected features using the

ReliefF algorithm, (3) selected features using the MRMR algorithm, and (4) selected features

using the Chi-squared test, are used to train the classification models. Four supervised

learning models, including a support vector machine (SVM), a k-nearest neighbor (KNN),

a decision tree (DT), and a Naive Bayes (NB), are trained using the collected dataset. All

performance metrics have been introduced in Section 4.2.7.

5.2.2 Actual Cycle Time Estimation

In the previous step, the processes of data collection and training of the classification

models have been outlined. The trained models can subsequently be deployed online to

identify the activities of excavators. In this step, the actual cycle time of an excavator

is determined by analyzing the sequence of activities within a work cycle. Initially, the

work cycle and cycle time should be defined. In [151], a definition for a work cycle of

construction equipment is presented: “A work cycle is an activity performed in a finite

time-frame by the equipment where all the states of the equipment are in the same range

at the start and the end of the work cycle”. The loading task comprises four sub-tasks,

including scooping, swinging loaded, dumping, and swinging empty. In [92], the cycle

time is defined based on the time between two consecutive anti-clockwise rotations if
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there is one clockwise rotation between them. In our proposed method, to mitigate the

effects of classification errors and increase the robustness, the cycle time is defined based

on the time between two consecutive scooping activities if there are at least one swinging

loaded activity, one dumping activity, and one swinging empty activity between them.

The accuracy definition, introduced in [92], is used to compare the results of the proposed

method with the literature review. The real cycle time or ground truth information is

obtained based on the recorded video by manually measuring the cycle times. The accuracy

of the estimated cycle time is computed by the ratio of deviation between the estimated

cycle time and real cycle time to the total real cycle time. The accuracy of cycle time

estimation is formalized by Eq. (5.1):

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐶𝑇 = 1 −
Σ𝑛𝑖=1 |𝑡𝑖 − 𝑡𝑖 |

Σ𝑛
𝑖=1

𝑡𝑖
(5.1)

where 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐶𝑇 denotes the accuracy of cycle time estimation [−], 𝑡𝑖 is the estimated

cycle time [𝑠], 𝑡𝑖 denotes the real cycle time [𝑠], and 𝑛 is the total number of cycles.

5.2.3 Theoretical Cycle Time Estimation

As mentioned earlier, relying solely on the actual cycle time may not effectively depict the

machine’s performance, given the various factors that can impact the excavator’s produc-

tivity. To assess or analyze the estimated actual cycle time, it is necessary to establish a

theoretical cycle time. This theoretical cycle time serves as a standard or comparison point

for evaluating the actual cycle time of an excavator. In this section, the theoretical cycle

time of an excavator in the loading operation is computed, taking into account factors such

as swing angle, digging depth, and the excavability level of the material. Construction

equipment manufacturers, Komatsu
®
[115] and Caterpillar

®
[117] have developed two

models aimed at calculating the theoretical cycle time and productivity of excavators. How-

ever, the proposed model by Caterpillar
®
, cannot be used in an automatic manner since it is

a descriptive model requiring human input. Additionally, an industry guideline introduced

an alternative model [121]. The BML guideline was developed collaboratively by the

Central Association of German Construction Companies (Zentralverband des Deutschen

Baugewerbes) and the Federation of the German Construction Industry (Hauptverband

der Deutschen Bauindustrie). In this study, the BML approach is adopted because it is

more conservative and offers a theoretical cycle time that aligns more closely with reality,

unlike the Komatsu model, which tends to be more optimistic [178].

The BML model formalizes the cycle time of an excavator in the loading operation through

Eq. (5.2):

𝑡𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 = 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ×
1

𝑓𝑠𝑤𝑖𝑛𝑔
× 1

𝑓𝑑𝑒𝑝𝑡ℎ
(5.2)

where 𝑡𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 denotes the theoretical cycle time [𝑠], 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 shows the initial guess of
theoretical cycle time [𝑠], 𝑓𝑠𝑤𝑖𝑛𝑔 is the swing angle factor [−], and 𝑓𝑑𝑒𝑝𝑡ℎ is the digging

depth factor [−].
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Within the BMLmodel, the initial guess of the theoretical cycle time 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is determined by

considering the heaped bucket capacity alongside the soil excavability categories outlined

in Table 5.1. The initial estimate of the theoretical cycle time for materials characterized

by high excavability, such as sand and gravel is formalized by Eq. (5.3):

𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑠
= −0.50 ×

𝑉 2

𝐶𝐸𝐶𝐸

𝑚3
2

+ 4.19 × 𝑉𝐶𝐸𝐶𝐸

𝑚3
+ 13.13 (5.3)

and the calculation formaterials withmedium and low excavability, such as hard compacted

clay, is determined by Eq. (5.4):

𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑠
= −0.07 ×

𝑉 2

𝐶𝐸𝐶𝐸

𝑚3
2

+ 3.30 × 𝑉𝐶𝐸𝐶𝐸

𝑚3
+ 15.52 (5.4)

where𝑉𝐶𝐸𝐶𝐸 is heaped bucket capacity according to the standard of CECE. The BML model

does not provide an estimation for the theoretical cycle time of materials categorized as

having very low excavability [178], [152].

Next, the initial estimation of the theoretical cycle time is adjusted based on two factors

related to the swing angle and digging depth of the operation. In the loading process, the

swing angle refers to the horizontal angle between scooping and dumping positions. The

BML method approximates the swing angle factor 𝑓𝑠𝑤𝑖𝑛𝑔 using Eq. (5.5):

𝑓𝑠𝑤𝑖𝑛𝑔 ≈ 1.754 × 𝜃−0.1258𝑠𝑤 ; 𝜃𝑠𝑤 ∈ [45◦, 180◦] (5.5)

Table 5.1: Material categories in the BML model.

Excavability Material

High

Loose or even compressed sand, gravel sand mix, gravel with

<15% (of mass) binding components and <30% stones of 63–

100𝑚𝑚 diameter, clay with organic components, soft, cuttable

such as sea chalk, rottingmud; piles with <30% stones of <200𝑚𝑚

diameter such as rough gravel

Medium

Ground with solid components of mixed size (15–40% binding

components), soft, such as meadow loam or loam with <30%

stones of 63–100𝑚𝑚 diameter; clay with >40% binding compo-

nents, soft (various examples of clay or loam types)

Low

Ground with solid components of mixed size (>30% stones of

63–100𝑚𝑚 diameter), stiff; piles with 30–60% stones of <200𝑚𝑚

diameter or 30% stones of 0.01–0.1𝑚3
, such as gravel at the bottom

of cliffs; clay with >30% stones of 63–100𝑚𝑚 diameter, stiff and

glutinous

Very low

Loosely packed stones that are brittle; rock that was blasted or

ripped apart (edge lengths <300𝑚𝑚); clay with very high dry

toughness and a lot of stone inclusions
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5 Excavator Productivity Estimation in Loading Operation

where 𝜃𝑠𝑤 indicates the swing angle [◦] of the operation. Variations of swing angle within
the range of [45

◦
,180

◦] affect ±10% variations in the cycle time.

In the BML method, the digging depth factor 𝑓𝑑𝑒𝑝𝑡ℎ for soil types categorized as low and

very low excavability is roughly determined using Eq. (5.6):

𝑓𝑑𝑒𝑝𝑡ℎ ≈ ℎ−0.1039
𝑑

; ℎ𝑑 ≥ 1𝑚, (5.6)

and for materials classified as high and medium excavability, the digging depth factor

𝑓𝑑𝑒𝑝𝑡ℎ is approximately evaluated using Eq. (5.7):

𝑓𝑑𝑒𝑝𝑡ℎ ≈ ℎ−0.1164
𝑑

; ℎ𝑑 ≥ 1𝑚 (5.7)

where ℎ𝑑 shows the digging depth [𝑚] of the operation. When the digging depth ℎ𝑑 is

less than 1𝑚, the digging depth factor 𝑓𝑑𝑒𝑝𝑡ℎ is assumed to be one. As the digging depth

increases, it only negatively affects the cycle time, leading to an increase of up to 20% in

extreme cases (i.e., for ℎ𝑑 greater than 8𝑚).

To automatically estimate the theoretical cycle time of an excavator during the loading

operation, it’s essential to have real-time automatic estimations of the swing angle and

digging depth at the end of each cycle. The following sections describe how the swing

angle and digging depth are estimated based on the identified excavator activities.

5.2.3.1 Swing Angle Estimation

Swing angle is a vital operational parameter that significantly affects the cycle time and

productivity of an excavator in the loading operation. In [176], a method is presented

Scooping Swinging loaded Dumping Swinging empty

Scooping position 
(average of cabin 

encoder 
measurments)

Dumping position 
(average of cabin 

encoder 
measurments)

Swing angle 
estimation

Digging depth 
estimation (minimum 

of bucket tip 
position (z-axis))

Figure 5.2: Flowchart of methods for swing angle and digging depth estimations based

on activity recognition algorithm [174].
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that employs Otsu’s technique, known for achieving optimal thresholding by maximizing

variance between classes. In the section, an algorithm is introduced to estimate the swing

angle by utilizing cabin encoder measurements and the excavator activity recognition

algorithm. All excavators are equipped with cabin encoders, which provide measurements

specifying the horizontal angle of the excavator cabin during operation. The swing angle is

defined as the absolute deviation of horizontal angles between the scooping and dumping

positions. To determine the horizontal angles of the scooping and dumping positions in

the loading operation, the scooping and dumping activities need to be detected. The start

and end of each cycle are identified using the method proposed in Section 5.2.2. In each

cycle, four sets of activities occur (scooping, swinging loaded, dumping, and swinging

empty). The average of the horizontal angles (cabin encoder measurements) during the

identified scooping and dumping activities are considered as the scooping and dumping

positions, respectively. Figure 5.2 illustrates the flowchart of the method for swing angle

estimation.

5.2.3.2 Digging Depth Estimation

The digging depth is another crucial factor to consider in estimating the theoretical cycle

time. As the digging position becomes deeper, it requires more time to complete the

scooping task. In this study, digging depth is estimated based on both bucket position

estimation and the excavator activity recognition algorithm. As previously mentioned,

each cycle comprises four activities. The digging depth is determined as the minimum of

the vertical axes of the bucket position estimation during the identified scooping activities.

The scooping activity is recognized using the trained classification model, and the bucket

position is estimated using IMUs and the forward kinematics of the machine. The flowchart

of the method for estimating digging depth is depicted in Fig. 5.2.

Figure 5.3: Excavator coordinate systems in Denavit-Hartenberg convention [153].
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The movement of the excavator’s manipulator is described using kinematic equations,

excluding the consideration of driving forces and torques. An excavator can be modeled

as an open-loop articulated chain comprising a boom, arm, and bucket. In an excavator, a

sequence of rigid bodies, referred to as links, are interconnected by revolute joints [154].

Figure 5.3 displays the forward kinematics of an excavator.

Each link has its own Cartesian coordinate system, which moves with the link itself. The

local coordinate system for each link is constructed based on the Denavit-Hartenberg (D-H)

convention (refer to Table 5.2), wherein the 𝑧-axis aligns with the direction of rotation

of the revolute joint, and the 𝑥-axis aligns with the adjacent joint within the same link.

Hence, the direction of the 𝑦-axis is determined using the right-hand rule [153]. The

Table 5.2: Denavit-Hartenberg parameters [153].

Link𝑖 𝑑𝑖 𝑎𝑖 𝛼𝑖 𝜃𝑖

1 0 𝑙1 90
◦ 𝜃1

2 0 𝑙2 0
◦ 𝜃2

3 0 𝑙3 0
◦ 𝜃3

4 0 𝑙4 0
◦ 𝜃4

angle 𝜃𝑖, 𝑖 ∈ {1, 2, 3, 4} are calculated using quaternion measurements, and the conversion

formula (Eq. (4.1)). In addition, the length 𝑙𝑖, 𝑖 ∈ {1, 2, 3, 4} are obtained from machine

specifications. Forward kinematic equations are employed to determine the positions of

the manipulator links based on the joint angles and lengths of the links. A transformation

matrix between two consecutive coordinate systems (from (𝑖 + 1)𝑡ℎ to 𝑖𝑡ℎ) on a link can be

expressed using the Denavit-Hartenberg convention:

𝑖𝑇𝑖+1 =


cos𝜃𝑖+1 − cos𝛼𝑖+1 sin𝜃𝑖+1 sin𝛼𝑖+1 sin𝜃𝑖+1 𝑎𝑖+1 cos𝜃𝑖+1
sin𝜃𝑖+1 cos𝛼𝑖+1 cos𝜃𝑖+1 − sin𝛼𝑖+1 sin𝜃𝑖+1 𝑎𝑖+1 sin𝜃𝑖+1

0 sin𝛼𝑖+1 cos𝛼𝑖+1 𝑑𝑖+1
0 0 0 1

 (5.8)

where
𝑖𝑇𝑖+1 denotes the transformation matrix from (𝑖 + 1)𝑡ℎ coordinate system to 𝑖𝑡ℎ

coordinate system, 𝜃𝑖+1 is the rotation angle about 𝑧𝑖-axis, 𝛼𝑖+1 is the rotation angle of

𝑧𝑖-axis about 𝑥𝑖+1-axis, 𝑑𝑖+1 is the offset along the 𝑧𝑖-axis, and 𝑎𝑖+1 is the length of the

link [153]. Any point in any local coordinate system can be represented in the origin

coordinate system using the coordinate transformation matrix as follows:

0𝑃=0𝑇𝑛
𝑛𝑃=0𝑇1

1𝑇2
2𝑇3 · · ·𝑛−1𝑇𝑛𝑛𝑃, (5.9)

where
0𝑃 represents the position vector in the origin coordinate system,

0𝑇𝑛 denotes the

transformation matrix from the 𝑛𝑡ℎ coordinate system to the origin coordinate system,

and
𝑛𝑃 indicates the position vector in the 𝑛𝑡ℎ coordinate system [153].
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5.2.4 Relative Cycle Time Estimation

Finally, the relative cycle time is derived by comparing the actual cycle time to the theo-

retical cycle time:

𝑡𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 =
𝑡𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙

𝑡𝑎𝑐𝑡𝑢𝑎𝑙
(5.10)

where 𝑡𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 represents the relative cycle time [−], 𝑡𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 denotes the theoretical cycle
time [𝑠], which is computed according to the model introduced in Section 5.2.3, and 𝑡𝑎𝑐𝑡𝑢𝑎𝑙
shows the actual cycle time [𝑠], estimated using the method outlined in Section 5.2.2. A

higher relative cycle time indicates better performance. This metric can be utilized by

worksite managers to assess both excavator and operation performance, enhancing project

planning and scheduling. Additionally, the relative cycle time can serve as feedback to

evaluate the proficiency and skill level of human operators.

5.3 Implementation and Case Studies

In this section, the presented method is evaluated using the dataset. Initially, classification

models are trained offline, and then, the method is applied and tested through two case

studies presented in Section 5.3.2. These case studies investigate the accuracy of cycle

time estimation, wherein swing angle, digging depth, theoretical, and relative cycle time

are all assessed. Finally, using the obtained relative cycle time index, the performance of

experienced and inexperienced operators is compared. The designed method has been

implemented using Statistics and Machine Learning Toolbox in MathWorks
®
MATLAB

R2021a on a laptop with a 1.8 G𝐻𝑧 Intel Core i7 CPU and 16 GB of RAM running on a

Windows 10 operating system.

5.3.1 Classification Model Training and Evaluation

Initially, the accuracy of classifiers with different feature selection algorithms is examined.

Additionally, it assesses the effects of different window sizes and overlapping configurations

Table 5.3: Accuracy of different classifiers and feature selection algorithms: The num-

bers represent “the best accuracy (time window, overlapping configuration)”.

Feature selection

algorithms

Classification models

SVM KNN Naive Bayes Decision Tree

All features 0.9203(3, 75%) 0.9173(2, 75%) 0.8915(2, 25%) 0.9054(1, 75%)
ReliefF 0.9438(2, 75%) 0.9433(2, 50%) 0.9129(2, 75%) 0.9443(1, 75%)
MRMR 0.9523(2, 75%) 0.9356(2, 75%) 0.9274(2, 25%) 0.9371(2, 75%)
Chi-squared 0.9041(3, 0%) 0.9273(3, 0%) 0.7727(3, 0%) 0.9068(3, 0%)
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Figure 5.4: Confusion matrix of SVM classifier and MRMR feature selection algorithm

with 2 𝑠 time window and 75% overlapping [174].

Table 5.4: Accuracy of the SVM classifier and MRMR feature selection algorithm with

different time windows and overlapping configurations.

Overlapping

Time window [𝑠]

0.5 1 2 3

0% 0.9322 0.9397 0.9366 0.9136

25% 0.9327 0.9485 0.9433 0.9334

50% 0.9418 0.9404 0.9516 0.9385

75% 0.9189 0.9422 0.9523 0.9501

on classification accuracy. When comparing multiple data-driven modeling techniques,

different subsets of the dataset must be utilized for model training and testing. To achieve

this, the entire dataset was divided into training and testing subsets, with 70% of the

data allocated for training and the remaining 30% for testing purposes. The accuracy of

different classifiers and feature selection algorithms with the associated time window and

overlapping configurations is presented in Table 5.3. The SVM classifier with the MRMR

feature selection algorithm shows the highest accuracy. The MRMR feature selection

algorithm not only demonstrates superior accuracy compared to the ReliefF algorithm but
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also proves to be more cost-effective and entails lower computational complexity than

ReliefF. Table 5.4 displays the accuracy of the SVM classifier and MRMR feature selection

algorithm across various time windows and overlapping configurations. The highest

accuracy is attained when the time window is set to 2 𝑠 , with an overlapping rate of 75%.

Figure 5.4 depicts the confusion matrix of the proposed supervised learning algorithm

using the optimal configurations. The central matrix displays the number of correctly and

incorrectly classified samples for each excavator activity. The diagonal elements represent

correct classifications, while the off-diagonal elements show misclassifications between

activity classes. To enhance readability, a color gradient has been applied: darker blue cells

indicate a higher number of correctly classified instances, while lighter shades represent

fewer correct classifications. The right-hand column shows per-class recall (true positive

rate) and false negative rate, where darker blue indicates higher recall. The bottom row

shows per-class precision and false positive rate, using the same blue gradient to highlight

high precision.

Additionally, k-fold cross-validation (k equals 4) is conducted to demonstrate the robustness

of the proposed classification algorithm. The outcomes of k-fold cross-validation for

SVM

KNN

Naive Bayes

Decision Tree

ddd d

Figure 5.5: Analysis of k-fold cross-validation. Each box chart displays the following

information: median, lower and upper quartiles, and minimum and maximum val-

ues [174].
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different classification models and feature selection algorithms are illustrated in Fig. 5.5.

The accuracy of the classification algorithms aligns closely with the results presented in

Table 5.3.

In the next sections, the trained classification model is employed to online recognize

machine activities. Then, the actual cycle time, swing angle, and digging depth are

computed based on the detected activities.

5.3.2 Case Studies

The performance of the presented method is demonstrated through implementation in

two case studies. Each case study comprises two experiments conducted by experienced

and inexperienced operators, with the digging depth being nearly zero due to the material

being on the ground surface. In the first case study, the swing angle is approximately

120
◦
, with sand as the material type, while in the second case study, the swing angle is

around 60
◦
, with gravel as the material type. Each experiment lasts approximately 5𝑚𝑖𝑛,

resulting in the collection of roughly 60,000 data points per sensor channel at the data

sampling frequency 𝑓𝑠 of 200 𝐻𝑧. Further details are provided in Table 5.5. Additionally,

the operation is recorded using a camera to obtain ground truth for the cycle time.

Table 5.5: Specifications of case studies.

Case Study Operator Digging Depth Swing Angle [◦] Material Duration [𝑚𝑖𝑛]

Inexp. 1
a

Inexperienced Ground surface 120
◦

Sand 5.3

Exp. 1
b

Experienced Ground surface 120
◦

Sand 5.2

Inexp. 2 Inexperienced Ground surface 60
◦

Gravel 5.4

Exp. 2 Experienced Ground surface 60
◦

Gravel 4.4

a
Inexp. stands for an inexperienced operator.

b
Exp. stands for an experienced operator.

5.3.3 Actual Cycle Time Estimation

Figure 5.6, displays the cycle time estimations for the first case study. As illustrated, the

cycle time in case study Exp. 1 which is conducted by the experienced operator is lower

than in case study Inexp. 1. It can have a notable influence on the overall productivity of

the operation. The cycle time estimations in the second case study are depicted in Fig. 5.7.

As anticipated, the cycle time of case study Inexp. 2 is higher than the estimated cycle time

in case study Exp. 2. The presented method demonstrates its effectiveness in accurately

estimating the cycle time, achieving an error of less than 1.5 𝑠 in both case studies. The

accuracy of cycle time estimations, as defined by Eq. (5.1), is shown in Table 5.6. In the

case studies, only 5 out of 66 cycles (approximately 7.5%) exhibit absolute error exceeding

1 𝑠 .
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Figure 5.6: Cycle time estimations in the first case study (𝜃𝑠𝑤 ≈ 120
◦
) [174].
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Figure 5.7: Cycle time estimations in the second case study (𝜃𝑠𝑤 ≈ 60
◦
) [174].
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Table 5.6: Accuracy of cycle time estimations based on Eq. (5.1) for each case study.

Case study

Inexp. 1 Exp. 1 Inexp. 2 Exp. 2

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐶𝑇 0.9811 0.9777 0.9642 0.9717

5.3.4 Swing Angle Estimation

To compute the theoretical cycle time, estimations of the swing angle and digging depth

are needed. In this section, the swing angle is estimated utilizing the method described

in Section 5.2.3.1. Figure 5.8 presents the estimations of the swing angle for the first case

study. In this particular study, operators aimed to maintain the horizontal angle between

the scooping and dumping positions at approximately 120
◦
. Notably, the experienced

0 50 100 150 200 250 300 350
350

400

450

500

2 4 6 8 10 12 14

50

100

150

(a) Case study Inexp.1

0 50 100 150 200 250 300 350
-50

0

50

100

150

2 4 6 8 10 12 14 16 18

50

100

150

(b) Case study Exp.1

Figure 5.8: Swing angle estimations in the first case study (𝜃𝑠𝑤 ≈ 120
◦
) [174].
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Figure 5.9: Swing angle estimations in the second case study (𝜃𝑠𝑤 ≈ 60
◦
) [174].
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operator demonstrates adept control over the swing motion of the cabin, resulting in

minimal variations. Figure 5.9 displays the estimations of the swing angle for the second

case study. In this scenario, operators aim to maintain the swing angle around 60
◦
.

The proposed method accurately identifies the scooping and dumping activities in both

scenarios, effectively estimating the swing angle.

5.3.5 Digging Depth Estimation

In this section, the digging depth of the operation is estimated utilizing the technique

outlined in Section 5.2.3.2. Figure 5.10 shows the digging depth estimations for the first

case study. The estimations are approximately zero, consistent with the fact that the pile

of material is situated on the ground surface. The digging depth estimation for the second

case study is depicted in Fig. 5.11. The method accurately estimates the digging depth
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Figure 5.10: Digging depth estimations in the first case study (𝜃𝑠𝑤 ≈ 120
◦
) [174].
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Figure 5.11: Digging depth estimations in the second case study (𝜃𝑠𝑤 ≈ 60
◦
) [174].
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during the operations. As anticipated, the experienced operator demonstrates greater

control over the bucket position, resulting in fewer variations in bucket movements.

Conversely, there are numerous fluctuations in bucket movements when the inexperienced

operator performs the task. Despite the significant difference in human operators’ skills,

the proposed supervised learning method effectively manages this challenge.

5.3.6 Relative Cycle Time Estimation

In this section, the theoretical cycle time is initially computed using the estimated swing

angle, digging depth, and the type of material. Subsequently, the relative cycle time is

determined based on the estimated and theoretical cycle times.

The theoretical, estimated, and relative cycle times for the first case study are illustrated in

Fig. 5.12. In the first case study, the theoretical cycle times for both experiments are nearly

identical due to similar operating conditions. In this figure, areas above 0.8 are colored

green, indicating satisfactory performance, while areas between 0.6 and 0.8 are colored

yellow, representing average performance. Conversely, regions below 0.6 are colored red,

indicating poor performance. The colors have been inspired by traffic lights to be easily

understandable for everybody. In the case study Inexp. 1, operated by the inexperienced

operator, most of the cycles exhibit relative cycle times in the yellow area, indicating

average performance. Conversely, in Exp. 1, operated by the experienced operator, nearly

all cycles show relative cycle times exceeding 0.8, representing satisfactory performance.

Figure 5.13 illustrates the relative, estimated, and theoretical cycle times for the second

2 4 6 8 10 12 14 16 18

15

20

25

2 4 6 8 10 12 14 16 18

0.6

0.8

1

1.2

Figure 5.12: Relative cycle time estimations in the first case study (𝜃𝑠𝑤 ≈ 120
◦
) [174].
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Figure 5.13: Relative cycle time estimations in the second case study (𝜃𝑠𝑤 ≈ 60
◦
) [174].

case study. In Inexp. 2, operated by the inexperienced operator, the relative cycle time falls

within the yellow area, indicating average performance. However, in Exp. 2, the relative

cycle time demonstrates satisfactory performance.

5.4 Conclusions

This chapter proposes a method to estimate the actual, theoretical, and relative cycle

times of an excavator during the loading operation. Initially, a supervised learning algo-

rithm is introduced to recognize excavator activities, utilizing orientation variables and

angular velocities collected from four IMUs installed on different moving parts of the

machine. Multiple classification algorithms and feature selection methods are tested on

the collected dataset. In addition, the impacts of various time windows and overlapping

configurations on the activity recognition method are evaluated. The model can recognize

the activities with an accuracy of approximately 95%. Subsequently, the cycle time is

estimated based on the sequence of identified activities. Then, the theoretical cycle time is

calculated using the BML model and ongoing operating conditions to assess the actual

cycle time. The calculation of the theoretical cycle time needs automatic estimations

of swing angle and digging depth. Two approaches are presented for these estimations

based on recognized activities. Relative cycle time is then derived from the actual and

theoretical cycle times, serving as an index of operational effectiveness, with higher values

indicating superior performance. The method is evaluated through implementation in

two case studies performed by experienced and inexperienced operators. The working
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conditions, such as swing angle and type of material, are varied in the two case studies.

Results demonstrate that the method can estimate the actual cycle time, with an average

accuracy of approximately 97%. Furthermore, relative cycle time comparisons highlight

differences between experienced and inexperienced operators, facilitating classification

into three performance levels (satisfactory, average, and poor) via simple thresholding.

The suggested approach can be employed across various excavators for automated moni-

toring of cycle time, productivity, and operational efficiency. By incorporating data on

the quantity of material, the concept of actual, theoretical, and relative cycle times can

be extended to actual, theoretical, and relative productivity. These approaches have the

potential to significantly reduce cost in the overall process by optimizing machine usage.

They provide worksite managers with valuable insights into the productivity of each

machine and its operators, enabling them to enhance operator training and streamline

processes. Future plans include expanding the presented method to other applications,

such as trenching and grading operations for excavators, as well as short and long loading

cycles for front-end loaders.

Currently, there is a substantial demand for automated monitoring of productivity and

performance in HDMMs. Based on existing data, there seems to be a lack of automated

methods for evaluating the relative cycle time and operational efficiency of an excavator

during loading operations under current operational circumstances. The proposed method

offers automated monitoring of an excavator’s cycle time and performance during loading

operations. This data enables worksite managers and contractors to promptly identify

issues, leading to significant reductions in operation time, improved scheduling, and

enhanced productivity. Additionally, the method accounts for how operating conditions,

such as swing angle and digging depth, can impact cycle time and productivity, marking

another innovative aspect of the proposed method.

This study gathers a dataset by operating one excavator with both an experienced and

inexperienced operator at a private worksite to train the classification models. The same

machine is used to collect the test dataset. A significant limitation of the proposed method,

as well as data-driven algorithms in general, is the limited amount of data available.

Expanding the dataset is crucial, using data gathering from excavators of different sizes

operated by individuals in varying competency levels. To enhance accuracy and consider

differing operating conditions, data collection should encompass diverse swing angles,

digging depths, material types, and weather conditions since the variables significantly

impact the accuracy of the algorithm and the machine’s productivity. Additionally, a

notable limitation is the labeling of the dataset, a fundamental time-intensive process for

supervised classification algorithms.

Material type plays a significant role in influencing both the cycle time and productivity

of an excavator during loading operations. However, a limitation of the proposed method

is the assumption of knowing the excavability level of the material. Project managers or

operators should provide this information to the system. An artificial intelligence (AI)-

driven approach for automatically identifying materials on construction sites could offer a

promising solution, addressing certain challenges in productivity estimation algorithms.

Another crucial variable to estimate during loading operations is the quantity of material
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handled in each cycle. This can be accomplished by estimating the weight of material

in the bucket through dynamic bucket payload estimation methods or by estimating the

volume of material using advanced sensors, such as LiDAR. Typically, bucket volume

estimation algorithms are more expensive and intricate, and they tend to offer lower

accuracy compared to dynamic bucket payload estimation methods.

63





6 Excavator Productivity Estimation in
Trenching and Grading Operations

In this chapter, two automatic methods are proposed to automatically estimate the pro-

ductivity of an excavator in the trenching and grading operations. Firstly, a grid-based

height map from working areas is obtained using a Livox Horizon
®
LiDAR sensor and

localization data from the Global navigation satellite system (GNSS), and IMUs. In addition,

BIM is employed to obtain information regarding the designed model and required accu-

racy. The productivity is determined based on the map comparison between the working

areas and the target model. The obtained information can help worksite managers and

contractors to analyze the productivity of each individual machine and enhance planning

and time-scheduling.

6.1 Introduction

As described in the previous chapter, conventional manual productivity monitoring meth-

ods are time-consuming, costly, labor-intensive, and prone to errors. Additionally, in

grading and trenching tasks, the quantity of material moved does not matter; but, preci-

sion within specified tolerances is crucial [165]. Hence, there is a need for an automated

method to estimate the productivity of HDMMs in grading and trenching operations,

which depends on predefined target models [16], [147].

In a grading operation, an excavator is employed to level and refine the ground surface,

often for building or landscaping objectives. This preparation can involve leveling a site

for construction or creating an even surface for paving. The excavator utilizes its bucket

to shift and distribute material, ensuring a smooth and level terrain. Unlike other tasks,

grading demands heightened precision, typically within ±0.05 or ±0.1𝑚, and in certain

instances, accuracy as fine as ±0.02𝑚 is necessary [165]. Figure 6.1 depicts an excavator

engaged in a grading task. The excavator’s productivity in this operation is significantly

influenced by various factors such as the type and condition of the material, the desired

surface’s size and complexity, the required level of accuracy, the excavator’s size and

capabilities, the specifications of the bucket, and the proficiency of the operator.

Productivity assessment should align with the goals of the duty cycle. Typically, the

quantity of material and the cycle time are two crucial elements in the productivity

definition of the most cyclical types of machinery. While quantifying an excavator’s

productivity by material moved per time unit is common, it cannot be used for grading
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Figure 6.1: The grading operation using an excavator [169].

tasks. The quality and time of the grading operation are given utmost priority by worksite

management since only a small amount of materials are added or removed. Therefore,

material volume alone fails to adequately capture the operation’s productivity. In this

study, excavator productivity in grading tasks is quantified by the area of the graded

surface per time unit:

𝑄𝑔𝑟𝑎𝑑𝑖𝑛𝑔 =
𝑎

𝑡
(6.1)

where 𝑄𝑔𝑟𝑎𝑑𝑖𝑛𝑔 indicates the excavator’s productivity in the grading operation [𝑚2/𝑠], 𝑎 is

the area of the graded surface [𝑚2], and 𝑡 is the time [𝑠].

Trenching operations entail the use of an excavator to dig trenches in the earth for laying

underground utilities, such as water and sewer pipes. The operator utilizes the excavator

to dig into the ground, shaping a trench to meet specific size and depth requirements.

Various factors play a crucial role in determining the productivity of an excavator during

trenching operations. These include the excavator’s size and capabilities, the type and

condition of the ground, the operator’s proficiency and experience, the trench’s depth

and width requirements, and the type and size of the bucket. In trenching operations,

contractors commonly estimate productivity based on the linear length of the trench per

time unit [117], [155], [156]. Figure 6.2 depicts the trenching operation conducted with an

excavator. In this study, productivity in the trenching operation is defined as the length of

the trench per unit of time:

𝑄𝑡𝑟𝑒𝑛𝑐ℎ𝑖𝑛𝑔 =
𝑙

𝑡
(6.2)

where 𝑄𝑡𝑟𝑒𝑛𝑐ℎ𝑖𝑛𝑔 indicates the excavator’s productivity in the trenching operation [𝑚/𝑠],
𝑙 shows the length of the trench [𝑚], and 𝑡 is the time [𝑠]. Productivity depends on
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Figure 6.2: The trenching operation using an excavator [170].

several factors, including the type of material, swing angle, bucket size and type, cross-

sectional area of the trench, the skill of the human operator, and weather conditions. This

productivity definition enables contractors andmanagers tomonitor operation productivity

effectively. It aids in estimating the time required to finish trenching work and determining

the number of excavators needed to adhere to project deadlines. Furthermore, worksite

managers can utilize the estimated productivity to plan future projects.

Traditionally, progress tracking and construction site surveys have relied on manual

methods performed by surveyors. However, the demand for automated monitoring tools

has led to the integration of 3D sensing technologies for the precise and accurate collection

of on-site data. By combining this data with a BIM-based planned model, project progress

can be effectively assessed [136].

According to the literature review presented in Chapter 2, there is a noticeable gap in re-

search focusing on integrating real-time data with models to provide insights into ongoing

activities on construction sites. Additionally, existing studies predominantly emphasize

the quantity of material as a primary concern. Several key challenges identified in existing

studies include the absence of input from the construction industry regarding their specific

requirements and practical use cases, inadequate integration with BIM systems, and the

failure to develop efficient visualization tools for assessing the performance of construction

equipment. Furthermore, there is a notable lack of automated approaches for assessing

productivity during grading or trenching operations utilizing BIM. Quality and accuracy

have the highest priority in the grading and trenching operations and must be taken into

account.
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This study introduces two innovative algorithms for estimating the actual productivity of

an excavator in grading and trenching operations, leveraging target models derived from

BIM. The productivity metrics for grading and trenching operations are defined as the area

of graded surface per unit of time and the length of the trench per unit of time, respectively.

A LiDAR sensor installed on top of the excavator is employed to map the surrounding

areas using an elevation terrain mapping technique. The positions of the bucket, arm, and

boom are estimated utilizing the excavator’s forward kinematics and IMUs mounted on

different moving parts of the excavator. This allows for the removal of redundant points

resulting from the movements of the excavator’s manipulator. Furthermore, BIM provides

the designed surface and trench models. The algorithm compares the acquired actual maps

with the desired model to compute productivity, ensuring that the margin of error remains

within the specified accuracy threshold. Finally, the methods are tested by implementation

on a real dataset. The dataset is gathered using a medium-rated excavator in a private

worksite, and the operations are conducted by a skillful operator. The outcomes indicate

that the proposed methods can efficiently estimate the actual productivity of an excavator

and monitor the operation progress.

This study makes a notable contribution to the construction domain by introducing an

automated approach for estimating excavator productivity in grading and trenching tasks.

The research demonstrates the efficiency of this method in accurately estimating and mon-

itoring productivity, providing valuable assistance to project managers in tracking project

progress. It streamlines project management processes, facilitates cost estimation and

budgeting, and overcomes the challenges associated with manual data collection. Further-

more, the study highlights the underexplored potential of leveraging BIM in productivity

estimation algorithms for HDMMs, emphasizing the significance of precision and quality

in grading and trenching tasks, rather than merely the material quantity. Overall, this re-

search offers a promising solution to improve cost-effectiveness, minimize environmental

footprint, and elevate management strategies in earth-moving operations.

6.2 Methodology

This section provides a comprehensive description of the proposed techniques. Initially,

it details the process of elevation terrain mapping, leveraging LiDAR sensor data, GNSS,

and IMUs to cover the working area of the excavator. Additionally, the algorithm uses a

forgetfulness scheme [157] to adapt to dynamic conditions efficiently. Next, the algorithm

estimates the positions of the excavator’s revolute joints to eliminate the manipulator

from the 3D point clouds. Subsequently, the concept of BIM and its benefits are elaborated.

Lastly, productivity estimation involves comparing the heights between the desired model

and the actual map from the surrounding areas. Given the different productivity definitions

for grading and trenching, two methodologies are presented for calculating productivity.
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6.2.1 Elevation Terrain Mapping

In this method, acquiring a height map of operational zones is crucial for assessing the

excavator’s productivity in grading and trenching tasks. Typically, this map is generated

by integrating sensor data from LiDAR, stereo cameras, and radio detection and ranging

(RADAR), along with localization information from the GNSS, IMUs, or wheel odometry.

A common data representation for characterizing a robot’s environment is the elevation

map. Each cell within a grid-based height map represents the terrain’s height within

that cell relative to a designated reference level, such as elevation above sea level. The

accuracy and precision of localization data and sensor calibrations greatly influence the

map’s accuracy in the global frame [158].

A LiDAR sensor is a typical mapping tool. It captures measurements in its Spherical

coordinate system and transforms them into a global Cartesian coordinate system to

create a 3D point cloud of spatial data. However, errors can occur in this transformation

process if the LiDAR sensor’s actual position and orientation differ from the measured

values. The final elevation map is typically constructed through a series of transformations,

from the sensor’s coordinate frame to the machine’s body frame and eventually into the

global frame. However, the cumulative effect of minor transformation errors can lead to

substantial inaccuracies in the resulting map.

6.2.1.1 Transformation

To utilize LiDAR measurements for mapping purposes, the data initially provided in

the sensor’s Spherical coordinate system must be transformed into point clouds in a

global Cartesian coordinate system. This transformation is achieved through a series

of coordinate transformations. Three frames 𝐴𝑖 ∈ {𝑔,𝑚, 𝑠} indicate the main frames in

coordinate transformations where 𝑔,𝑚, and 𝑠 represent the global, machine, and sensor

frames, respectively. An affine coordinate transformation is formalized by Eq. (6.3):

𝑗𝑇𝑖 =

[
𝑗𝑅𝑖

𝑗𝑃𝑖
01×3 1

]
(6.3a)

𝑗𝑅𝑖
(
𝑗𝜑𝑖,

𝑗𝜃𝑖,
𝑗𝜓𝑖

)
= 𝑅𝑟𝑜𝑙𝑙

(
𝑗𝜑𝑖

)
𝑅𝑝𝑖𝑡𝑐ℎ

(
𝑗𝜃𝑖

)
𝑅𝑦𝑎𝑤

(
𝑗𝜓𝑖

)
(6.3b)

𝑗𝑃𝑖 =
[
𝑗𝑥𝑖,

𝑗𝑦𝑖,
𝑗𝑧𝑖

]𝑇
(6.3c)

where
𝑗𝑇𝑖 shows the 4 by 4 transformation matrix from 𝑖𝑡ℎ frame to 𝑗𝑡ℎ frame,

𝑗𝑅𝑖 indicates

the 3 by 3 rotation matrix from 𝑖𝑡ℎ frame to 𝑗𝑡ℎ frame,
𝑗𝑃𝑖 represents the 3 elements

translation vector from 𝑖𝑡ℎ frame to 𝑗𝑡ℎ frame, 𝑅𝑟𝑜𝑙𝑙
(
𝑗𝜑𝑖

)
is the rotational matrix around the

𝑥-axis, 𝑅𝑝𝑖𝑡𝑐ℎ
(
𝑗𝜃𝑖

)
indicates the rotational matrix around the 𝑦-axis, 𝑅𝑦𝑎𝑤

(
𝑗𝜓𝑖

)
shows the

rotational matrix around the 𝑧-axis, 𝑗𝜑𝑖 ,
𝑗𝜃𝑖 , and

𝑗𝜓𝑖 represent roll, pitch and yaw angles,

respectively [159].

A single LiDAR measurement is represented by either Spherical coordinates (𝑟, 𝜃, 𝜙)
or Cartesian coordinates (𝑥,𝑦, 𝑧). The relationship between Spherical and Cartesian

coordinates is illustrated in Fig. 6.3. The point
𝑔𝑃 in the global frame is calculated utilizing
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Figure 6.3: Relationship between Spherical coordinates and Cartesian coordinates [171].

the point
𝑠𝑃 in the sensor frame and a chain of transformations:

𝑔𝑃 = 𝑔𝑇𝑚
𝑚𝑇𝑠

𝑠𝑃, (6.4)

where
𝑚𝑇𝑠 shows the transformation matrix from the sensor frame to the machine frame

and
𝑔𝑇𝑚 indicates the transformation matrix from the machine frame to the global frame.

The transformation matrix from the sensor to the machine is acquired through a target-

based calibration method. During calibration, the frames of the sensor and the machine

are precisely aligned using spherical targets with known dimensions and positions relative

to the machine frame. These targets serve as reference points, and corresponding points in

both the sensor and machine coordinate frames are required to compute the transformation

matrix [160]. The transformation matrix from the machine frame to the global frame

is obtained using IMU and GNSS measurements. This method integrates the machine’s

acceleration and angular velocity data from the IMU, along with position data from

GNSS (latitude, longitude, and altitude), using an extended Kalman filter (EKF). By fusing

information from multiple sensors, this approach ensures a high-accuracy and drift-free

estimation of the machine’s position in the global frame.

Initially, the EKF employs a mathematical model, known as the “priori” estimate, to predict

the current state of the machine. Subsequently, it updates this estimate by comparing

it with the current sensor measurements, generating a “posteriori” estimate through a

process known as the measurement update. This update involves applying the Kalman gain

to weigh the relative contributions of the a priori estimate and the sensor measurements.

This prediction and update cycle is iteratively performed at regular intervals using the

latest sensor data [161].

In a 2D grid, known as a height map, the average and variance of heights are recorded

within individual cells. To construct this height map, each point within the 3D point cloud

is allocated to a specific cell based on its 𝑥 and𝑦 coordinates. Subsequently, the 𝑧 coordinate

values of all 3D points assigned to a particular cell are treated as new measurements for

that cell.

Employing a Bayesian updating approach, the existing estimation within a cell is adjusted

based on the new measurements. The proposed algorithm incorporates a forgetfulness
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scheme [157] to handle dynamic conditions effectively. The height observations 𝑧𝑡 are

modeled using a Gaussian distribution 𝑁 (𝑧𝑡 , 𝜎2

𝑧𝑡
). Using the observation 𝑧𝑡 recorded at

time 𝑡 and the Kalman filter, the height estimate
ˆℎ is updated as follows:

ˆℎ(𝑡) = 1

𝜎2

𝑧𝑡 + 𝜎2

ˆℎ(𝑡−1)

(
𝜎2

𝑧𝑡
ˆℎ(𝑡 − 1) + 𝜎2

ˆℎ(𝑡−1)𝑧𝑡
)
, (6.5)

𝜎2

ˆℎ(𝑡) =
1

1

𝜎2

ˆℎ (𝑡−1)
+ 1

𝜎2

𝑧𝑡

. (6.6)

The primary impact originates from the latest measurements. The update procedure

escalates the variance of the current estimate proportionally to the time elapsed between

the prior and current measurements. Points with variance exceeding a predefined threshold

are excluded from processing, effectively filtering out uncertain information [159]. In

the subsequent stage, the height map undergoes cropping using a rectangular filter. The

dimensions of this filter are determined based on the excavator’s maximum digging reach

and width, ensuring coverage of the entire working area.

6.2.1.2 Revolute Joints’ Positions

As the LiDAR sensor is mounted on top of the excavator to map the working area, the

presence of the boom, arm, and bucket adds extra points that do not accurately reflect

the ground’s height. Furthermore, the dynamic movement of these components means

their locations are not fixed. Therefore, it is necessary to eliminate these extra points

from the acquired point clouds. In the proposed method, the positions of the excavator’s

revolute joints are initially estimated, followed by the removal of points in proximity to

the estimated positions. To determine the positions of the revolute joints, the forward

kinematics of an excavator introduced in Section 5.2.3.2 are employed.

Figure 6.4: Schematics of the modeled boom, arm, and bucket using cylinders [175].
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Next, each link is modeled as a simple cylinder, where the axis of the cylinder corresponds

to the line connecting two adjacent coordinate systems. All cylinders have a constant

radius value. The schematics of the modeled boom, arm, and bucket are illustrated in

Fig. 6.4. Points that intersect with both the cylinders and the point clouds are discarded,

leaving behind the remaining points for use in the elevation terrain mapping process.

Occasionally, when the bucket is in close proximity to the ground, some ground points

may be removed. However, this is not an issue since as the bucket moves away from the

surface, the previously obscured area becomes visible and can be incorporated into the

height map.

6.2.2 Building Information Modeling (BIM)

BIM is a methodology used to generate and manage digital representations of both the

physical and functional aspects of construction projects throughout their entire lifespan.

These models encompass detailed information about the project’s geometry, construction

elements, systems, and various components. Although BIM has been in development since

the 1970s, its widespread adoption only occurred in the early 2000s. BIM is supported by a

wide range of technologies and software tools to facilitate its implementation and usage.

The initial stage of the BIM process involves creating a 3D model of the construction

project, which is continuously revised to incorporate alterations and updates throughout

the design and construction phases. BIM enables visualization of the construction project

and facilitates simulation of its performance. Furthermore, it allows the estimation of costs

and time requirements for the project, along with identifying and resolving any potential

issues or conflicts [108], [136].

Furthermore, Infrastructure BIM, often referred to as InfraBIM, encompasses the appli-

cation of BIM principles and methodologies in the planning, design, construction, and

maintenance of infrastructure projects. InfraBIM finds applications across various infras-

tructure projects such as roads, bridges, tunnels, airports, rail systems, as well as water

and wastewater treatment facilities. InfraBIM facilitates real-time monitoring of progress

by comparing as-built data with the initial design. Additionally, it aids in monitoring

resource allocation and utilization, thereby ensuring efficient use of resources throughout

the project lifecycle. Moreover, it can enable the integration of various disciplines and the

coordination of intricate systems, fostering collaboration and communication among stake-

holders, boosting efficiency and overall project quality, and streamlining decision-making

processes while minimizing errors and rework [172], [162].

Currently, the integration of BIM and machine control systems, such as Xsite
®
PRO 3D, can

greatly facilitate construction projects. The Xsite
®
PRO 3D system is depicted in Fig. 6.5.

Using machine control systems, operators can efficiently and precisely execute tasks by

comparing the position of the bucket tip with the target model. These target models are

designed by construction professionals utilizing 3D design software programs.
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Figure 6.5: Xsite
®
PRO 3D system that is installed in the excavator cabin [173].

6.2.3 Productivity Estimation

In this section, two approaches are introduced for estimating the actual productivity of

excavators in grading and trenching operations. These algorithms begin by designing a

target model using BIM, and then the operator executes the task according to this model.

The Xsite
®
PRO 3D system, located within the cabin, assists the human operator in aligning

the bucket tip position with the target model. Concurrently, the elevation terrain mapping

algorithm continuously updates the height map of the working areas at regular intervals

during operations. These methodologies calculate productivity by comparing the desired

model with the actual maps obtained from the surrounding areas.

6.2.3.1 Grading Operation

During the grading operation, it is crucial that the height difference between the initial

and target surfaces is less than the bucket’s height. If the height difference is more than

the bucket’s height, preliminary digging operations become necessary. In the proposed

approach, initially, a region of interest (ROI) around the 𝑖𝑡ℎ point of the desired model is

Figure 6.6: The desired and actual points within the ROI in the grading operation [175].

73



6 Excavator Productivity Estimation in Trenching and Grading Operations

End

Star t

For  each 3D point in 
the target map

Calculate the average 
actual height in the 
r egion of interest.

Has the 
point alr eady been 

accepted?

Is 
the height 

er ror  less than the 
threshold?

Yes

Is 
the height 

er ror  less than the 
threshold?

No

Yes No

Subtract the area 
& mark the point 
as an unaccepted 

point.

Yes

Add the area & 
mark the point as 
a accepted point.

No

Figure 6.7: Flowchart of the productivity estimation in the grading operation [175].

selected. The point is located in the center of the square-shaped ROI. The size of the ROI

is equal to the grid size of the target model. Subsequently, the actual points inside the

defined ROI are identified. A simplified schematic of desired and actual points inside an

ROI is illustrated in Fig. 6.6.
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The desired height, denoted as 𝑍𝑑𝑒𝑠𝑖𝑟𝑒𝑑 , corresponds to the 𝑧 coordinate value of the 𝑖𝑡ℎ
point in the model. Equation (6.7) formalizes the average height of actual points within

the ROI:

𝑍𝑎𝑐𝑡𝑢𝑎𝑙 =
Σ𝑁
𝑗=1𝑧 𝑗

𝑁
; 𝑗 ∈ {1, 2, 3, . . . , 𝑁 }, (6.7)

where 𝑍𝑎𝑐𝑡𝑢𝑎𝑙 shows the average actual height, 𝑧 𝑗 denotes the 𝑧 coordinates of the 𝑗𝑡ℎ
point within the ROI, and 𝑁 indicates the total number of points within the ROI. The

flowchart of the presented method is illustrated in Fig. 6.7. In this method, the ROI area

is added to the productivity calculation when the point has not been labeled as a valid

point yet, and the deviation between the actual and desired height values falls below the

specified accuracy threshold. Moreover, it is necessary to verify the current height of a

point previously validated, as it could have altered. If the error exceeds the designated

accuracy level, the point is marked as unaccepted, and the ROI area is subtracted from the

productivity calculation. This scenario could lead to negative productivity, indicating that

the error exceeds the threshold.

6.2.3.2 Trenching Operation

As previously outlined, the actual productivity of the trenching operation is defined as the

length of the trench per unit of time. In this method, the ROI represents a narrow strip of

the trench. Figure 6.8 provides a basic illustration of the desired and actual points within

an ROI in the trenching operation. The desired height 𝑍𝑑𝑒𝑠𝑖𝑟𝑒𝑑 for a strip corresponds to

Figure 6.8: The desired and actual points within the ROI in the trenching opera-

tion [175].

the average of the 𝑧 coordinates of desired points within the ROI. It is computed using

Eq. (6.8):

𝑍𝑑𝑒𝑠𝑖𝑟𝑒𝑑 =
Σ𝑀𝑖=1𝑧𝑖

𝑀
; 𝑖 ∈ {1, 2, 3, . . . , 𝑀}, (6.8)

where 𝑧𝑖 shows the 𝑧 coordinates of 𝑖𝑡ℎ desired point within the ROI, and 𝑀 indicates the

total number of the desired points inside the strip. The average height of actual points

inside a strip is calculated using Eq. (6.9):

𝑍𝑎𝑐𝑡𝑢𝑎𝑙 =
Σ𝑁
𝑗=1𝑧 𝑗

𝑁
; 𝑗 ∈ {1, 2, 3, . . . , 𝑁 }, (6.9)

where 𝑍𝑎𝑐𝑡𝑢𝑎𝑙 indicates the average actual height, 𝑧 𝑗 denotes the 𝑧 coordinates of 𝑗𝑡ℎ actual

point inside the ROI, and 𝑁 shows the total number of the actual points within the ROI.
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Figure 6.9: Flowchart of the productivity estimation in the trenching operation [175].

Figure 6.9 illustrates the flowchart of the proposed method for estimating the actual

productivity of an excavator in trenching operations.
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In the algorithm outlined, the length of a strip contributes to the productivity estimation if

the strip has not been previously accepted as a valid strip and if the deviation between the

average actual and desired heights falls below the specified accuracy threshold. Addition-

ally, the actual heights of previously validated strips must be verified for potential changes.

If the error exceeds the specified accuracy threshold, the strip’s length is deducted from

the productivity estimation, and the strip is labeled as an unaccepted strip. This scenario,

where the error exceeds the required accuracy, results in negative productivity.

6.3 Results

In this section, the effectiveness of the proposed methods is illustrated through their

applications in grading and trenching operations. Initially, the sensor setups and data

acquisition procedure are elaborated. Subsequently, the actual and aggregate productivity

of the excavator in both grading and trenching tasks are estimated. The suggested methods

have been implemented using MathWorks
®
MATLAB R2021a on a laptop with a 1.8 G𝐻𝑧

Intel Core i7 CPU and 16 GB of RAM running on a Windows 10 operating system.

6.3.1 Data Collection Procedure

During the tests, data was collected using a Komatsu
®
PC138US excavator. The crawler

excavator utilized in the experiments is depicted in Fig. 4.2. A Livox Horizon
®
LiDAR was

mounted on top of the excavator cabin, providing a field-of-view (FOV) of 25.1
◦
vertically

and 81.7
◦
horizontally. The LiDAR’s coverage area was aligned with the area that the

IMU ...

CAN bus

MATLAB

IMU IMU GNSS

Ethernet connection

LiDAR

Figure 6.10: Schematic of various connections in the excavator [175].
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bucket could reach. Data collection took place at a private worksite without any active

construction activity. The experiments were conducted by a skilled operator, and two types

of materials, clay and a mix of sand and gravel were used for the grading and trenching

operations, respectively.

The data from the excavator is collected using the robot operating system (ROS) and the

MathWorks
®
Simulink model. ROS serves as a communication interface that ensures

seamless compatibility between programs written in various languages and operating on

diverse platforms [163]. This communication framework facilitates the access of various

components to different measurements and variables, including the height map and the

positions of the revolute joints. Figure 6.10 illustrates the schematic of the connections

between different sensors and processors. In this setup, the NVIDIA
®
Jetson AGX Xavier

functions as the ROS master, while Simulink
®
generates and links its own ROS node to it.

IMU measurements are transmitted via the CAN bus at a sampling frequency 𝑓𝑠 of 200 𝐻𝑧.

To connect Simulink
®
to the CAN bus, a Kvaser leaf light CAN to USB interface is used.

Ethernet connections are utilized to link the LiDAR, GNSS, NVIDIA
®
Jetson AGX Xavier,

and Simulink
®
to the ROS framework. Figure 6.11 depicts the configuration of the IMUs,

GNSS, Xsite
®
PRO 3D, and LiDAR sensor on the excavator.

Xsite Pro 3D

GNSS

IMUs

LiDAR

Figure 6.11: The configuration of IMUs, GNSS, Xsite
®
PRO 3D, and LiDAR sensor on the

excavator [175].
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6.3.2 Grading Operation

Initially, the operator inside the excavator’s cabin utilizes the Xsite
®
PRO 3D to design a

surface as the target model for the grading operation. Subsequently, the 3D-Win
®
software

program is utilized to generate a 3D point cloud. Figure 6.12 displays the 3D point cloud of

the desired model in the grading operation, representing a roughly 3𝑚 × 4𝑚 rectangular

surface. The desired surface is set to be 0.5𝑚 deeper than the ground surface, and the
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Figure 6.12: The target model designed in BIM in the grading operation [175].
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Figure 6.13: The productivity of the excavator in the grading operation [175].
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slopes of the desired surface and the initial terrain are both equal to zero. In the operation,

the BIM model’s required accuracy and the point cloud’s grid size are both set to 0.1𝑚.

The elevation map from the surrounding areas is updated at intervals of 5 𝑠 . Figure 6.13

depicts the actual productivity of the excavator in the grading operation. As shown, the

productivity occasionally falls below zero. Negative productivity arises when the deviation

between the desired and actual heights exceeds the specified accuracy threshold. For

instance, this occurs when a large volume of material spills from the bucket onto a section

that has already been graded or when the bucket digs too deeply, leading to an error that

exceeds the threshold.

Figure 6.14 illustrates the aggregate productivity of the excavator during the grading

operation. The total area of the target model is approximately 12𝑚2
. In this operation, the

average actual productivity is approximately 0.037𝑚2/𝑠 . In certain parts, the aggregate

productivity experiences a decline, primarily due to instances of negative productivity

in the operation. Towards the end of the operation, the aggregate productivity aligns

closely with the entire area of the target model. It means that almost in the whole area, the

deviation between the target model and the actual map is within the specified accuracy

threshold. Figure 6.15 depicts the progress of the operation at four different time points.

Areas where the error exceeds the specified accuracy threshold are highlighted in red,

while those with errors within the accuracy threshold are depicted in green. Using the

described algorithm, both managers and contractors gain a convenient means to monitor

productivity and track operational progress. This productivity data proves beneficial for

project managers in scheduling tasks and conducting cost analyses. Additionally, the

comparison of the machine’s productivity to industry benchmarks or other machines

offers insights into potential productivity enhancements and efficiency optimizations.
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Figure 6.14: The aggregate productivity of the excavator in the grading operation [175].
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(b) Time = 200 𝑠 .
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(c) Time = 300 𝑠 .
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(d) Time = 330 𝑠 .

Figure 6.15: Progress monitoring during the grading operation: (•) green points indicate

the area where the error is less than the required accuracy, and (•) red points represent

the area where the error is higher than the required accuracy [175].

Furthermore, human operators can leverage the provided feedback to improve their skills

and execute operations with high accuracy in a short time.

6.3.3 Trenching Operation

In the second use case, the performance of the suggested method is demonstrated through

its application in the trenching operation. Initially, a target model is designed to align with

the project’s specifications and requirements, utilizing the Xsite
®
PRO 3D system installed

inside the excavator’s cabin. Subsequently, the 3D point cloud representing the desired

trench is generated using the 3D-Win
®
software, as depicted in Fig. 6.16. The trench’s

dimensions include a depth of 1𝑚 and a width of 0.825𝑚. The total length of the trench

is approximately 23.8𝑚. In the trenching operation, the BIM model’s required accuracy

and the elevation map’s grid size are equal to 0.1𝑚.
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Figure 6.16: The target model designed in BIM in the trenching operation [175].
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Figure 6.17: The productivity of the excavator in the trenching operation [175].

As previously described, the actual productivity in the trenching operation is defined as

the length of the trench excavated per unit of time. The excavator’s actual productivity in

the trenching operation is depicted in Fig. 6.17. Similar to the grading operation, instances

of negative productivity are observed, typically occurring when materials spill from the

bucket or trench sides or when the operator digs too deeply.

Figure 6.18 illustrates the aggregate productivity of the excavator in the trenching operation.

On average, the excavator achieves a productivity rate of approximately 0.01𝑚/𝑠 . The
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Figure 6.18: The aggregate productivity of the excavator in the trenching opera-

tion [175].

aggregate productivity at the end of the operation does not match the entire length of

the trench. This discrepancy arises because, in certain sections of the trench, the error

between the model and the actual map exceeds the defined threshold. Figure 6.19 depicts

the progress of the trenching operation at four different time intervals. It is evident that

the quality of the operation is inadequate at both the beginning and end of the trench. At

the beginning of the trench, the error between the model and the actual map is higher

than the defined threshold. At the end of the trench, the operation suddenly stopped due

to safety concerns, resulting in the operator being unable to complete the task.

6.4 Conclusions

Trenching and grading operations stand as pivotal tasks across diverse worksites. These

tasks prioritize attaining high-quality outcomes, placing a focus on precision and accuracy

rather than mere quantity. Existing methodologies in the literature predominantly focus

on material quantity rather than the operational quality of these tasks. The productivity

metrics for grading and trenching operations entail the area of graded surface per unit

of time and the length of trench per unit of time, respectively. This paper introduces

two innovative approaches aimed at autonomously estimating the productivity of an

excavator in these operations. The suggested algorithms encompass three primary stages:

(1) elevation terrain mapping, (2) BIM, and (3) productivity calculation. Initially, the

elevation profile of working areas is determined and updated every few seconds using a

LiDAR sensor installed on top of the machine and the elevation terrain mapping algorithm.

In the subsequent stage, the removal of additional points resulting from manipulator
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(a) Time = 500 𝑠 . (b) Time = 1000 𝑠 .

(c) Time = 1500 𝑠 . (d) Time = 1745 𝑠 .

Figure 6.19: Progress monitoring during the trenching operation: (•) green points show

the area where the error is less than the required accuracy, and (•) red points indicate

the area where the error is higher than the required accuracy [175].

movements, such as the bucket, arm, and boom, is addressed by computing the positions of

revolute joints. The excavator’s forward kinematics alongside IMUs mounted on various

moving components of the machine are used to estimate the revolute joints. Next, the shape

of the desired surface or trench is retrieved from BIM. Estimation of actual productivity

involves comparingmaps derived from the target model with elevationmaps. For trenching

productivity calculation, the ROI is a narrow strip, whereas for grading productivity

calculation, it is a small square. The presented algorithms are applied to a dataset obtained

from a real excavator performing grading and trenching tasks. The outcomes show that the

proposed methods efficiently estimate actual productivity and monitor operation progress.

Monitoring progress and estimating productivity provide valuable insights for contractors

and worksite managers to analyze operations and identify issues. Additionally, they can

compare individual machine productivity to industry standards or the productivity of

other machines. Furthermore, human operators can utilize productivity estimation as

feedback to enhance their skills based on performance evaluation.
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Effectively managing ongoing projects and ensuring precise costing and budgeting for

future projects are crucial aspects in diverse worksites. The suggested automated methods

for productivity estimation and progress monitoring represent a significant move towards

achieving autonomous functionality in excavators. Autonomous machines rely on per-

formance data to optimize their operations. Nonetheless, a limitation of the presented

algorithms is their specificity to grading and trenching tasks, making them unsuitable for

other operations. In the future, the methods should be expanded to encompass a broader

range of tasks and machinery, including bulldozers and compactors, based on their unique

operational needs.

The proposed algorithms aim to assess the excavator’s actual productivity in the grading

and trenching tasks. In the future, it would be beneficial to compute the theoretical or

highest feasible productivity given specific task requirements, objectives, and working

conditions, such as material type, swing angle, trench’s cross-sectional area, bucket and

machine size, etc. This theoretical productivity can serve as a benchmark to normalize the

actual productivity. By establishing the relative productivity or the production performance

ratio, it becomes possible to determine the machine’s operational effectiveness based on

the current operating conditions.

Another challenge is that the required accuracy in certain tasks and applications is ± 0.02𝑚.

Attaining such high precision in elevation terrain mapping algorithms poses challenges

due to the need for exceptionally accurate and costly sensors, as well as time-consuming

calibration procedures.
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The construction industry is not just an essential sector of the economy; it is the backbone

that supports economic growth globally. Moreover, it serves as a crucial link between

various industries. However, despite its importance, the construction sector faces several

challenges, including low productivity and outdated practices. One of the key issues

plaguing the construction industry is its relatively low productivity growth. This slow

pace of improvement stands in stark contrast to other industries, highlighting the urgent

need for innovation and efficiency enhancement within the construction sector.

HDMMs are integral to various construction projects, with equipment costs often account-

ing for a significant portion of total project expenses. Among these machines, excavators

play a central role, undertaking diverse earth-moving tasks. However, assessing the perfor-

mance of these machines has traditionally been a labor-intensive and error-prone process,

relying on manual data collection and on-site observations. To address these challenges,

there is a growing recognition of the importance of accurately measuring the productivity

of HDMMs. This research study focuses specifically on excavators and aims to develop

innovative approaches for assessing their productivity. By leveraging advanced technolo-

gies, the study seeks to streamline productivity estimation and progress monitoring for

excavators across different tasks and working conditions. By better understanding and

managing excavator productivity, the construction industry can anticipate challenges

more effectively, refine planning and operating parameters, reduce costs, and ultimately

deliver projects more successfully.

Chapter 2 of the dissertation explores the current state of research in monitoring the

productivity of HDMMs. Traditional methods for monitoring productivity rely heavily

on manual observations, proving time-consuming and prone to errors. To address these

limitations, researchers have turned to integrating information technology for automated

data collection. The chapter delves into the latest developments in this field, focusing

on two main categories: CV-based techniques and sensor-based techniques. CV-based

approaches involve gathering operational data from cameras, while sensor-based methods

deploy various sensors or tags to capture position and pose information. The chapter

discusses the challenges and potential of both approaches, highlighting their applicabil-

ity and limitations in real-world construction scenarios. CV-based methods encounter

considerable practical challenges in real applications. It is suggested that vibration and

orientation sensors, such as IMUs, present a promising alternative for overcoming the chal-

lenges associated with CV-based and other sensor-based methods in activity recognition,

cycle time estimation, and productivity monitoring.
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It also explores the use of process-oriented and data-oriented methodologies for predicting

equipment productivity. Additionally, the integration of BIM and 3D sensing technologies

for real-time progress monitoring and productivity estimation is discussed, emphasizing

the potential for improving understanding and management of construction tasks. Lastly,

the chapter notes a gap in the literature, specifically the lack of focus on productivity

estimation for quality-centered tasks, such as trenching and grading.

Chapter 3 of the dissertation outlines the scientific contributions of the research. It begins

by detailing the proposed research framework for automatically estimating the produc-

tivity of an excavator across various tasks, such as loading, trenching, and grading. The

framework aims to address the identified research gaps and practical challenges discussed

in the literature review. The chapter introduces multiple research questions that serve as

the primary targets of the dissertation. These questions revolve around improving task

and sub-task recognition of an excavator, estimating cycle time, automatically assessing

operating conditions, such as swing angle and digging depth, and determining theoretical

and actual productivity using IMUs and machine learning techniques. Furthermore, the

dissertation aims to bridge the gap in integrating real-time data with planned models to

provide insights into construction site activities, particularly focusing on quality-centered

tasks, such as trenching and grading. In addition, certain unexplored aspects that could

be subjects of future investigations, including the automatic estimation of theoretical

productivity in trenching and grading operations and adding the quantity of materials to

the actual, theoretical, and relative cycle time concepts, have been discussed. These areas

represent potential subjects for further research, contributing to the ongoing advancement

of productivity monitoring techniques in construction contexts.

Chapter 4 of the dissertation presents a method for automatically recognizing tasks per-

formed by an excavator using supervised learning algorithms and motion data obtained

from IMU sensors attached to different parts of the machine. It highlights the essential

tasks of an excavator, such as loading, trenching, and grading, with different productivity

definitions, and emphasizes the significance of task recognition for productivity estima-

tion. The proposed data-driven method is positioned as a robust solution for automating

excavator task recognition. The method collects orientation and angular velocity data

from the excavator’s moving parts, and then four supervised learning algorithms are

employed, along with feature selection techniques, to automatically recognize tasks. The

method’s resilience and adaptability in real-world scenarios are demonstrated through

comprehensive analyses.

Moreover, it discusses the integration of task recognition and productivity monitoring sys-

tems, enabling task-specific metrics and progress monitoring. The potential for enhancing

collaboration between human workers and automated elements, predictive maintenance,

and decision-making through trend analysis is also highlighted. Future directions for

research include broadening the methodology to encompass other types of HDMMs, such

as front-end loaders and compactors, by installing motion sensors on moving parts. Also,

the integration of task recognition and DES can be utilized for management purposes in

construction sites. The chapter acknowledges limitations, such as the duration and scope

of the dataset, emphasizing the need for expansion and robustness testing under various
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operational conditions. Additionally, the time-consuming labeling process in supervised

learning techniques is noted as a challenge. Addressing these challenges is essential

for ensuring the effectiveness and applicability of the proposed method in real-world

scenarios.

Chapter 5 of the dissertation introduces a method for estimating the actual cycle time

and operational effectiveness of an excavator in the loading operation. It emphasizes the

importance of accurate productivity estimation for project planning, cost management,

resource allocation, and competitive advantage in the construction and mining industries.

Existing challenges in estimating cycle time and productivity are outlined, including

limitations of current methods and the lack of a theoretical value for evaluating actual

cycle time. The proposed method aims to address these challenges by automatically

determining the actual, theoretical, and relative cycle times of an excavator during loading

operations.

The proposed approach involves utilizing supervised learning algorithms to identify

excavator activities based on motion data from IMUs mounted on different machine

parts, estimating actual cycle time based on the sequence of identified activities, and

automatically estimating theoretical cycle time using swing angle and digging depth

information. Afterward, the relative cycle time is calculated by comparing actual and

theoretical cycle times to indicate the machine’s operational effectiveness.

The chapter also discusses potential applications and benefits of the proposed method,

including automated cycle time and productivity monitoring, performance evaluation,

and optimization of machine usage. Future research directions are suggested, such as

extending the method to other excavator operations and addressing limitations related to

dataset size, material type identification, and material quantity estimation. Overall, the

proposed method offers a promising solution for enhancing productivity estimation and

operational efficiency in excavator loading operations.

Chapter 6 introduces cutting-edge methods designed to automate the estimation of excava-

tor actual productivity in trenching and grading operations, where precision and accuracy

are paramount. Traditionally, manual productivity monitoring in earth-moving operations

is time-consuming, labor-intensive, and prone to errors, necessitating automated solutions

to accurately estimate productivity. Also, existing methods often prioritize material quan-

tity over operational quality. Two automated methods are proposed based on an elevation

terrain mapping algorithm and BIM to compare actual maps with target models. These

methods allow for the estimation of actual productivity in quality-centered tasks based on

predefined target models.

By emphasizing precision and quality over material quantity, these methods address the

specific requirements of quality-centered tasks. They offer valuable insights for contractors

and worksite managers, enabling them to analyze operations, identify issues, and compare

machine productivity to industry standards. Challenges include algorithm specificity to

grading and trenching tasks and the need for high precision in elevation mapping, which

requires costly sensors and calibration. Future research directions include expanding the
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methods to other tasks and machinery, such as bulldozers and compactors, thereby broad-

ening their applicability and impact in the construction domain. Also, productivity can be

used as a reward function in reinforcement learning algorithms. Future improvements

could also involve computing theoretical productivity benchmarks for normalization and

operational effectiveness evaluation.
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