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Abstract

Work performance evaluation of heavy-duty mobile machines (HDMMs)

The construction industry is crucial for economic growth, but its productivity has not im-
proved much despite its importance. Heavy-duty mobile machines (HDMMs), particularly
excavators, play a central role in construction projects, with their productivity directly
impacting projects’ productivity and costs. This dissertation aims to tackle several chal-
lenges regarding the automatic productivity estimation of an excavator in earth-moving
operations, such as loading, trenching, and grading.

In the beginning, the significance of the construction industry and the critical role of
HDMMs within it are discussed. It highlights the challenges faced by the industry, including
low productivity growth and outdated practices, emphasizing the need for automated
productivity estimation and progress monitoring. Then, an excavator is introduced as the
main application in the research study. In the next phase, existing research studies for the
productivity estimation of HDMMs are thoroughly explored to identify research gaps and
to design multiple research questions that drive the dissertation’s focus.

Capturing motion information using inertial measurement units (IMUs) holds promise for
recognizing activities and automatically estimating cycle time and productivity. Also, the
importance of analysis of working conditions and estimating theoretical cycle time and
productivity is stated. In addition, 3D sensors and building information modeling (BIM)
can be integrated to enhance the productivity estimation and progress monitoring of an
excavator in quality-centered tasks, such as grading and trenching operations.

First, an activity recognition method is proposed to identify the excavator working cycle
using supervised classification methods and motion information, such as angular veloci-
ties and joint angles, obtained from four IMUs attached to moving parts of an excavator,
including the swing body, boom, arm, and bucket. Human operators perform tasks using
a medium-rated excavator under different working conditions, such as different types of
material, swing angle, digging depth, and weather conditions to collect a dataset. The
proposed method can effectively recognize the working cycles of an excavator. Task recog-
nition can aid management teams in monitoring productivity and progress, optimizing
resource allocation, and scheduling. Using the results of the task recognition algorithm,
productivity can be calculated based on task-specific metrics.

Next, an approach is designed to automatically determine the productivity and operational
effectiveness of an excavator in the loading operation. Firstly, an algorithm is proposed to
recognize the excavator’s sub-tasks using supervised learning and motion data obtained
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from IMUs. Then, a method is presented to estimate the actual cycle time based on the
sequence of activities detected using the trained classification model. The actual cycle time
cannot solely reveal the machine’s performance since operating conditions can significantly
influence the cycle time. Therefore, a reference is required to analyze the actual cycle time.
Secondly, the theoretical cycle time of an excavator is automatically estimated based on
the operating conditions, such as swing angle and digging depth. Thirdly, the relative
cycle time is obtained by dividing the theoretical cycle time by the actual cycle time.
The relative cycle time index can effectively monitor the performance of an excavator in
loading operations and can be useful for worksite managers to monitor the performance
of each machine in worksites.

In the next step, a technique is proposed to estimate the excavator’s actual productivity
in trenching and grading operations. In these tasks, the quantity of material moved is
not significant; precision within specified tolerances is the key focus. The productivity
definitions for trenching and grading operations are the trench’s length per unit of time
and graded area per unit of time, respectively. In the method, a height map from working
areas is constructed. Also, BIM is utilized to acquire information regarding the target
model and required accuracy. The productivity is estimated using the map comparison
between the working areas and the desired model. The method can effectively estimate
productivity and monitor the progress of these operations. The obtained information can
guide managers to track the productivity of each individual machine and modify planning
and time-scheduling.

This dissertation employs advanced technologies, such as IMUs, machine learning tech-
niques, elevation terrain mapping algorithms, and BIM. It aims to streamline productivity
estimation and progress monitoring for excavators, ultimately contributing to more effi-
cient and successful construction projects. It underscores the potential for future research
to enhance these methodologies, expand their applicability to other HDMMs and tasks,
and address remaining challenges to propel the construction industry towards greater
productivity and sustainability.

Keywords: Excavator, Productivity Estimation, Progress Monitoring, Loading Operation,
Grading Operation, Trenching Operation, Activity Recognition, Actual Cycle Time Esti-
mation, Theoretical Cycle Time, Relative Cycle Time Index, Swing Angle, Digging Depth,
Building Information Modeling (BIM), Elevation Terrain Mapping
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Kurzfassung

Arbeits leistungsbewertung von hochleistungs-mobilmaschinen (HDMMs)

Die Bauindustrie ist entscheidend fur das Wirtschaftswachstum, doch trotz ihrer Bedeu-
tung hat sich die Produktivitdt nicht wesentlich verbessert. Schwere mobile Maschinen
(HDMMs), insbesondere Bagger, spielen eine zentrale Rolle in Bauprojekten, wobei ihre
Produktivitat die Produktivitat und Kosten der Projekte direkt beeinflusst. Diese Disserta-
tion zielt darauf ab, mehrere Herausforderungen bei der automatischen Produktivitatss-
chatzung eines Baggers bei Erdbewegungsarbeiten wie Laden, Graben und Planieren zu
bewaltigen.

Zunichst wird die Bedeutung der Bauindustrie und die kritische Rolle der HDMMs in-
nerhalb dieser Branche erdrtert. Es werden die Herausforderungen hervorgehoben, mit
denen die Branche konfrontiert ist, einschlieflich des geringen Produktivitatswachstums
und veralteter Praktiken, und der Bedarf an automatischer Produktivitatsschatzung und
Fortschrittsitbberwachung wird betont. Anschlielend wird der Bagger als Hauptanwen-
dungsobjekt der Forschungsarbeit vorgestellt. In der nachsten Phase werden bestehende
Forschungsstudien zur Produktivitiatsschatzung von HDMMs griindlich untersucht, um
Forschungsliicken zu identifizieren und mehrere Forschungsfragen zu formulieren, die
den Fokus der Dissertation lenken.

Die Erfassung von Bewegungsinformationen mithilfe von Inertial Measurement Units
(IMUs) verspricht, Aktivitaten zu erkennen und automatisch die Zykluszeit und Produktiv-
itdt zu schétzen. Auflerdem wird die Bedeutung der Analyse von Arbeitsbedingungen und
der Schitzung theoretischer Zykluszeiten und Produktivitaten betont. Dariiber hinaus
konnen 3D-Sensoren und Building Information Modeling (BIM) integriert werden, um die
Produktivitatsschatzung und Fortschrittsiiberwachung eines Baggers bei qualitatsorien-
tierten Aufgaben wie Planieren und Graben zu verbessern.

Zunichst wird eine datengetriebene Methode zur Erkennung von Arbeitszyklen unter
Verwendung von tiberwachten Klassifikationsmethoden und Bewegungsinformationen,
wie Winkelgeschwindigkeiten und Gelenkwinkel, die von vier an beweglichen Teilen
eines Baggers angebrachten IMUs erfasst werden, vorgeschlagen. Menschliche Bediener
fithren Aufgaben mit einem mittelgrof3en Bagger unter verschiedenen Arbeitsbedingun-
gen, wie unterschiedlichen Materialtypen, Schwenkwinkel, Grabtiefe und Wetterbedin-
gungen, aus, um einen Datensatz zu sammeln. Die vorgeschlagene Methode kann die
Arbeitszyklen eines Baggers effektiv erkennen. Die Aufgabenerkennung kann Manage-
mentteams dabei helfen, die Produktivitat und den Fortschritt zu iberwachen, Ressourcen
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optimal zuzuweisen und Zeitplane zu erstellen. Mithilfe der Ergebnisse des Aufgabenerken-
nungsalgorithmus kann die Produktivitat basierend auf aufgabenspezifischen Metriken
berechnet werden.

Als nachstes wird ein Ansatz entwickelt, um die Produktivitat und betriebliche Effizienz
eines Baggers beim Ladevorgang automatisch zu bestimmen. Zunachst wird ein iberwachter
Lernalgorithmus vorgeschlagen, um die Unteraufgaben des Baggers anhand von Bewe-
gungsdaten, die von IMUs erfasst wurden, zu erkennen. AnschlieBend wird eine Meth-
ode vorgestellt, um die tatsdachliche Zykluszeit basierend auf der Sequenz der erkannten
Aktivitaten unter Verwendung des trainierten Klassifikationsmodells zu schétzen. Die
tatsachliche Zykluszeit allein kann die Leistung der Maschine nicht vollstandig wider-
spiegeln, da die Betriebsbedingungen die Zykluszeit erheblich beeinflussen konnen. Daher
ist eine Referenz erforderlich, um die tatsdachliche Zykluszeit zu analysieren. Zweitens wird
die theoretische Zykluszeit eines Baggers basierend auf den Betriebsbedingungen, wie
Schwenkwinkel und Grabtiefe, automatisch geschatzt. Drittens wird die relative Zykluszeit
durch Division der theoretischen Zykluszeit durch die tatsdachliche Zykluszeit ermittelt.
Der Index der relativen Zykluszeit kann die Leistung eines Baggers bei Ladeoperationen
effektiv iberwachen und fiir Baustellenmanager niitzlich sein, um die Leistung jeder
Maschine auf Baustellen zu iiberwachen.

Im néachsten Schritt wird eine Technik vorgeschlagen, um die tatsachliche Produktivitat
eines Baggers bei Graben- und Planierarbeiten zu schitzen. Bei diesen Aufgaben ist die
Menge des bewegten Materials nicht entscheidend; die Prézision innerhalb festgelegter
Toleranzen steht im Mittelpunkt. Die Produktivitdtsdefinitionen fiir Graben- und Planier-
arbeiten sind die Grabenldnge pro Zeiteinheit bzw. die planierte Flache pro Zeiteinheit.
In der Methode wird eine Hohenkarte der Arbeitsbereiche erstellt. Auflerdem wird BIM
genutzt, um Informationen zum Zielmodell und den erforderlichen Genauigkeiten zu er-
halten. Die Produktivitat wird durch den Vergleich der Karte der Arbeitsbereiche mit dem
gewiinschten Modell geschatzt. Die Methode kann die Produktivitét effektiv schatzen und
den Fortschritt dieser Operationen tiberwachen. Die erhaltenen Informationen kénnen
Managern helfen, die Produktivitat jeder einzelnen Maschine zu verfolgen und die Planung
und Zeitplanung anzupassen.

Diese Dissertation verwendet fortschrittliche Technologien wie IMUs, maschinelle Lern-
techniken, Hohenkarten-Algorithmen und BIM. Sie zielt darauf ab, die Produktivitatss-
chiatzung und Fortschrittsiberwachung fiir Bagger zu rationalisieren und letztlich zu
effizienteren und erfolgreicheren Bauprojekten beizutragen. Es wird betont, dass zukiin-
ftige Forschung diese Methoden verbessern, ihre Anwendbarkeit auf andere HDMMs
und Aufgaben erweitern und verbleibende Herausforderungen angehen kénnte, um die
Bauindustrie zu groflerer Produktivitdat und Nachhaltigkeit zu fithren.

Schlagworte: Bagger, Produktivitatsschatzung, Fortschrittsiiberwachung, Ladevorgang,
Planierarbeit, Grabarbeit, Aufgabenerkennung, Schiatzung der tatsdchlichen Zykluszeit,
Theoretische Zykluszeit, Index der relativen Zykluszeit, Schwenkwinkel, Grabtiefe, Build-
ing Information Modeling (BIM), Hohenkarten-Erstellung
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1 Introduction

The construction industry is one of the most crucial and critical industries for economic
growth. In most countries, it contributes to the economy by 8-10% on average [1] and
acts as a bridge connecting the economy to other industries. The construction sector is
the engine of growth and generates a flow of services and goods with other industries.
Increasing construction productivity allows businesses to earn more money while also
reducing costs per capita [1].

In the construction industry, a project undergoes various stages in its life cycle, including
design, planning, scheduling, execution, monitoring, control, and demolition. Effectively
monitoring and controlling play a pivotal role in reducing time and cost overruns in
construction projects [2]. It has long been a recurring topic that the construction industry
needs to perform better. The industry has a bad reputation for using ineffective practices,
and its productivity has increased by just 1% in over 20 years [164]. Moreover, the
construction industry faces significant challenges, including a lack of skillful human
operators, harsh environmental conditions, and safety [3].

Heavy-duty mobile machines (HDMMs), such as excavators and wheel loaders, play a key
role in various construction projects. The total cost of a construction project is greatly
impacted by the costs of HDMMs. Studies show that equipment costs can make up as much
as 40% of direct costs in highway construction projects and as much as 5% to 10% of direct
costs in building construction projects [4]. Evaluating and improving the productivity of
construction machinery contributes to enhancing overall construction productivity and
subsequently can bring about significant savings in total project expenses [2].

The well-known saying, “If you cannot measure it, you cannot improve it” [5], holds
significant relevance for enhancing the performance of HDMMs and subsequently the
construction industry. Within construction project management, productivity estimation
and progress monitoring serve as pivotal elements, forming the basis for effective man-
agement and decision-making [6]. Monitoring the productivity of HDMMs is integral to
fostering more cost-effective and successful construction projects and marking a critical
step toward semi or fully autonomous worksites. Productivity estimation of HDMMs
enables worksite managers to anticipate potential issues, pinpoint areas for enhancement,
optimize resource allocation, refine planning and operating parameters, accurately budget
for upcoming projects, and enhance overall management and financial conditions. Addi-
tionally, human operators can enhance their skills by taking advantage of the provided
productivity feedback [174]. Traditional techniques for performance evaluation of HD-
MMs are labor-intensive, costly, and prone to human error because they rely on manual
data collection and on-site observations [7]. Therefore, automated approaches are highly



1 Introduction

required to precisely track the productivity of HDMMs in construction projects under
different operating conditions.

1.1 Applications

There are various kinds of HDMMs, and the hydraulic excavator is one of the most signifi-
cant pieces of equipment in the construction industry since different types of excavation
work are required for almost all construction projects, including industrial and residential
buildings, highways, and airports [175]. An excavator, which is a human-operated machine
primarily driven by a hydraulic system, can perform various earth-moving activities, such
as digging, trenching, and grading. Human operators use their senses and reasoning-based
knowledge to control and monitor operations. Figure 1.1 depicts a typical hydraulic ex-
cavator. An excavator consists of three main parts, the front digging manipulator, the

Arm actuator
Boom
Boom actuator

Swing body

Traveling body

Figure 1.1: A typical hydraulic excavator [176].

swing body, and the traveling body. The boom, arm, and bucket comprise the machine’s
front digging manipulator. Three revolute joints connect the swing body, boom, arm, and
bucket of an excavator [176].

According to a survey of research in this field, three of the most frequent duty cycles carried
out by an excavator are loading (or dig & dump), trenching, and grading [8]-[10]. The
simple schematics of these tasks are demonstrated in Figure 1.2. Loading operation is one
of the most essential tasks in mining and construction projects. In this operation, materials
are picked up and moved from one place to another using the excavator’s manipulator.
This can involve loading materials onto trucks for transportation or digging materials from
the ground in order to prepare the site for construction [174]. Also, the loading operation
can be subdivided into two categories based on the swing angle: 90° and 180° loading
cycles. During a 90° loading cycle, an excavator undergoes acceleration of approximately
60° and deceleration of roughly 30° throughout the swing motion. Conversely, within a
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(a) Loading (b) Trenching (c) Grading

Figure 1.2: Typical excavator duty cycles [10].

180° loading cycle, both acceleration and deceleration phases span around 90° [11]. The
second important duty cycle of an excavator is the trenching. In the trenching operation,
an excavator is used to dig ground trenches for the installation of underground utilities,
such as sewage and water pipes. The human operator digs a trench corresponding to
the desired size and depth. Another important and challenging task that an excavator
can perform is the grading operation. In the grading operation, an excavator is used to
level and smooth the surface of the ground. This is frequently performed to create a
level surface for paving or to prepare a site for construction, landscaping, or building
purposes. To create a level surface, the excavator moves and distributes the material using
its bucket [175], [165].

1.2 Research Hypothesis

This dissertation aims to define and estimate the actual or absolute productivity of an
excavator in different earth-moving tasks, including loading, trenching, and grading
operations. The next goal is to automatically evaluate the theoretical productivity or
maximum capability of an excavator in these operations based on ongoing working
conditions. Finally, the relative productivity or performance level of an excavator in these
operations can be obtained using actual and theoretical productivity. At the core of our
investigation lies the research hypothesis that the relative productivity of an excavator
can be estimated in earth-moving tasks.

1.3 Thesis Outline

Chapter 1 presented the introduction and motivation of the dissertation. A short overview
of the research hypothesis is discussed as well. Chapter 2 describes proposed methods for
activity recognition and productivity estimation methods for different HDMMs in various
earth-moving tasks. Chapter 3 outlines the proposed research framework and existing
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research gaps and presents the research questions. Chapter 4 proposes a data-driven
method to recognize the tasks of an excavator in earth-moving operations using motion
information obtained from different moving parts of an excavator. Chapter 5 presents
a method for sub-task recognition of an excavator in the loading operation. Then, the
actual cycle time is estimated using the proposed sub-task recognition algorithm. Also,
the working conditions, such as swing angle and digging depth, are estimated using the
detected activities. Then, the theoretical cycle time of an excavator in the loading operation
is estimated based on the ongoing working conditions. Finally, the performance level
or operational effectiveness is evaluated. Chapter 6 describes two automatic methods
to monitor the operation progress and calculate the productivity of an excavator in the
trenching and grading operations. Firstly, the elevation terrain mapping algorithm is
explained. Then, the productivity is estimated using a comparison of the actual map with
the target model obtained from building information modeling (BIM). Lastly, chapter 7
concludes the dissertation with a summary and an outlook.
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Efficiently monitoring the productivity of HDMMs is essential for enhancing overall con-
struction productivity and cost control. Nevertheless, traditional methods for equipment
productivity monitoring still heavily rely on labor-intensive manual observations and
record-keeping, which prove time-consuming, expensive, and prone to errors. To address
these limitations, numerous research studies have been conducted on integrating infor-
mation technology to automatically collect productivity-related data and monitor the
productivity of construction equipment [3]. This chapter provides an in-depth exploration
of the latest developments in this field.

Over the past few years, various information technologies, including machine learning [12],
[13] and real-time location systems (RTLS) [14], [15], have been utilized in earth-moving
equipment productivity monitoring and analyzing the influencing factors of equipment
productivity. These methods can be classified into two groups based on the type of collected
data: computer vision (CV)-based techniques and sensor-based techniques. Figure 2.1
illustrates the conceptual process of these methods. Some research studies [17], [18]
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Figure 2.1: The conceptual process for equipment productivity monitoring: (a) data col-
lection; (b) data processing; (c) operation monitoring; and (d) productivity analysis [16].

focused on evaluating the productivity of HDMMs through either CV-based or sensor-
based techniques, while others [12], [19] emphasized the monitoring of factors that impact
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productivity. CV-based approaches acquire operational data from surveillance cameras on
construction sites. On the other hand, sensor-based methods involve the deployment of
various sensors or tags, such as radio-frequency identification (RFID), global positioning
system (GPS), ultra-wideband (UWB), inertial measurement unit (IMU), light detection and
ranging (LiDAR), etc., on both the equipment and the construction site to capture position
and pose information. Analysis of data from cameras or sensors enables the identification
of work states or activities of the equipment. For instance, the location and trajectory data
of a dump truck obtained from sensors can be directly utilized for identifying activities.
Visual data is typically processed using CV-based techniques, such as deep learning, to
recognize equipment activities. Finally, based on this activity information, the equipment
productivity can be estimated in the form of the operation time, cycle time, operation
quality, or soil quantity [16].

2.1 CV-Based Productivity Monitoring

The utilization of CV-based technologies for equipment productivity monitoring has
become popular in recent years due to advancements in object detection and tracking
algorithms within computer science. A typical CV-based productivity monitoring method
comprises several key steps. Initially, equipment detection is employed to identify a
specific type of equipment within image or video frames. Secondly, continuous tracking
of different pieces of equipment is implemented across all video frames. The detection and
tracking methods provide spatial position and movement information of the equipment.
Consequently, activity recognition and pose estimation are performed to analyze the work
states of the equipment, which is necessary for productivity analysis [16].

2.1.1 Detection Methods

The implementation of CV-based methods in equipment productivity monitoring begins
with equipment detection methods. These methods typically initiate the process by
extracting features that represent the visual characteristics of the equipment. In the next
step, classifiers are trained to recognize the equipment by categorizing vectors generated
from the features. The histogram of oriented gradients (HOG) serves as a widely used
feature descriptor in equipment detection methods. In [12], [20], the HOG feature alongside
a support vector machine (SVM) classifier is utilized for dump truck detection in videos.
In [21], HOG with color features is combined with hue-saturation-values (HSV) to identify
workers, excavators, and trucks in video frames employing an SVM classifier. In [22], HOG
features and an SVM classifier are utilized to recognize five types of equipment (backhoe,
dozer, excavator, loader, and roller) in images. In [23], a part-based model focusing on the
boom is introduced to detect excavators, achieving fewer misclassifications compared to
general HOG-based methods.

Several approaches identified moving equipment by subtracting it from the background.
In [24], color space values are employed to recognize the excavator in images with snow
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and soil backgrounds. In [25], the Gaussian mixture model (GMM) algorithm is utilized to
segment regions of moving objects from the image. Secondly, two classifiers, including the
Bayes classifier and a four-layer neural network, are utilized to categorize the segmented
parts into workers, backhoes, and loaders. In [26]-[28], GMM and Bayes networks are used
to recognize excavators and trucks in video frames. However, the background subtraction
method is constrained to detecting moving and idling objects, which may not be sufficient
for identifying other activities of the equipment. Earlier approaches faced a challenge
in distinguishing specific equipment within a fleet. To address this limitation, in [29], a
marker-based recognition method is designed to identify individual excavators and trucks
in videos. This approach involves the attachment of markers onto the equipment, enabling
their detection through marker recognition.

The developments of deep learning methods employing a convolutional neural network
(CNN) have significantly impacted equipment detection algorithms. A fundamental dis-
tinction between feature-based methods and CNN lies in their approaches to learning
the features of objects. While CNNs can automatically learn representative features from
images in the dataset, feature-based methods rely on manually designed features, which is
challenging in the complex construction environment [30]. Numerous CNNs have been
employed for different equipment detection tasks, demonstrating superior performance
compared to feature-based methods [31], [32]. In [33], a faster region-based CNN (Faster
R-CNN) is utilized for excavator detection. In [30], the residual neural network (ResNet)-50
is trained using 2,920 images to recognize four pieces of equipment, including a loader,
excavator, dump truck, and concrete mixer truck. In [34], Faster R-CNN [33], single shot
detector (SSD) [35], and You Only Look Once (YOLO) [36] models are trained using the
same dataset to recognize excavator, truck, forklift, and loader.

In [13], [37], without training a classifier for the recognition of a particular type of
equipment, a tracking-based approach known as tracking-learning-detection (TLD) [38] is
designed to detect the target equipment in video frames. This method initially chooses the
target equipment for identification using a bounding box. Then, a tracker and a detector
are trained online to locate the target in the next video frame based on trajectory, spatial
information, gray-value variance, and pixel variance.

2.1.2 Tracking Methods

The tracking methods focus on associating and capturing the trajectory of each piece
of equipment across all video frames. Different techniques have been employed for
equipment tracking, including mean-shift tracking [39], a Kanade and Lucas tracker
(KLT) [12], contour-based and point-based algorithms [40], kernel covariance [41], and
Kalman filtering [26], [42].

In [40], three widely used tracking methods, including the contour-based, kernel-based,
and point-based methods, are assessed to track workers, equipment, and materials in
construction sites. It has been highlighted that the kernel-based method proves more
suitable for tracking construction-related resources considering occlusion, illumination,
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and scale variation conditions. In [43], the accuracy and robustness of 15 visual track-
ing methods across 20 distinct construction scenarios are evaluated. There have been
challenges in tracking excavators due to self-occlusion, and only the dual correlation
filter (DCF) [44] and circulant structure of tracking-by-detection with kernels (CSK) [45]
methods could effectively track under heavy occlusions. In [46], a particle-based tracking
system is introduced that is capable of continuous tracking of workers and equipment,
including rollers, trucks, and dozers, even during extended periods of collisions. The
target objects are represented using a set of particles, and offline training is not needed.
In [47], the point tracking method [48] is enhanced by incorporating a failure-checking
technique for tracking excavators. Initially, the optical flow images of an excavator are
generated, and then key points are tracked under the assumption that the target’s image
brightness is constant between two consecutive frames. In [13], hybrid methods, includ-
ing the median-flow algorithm [49] and the pyramidal Lucas-Kanade algorithm [50], are
integrated to estimate object motions across consecutive frames, enabling the tracking
of excavators in long videos. Hybrid tracking methods are also used to solve challenges
regarding long-term occlusion and interclass variations. In [32], a deep simple online and
real-time (SORT) tracker [51] is utilized, which combines a CNN and Kalman filter to track
excavators and trucks.

2.1.3 Activity Recognition Methods

Numerous research studies moved toward developing more practical approaches to monitor
operation and equipment productivity utilizing equipment detection and tracking methods.
Activity recognition stands out as a key aspect of equipment monitoring since it has a
direct relationship with productivity analysis. There are three primary methods in CV-
based activity recognition: (1) feature-based methods, (2) rule-based analysis, and (3)
spatial-temporal CNN methods (refer to Fig. 2.2).
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Figure 2.2: Workflow for equipment productivity analysis using CV-based methods [16].
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Feature-based activity recognition methods share similarities with feature-based equipment
detection approaches. Once spatial features are gathered in each video frame, these
features in consecutive video frames are transformed into a vector or matrix for activity
recognition. In [52], a three-dimensional (3D)-Harris corner detector is employed for
identifying interest points. The HOG and histogram of optical flow (HOF) descriptors are
utilized to characterize interest points in consecutive frames. Subsequently, a Bayesian
neural network [53] is trained to classify different types of backhoe activities, including
relocating, excavating, and swinging. The results demonstrate that the HOG feature
outperforms HOF. In [17], 3D HOG as spatio-temporal features and an SVM as a classifier
are utilized to identify excavator activities, including digging, hauling, dumping, and
swinging, and truck activities, including filling, dumping, and moving. In [31], neural
networks are employed to obtain the bounding boxes for excavators and trucks in frames
of a video filmed at ground level. In the next step, the HOG, HOF, and motion boundary
histograms (MBH) features of excavators and trucks are extracted every 20 frames. Finally,
an SVM classifier is used to categorize the activities of an excavator (idling, swinging,
loading, moving, and dumping) and a truck (idle, moving, filling, and hauling).

Rule-based methods find extensive applications in productivity analysis. These approaches
identify activities by relying on the outcomes of detection and tracking steps. Initially,
pixel coordinates of equipment in video frames are extracted from the detection and
tracking results. Then, activities are detected by investigating the changes in coordinates
within video frames or relative distances between different pieces of equipment. In [24],
a color features detector based on HSV color space and a centroid tracker are utilized to
acquire the excavator coordinates in video frames. The distinction between the idling and
stopping activities of an excavator is established by comparing the changes in centroid
coordinates across consecutive video frames. The percentage of working time in the
total operation time is determined as productivity. In [12], HOG-based detectors are
employed to obtain the coordinates of excavators and trucks. In the next step, utilizing
vectors derived from the distances between the base point of the excavator and the four
corners of the dump truck, an SVM classifier is trained to recognize loading activities. The
cycle time is determined as the duration between two loading activities. In [54], a CV-
based method is proposed for the identification of excavator activities, such as swinging,
digging, dumping, idling, and moving, using highly varying long-sequence videos obtained
from fixed cameras. In [27], [28], a construction site is partitioned into multiple interest
regions. Then, the feature-based method, proposed in [17], is employed to distinguish
between static and moving activities of excavators and trucks. Activity is classified as
filling if both excavator and truck are detected within the earth-moving region and their
distance falls below a defined threshold. Utilizing information on the excavator’s bucket
volume and hourly bucket numbers, the productivity as the volume of excavated soil is
computed. In [55], five types of equipment (bulldozer, excavator, truck, grader, and roller)
are identified using the HOG-based classifier. Then, a Bayesian network is employed to
compute the probability of activities based on the other contents detected in the same frame.
In [56], based on the assumption that the excavator and truck are within a certain distance
during the loading phase, the loading activity is detected by comparing the changes in
distance between the two pieces of equipment against predefined thresholds. In [57], a
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vision-based technique is proposed to detect excavator activities (working, traveling, and
idling) using TLD and bags-of-features (BoF). In [37], activities are identified by tracking
changes in centroid coordinates across consecutive video frames. The interaction between
excavators and trucks is analyzed to enhance accuracy. For example, if an excavator is
in operation while the nearest truck is stationary, the activity of that truck is labeled as
working. The presented method consists of four key steps: (1) equipment detection and
tracking, (2) action recognition of individual equipment, (3) interaction analysis, and (4)
post-processing.

The techniques can identify consecutive activities in long video sequences based on detec-
tion and tracking outcomes and can estimate the duration of each activity for equipment
productivity calculation. Nonetheless, these methods still exhibit certain limitations. They
rely on two-dimensional (2D)-pixel distance for proximity estimation instead of utilizing
the more accurate 3D real distance. Since the cameras on construction sites are typically
installed at inclined angles, the 2D-pixel distance fails to accurately represent the actual
spatial relationships among different pieces of equipment in a real construction site. Addi-
tionally, these methods require adjusting the thresholds with changes in camera positions,
which is very inconvenient [16].

Spatial-temporal neural networks are also utilized for the direct identification of equipment
activities. In [58], a CNN and a long short-term memory (LSTM) network are integrated
to identify excavator activities such as digging, hauling, dumping, and swinging. The
approach is based on the assumption that excavators typically follow the sequence of
digging, hauling, dumping, and swinging during operation [59]. Consequently, a hybrid
neural network comprising a 10-layer CNN for visual features and a two-layer LSTM for
sequential features is developed. However, due to the gradient descent issue of LSTM, this
method faces challenges in achieving high accuracy in long videos. In [60], a 3D CNN is
proposed to recognize the excavator activities using temporal and spatial information. In
[61], a deep learning-based method is presented to recognize the activities of excavators and
dump trucks from video frame sequences. In the method, image and temporal features are
extracted using CNN and LSTM, respectively. In [32], a 101-layer 3D ResNet is employed
to capture spatial-temporal features of activities within every set of 16 consecutive video
frames. The model successfully identifies the digging, swinging, and loading activities
of an excavator with an accuracy of 87.6%. Also, the activity durations and productivity
are estimated. However, a notable limitation of this method is its requirement for a
large dataset for effective training of the 3D ResNet. In [62], a deep learning-based
excavator activity analysis and a safety monitoring system are proposed that can detect
the activities, recognize the surrounding environment, and determine poses. In [63],
a method is presented to recognize the activities of an excavator. First, the sequential
patterns of visual features are extracted from the video frames using a pre-trained CNN
model. Then, the activities are recognized using a bidirectional LSTM (BiLSTM) and the
output of the pre-trained CNN. In [64], a vision-based method is described for automatically
analyzing equipment productivity in earth-moving tasks by adopting zero-shot learning for
activity recognition. The proposed method can identify activities of general construction
machines (e.g., excavators and loaders) without pre-training or fine-tuning.
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2.1.4 Productivity Analysis Methods

The majority of current studies computed productivity by identifying the equipment
activities. Some studies determined productivity by assessing the ratio of working or idling
times within the entire operation time. For instance, in [24], it has been investigated that
the excavator was 3,590 s idling within 10,800 s operation time, resulting in a working rate
of 66.8%. In [12], it has been determined that the excavator is involved in loading activities
for 95 min within an excavation video with a length of 147 min. Certain studies focused
on identifying the number of work cycles performed by excavators or trucks. Using the
provided bucket volume data, the volume of excavated soil is computed. In [27], [28], by
incorporating information about the duration of loading activities, the excavator bucket
volume, and the number of buckets per hour, the volume of excavated soil is computed
as productivity. In [56], utilizing this activity information, a technique for simulating
processes is developed to estimate the cycle number of trucks and to determine the
productivity of earth-moving operations. In [32], the work cycle number of an excavator
is determined by analyzing the sequential relationship of identified activities. Then, the
productivity is computed using bucket volume.

Rather than relying on activity recognition for productivity analysis, certain research
studies employed other information to calculate productivity. In [65], a region-based
fully convolutional network (R-FCN) [66] is utilized for the identification of license plate
numbers on dump trucks as they enter and exit the construction site gate. It allows
the calculation of truck cycles and the total volume of earth-moving by measuring the
time intervals for each truck’s arrival and departure. In [67], a productivity monitoring
approach utilizing multiple cameras is introduced. In this method, two cameras are placed
at different locations, one at the entry and the other at the loading zone. Through queueing
discipline analysis, dump trucks captured by both cameras are matched, and then, cycle
time and total number of cycles are determined.

Multiple CV-based methods have been proposed for the activity recognition and produc-
tivity monitoring of HDMMs, particularly excavators. Even though recorded videos can be
utilized as trustworthy documentation [68], these approaches have significant limitations
and practical challenges in real-world construction scenarios. These methods are highly
sensitive to illumination conditions (i.e., too bright or too dark) and environmental condi-
tions, including dust, snow, rain, fog, and wind, since they can cause the blurring of images
or shaking of cameras. The length of daylight in autumn and winter in several countries,
such as Finland, Sweden, and Norway, is very short, which can cause challenges [39], [69].
The methods face significant challenges in crowded and congested worksites with a lot of
noise, such as background movements [70], [71]. It is highly challenging to keep a direct
line of sight to resources. A network of cameras is required to cover large worksites [72].
Moreover, huge storage spaces are required to save images and video data. Also, the meth-
ods need comparatively more computing power than alternative methods [73]. Another
challenge is the shortage of training datasets, which can significantly reduce the perfor-
mance of the methods. The methods might not be possible to be used in some worksites
due to privacy reasons. Furthermore, CV-based methods are relatively expensive since
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the expenses of cameras in small-sized worksites are within the range [$1,000-$10,000]
and in medium-sized worksites are within the range [$10,000-$100,000] [174], [16], [74].
Because of these challenges, CV-based methods cannot be considered as a robust and
realistic solution in various construction sites.

2.2 Sensor-Based Productivity Monitoring

Sensor-based techniques involve attaching various sensors to equipment for localization
and movement tracking. Through the analysis of position and pose data obtained from
these sensors using classification or simulation methods, it becomes possible to estimate
the equipment productivity. In this section, proposed sensor-based methods are divided
into four categories based on the type of sensors: (1) RTLS sensors capable of identifying
the positions and trajectories of the equipment; (2) vibration and orientation sensors that
capture movement and pose information of the equipment; (3) audio sensors which can
record sounds during operations; and (4) hybrid sensors that employ multiple types of
sensors for equipment productivity monitoring. Ambient weather sensors are also utilized
to observe the impact of weather conditions, such as temperature, humidity, and wind, on
productivity [16], [75]-[77].

2.2.1 RTLS Sensors

GPS, RFID, and UWB are commonly utilized RTLS sensors capable of providing location
and trajectory information of the equipment. GPS, as a satellite-based navigation system,
acquires the longitude, latitude, and altitude data of the equipment. In [14], [78], [79], GPS
sensors are employed to gather the trajectories of trucks and to determine the durations
of the activities, such as load, travel, return, etc., through the analysis of the trajectories
on the map. In [80], GPS is similarly utilized to acquire the trajectories of trucks on the
map, aiming to estimate transportation costs. Certain GPS-based approaches divide the
construction site into various work zones, such as excavation and loading areas. The
activities or cycle time can be estimated using the analysis of the equipment’s location
in specific work zones. In [81], GPS sensors are attached to trucks to calculate loading
and travel times by analyzing the locations of trucks on construction sites. In [82], the
site is divided into work and non-work zones to determine the operational time of trucks.
In [83], excavators and skid steer loaders are equipped with GPS, and the construction
site is divided into gravel and excavation zones. The durations for excavation and loading
activities are determined based on the equipment’s locations. In [15], [76], the construction
site is divided into excavation and dump zones to recognize the trucks’ activities, such as
entry, exit, and load.

UWSB is a radio frequency positioning system employing a triangulation technique to
determine the equipment’s location by analyzing the signal propagation durations from the
tag to the receivers [84]. In [85], the feasibility of commercially available UWB systems for
tracking equipment, materials, and workers within a large construction site is investigated.
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In [73], UWB and an attitude and heading reference system (AHRS) are utilized to record
the positions and boom angles of trucks. In [86], the construction site is divided into
dumping, hauling, loading, and excavation zones according to the locations derived from
UWSB sensors to identify the activities of a truck and an excavator.

RFID employs electromagnetic transmission for detecting and tracking tags attached to
objects. The RFID system comprises readers and tags, with tags attached to equipment
transferring digital data to readers using radio waves. RFID finds applications in distance
estimation, scene analysis, and proximity. The distance from the tag to the readers can
be calculated utilizing the triangulation algorithm based on signal propagation time. In
equipment monitoring, readers with predetermined power levels define specific detection
ranges for RFID tags. Consequently, equipment locations can be calculated by placing
tags in various work zones [16]. In [87], RFID readers are deployed at the entry points
of loading and dumping zones. The loading and dumping durations are estimated by
capturing the entrance and exit times recorded by the RFID system. Then, the work cycle
of the truck is estimated according to the sequential relations of activities.

The proposed methods using RTLS sensors, including GPS, RFID, and UWB, have significant
challenges that limit their applications in real-world construction sites and extensions
to other HDMMs. One constraint associated with these positioning sensors is that the
collected data are restricted to location and time information, which makes it challenging
to distinguish between productive and idling states of the equipment. Additionally, these
records lack sufficient information for estimating the cycle time, the quantities of excavated
soil, and operating conditions [16].

2.2.2 Vibration and Orientation Sensors

In contrast to RTLS, accelerometers measure the vibration signals produced by the equip-
ment, and gyroscopes measure the orientations of the equipment. Processing the data
obtained from the vibration and orientation sensors allows for the estimation of the pose
and state of the equipment. The IMU sensor, comprising an accelerometer, a gyroscope, and
a magnetometer, acquires acceleration and orientation data of the equipment. Typically,
machine learning algorithms are employed to classify the movement data collected by
IMUs, aiming for the recognition of the activity and the work cycle of the equipment [16].

In [88], two accelerometers are installed inside the excavator cabin. Three activities,
including working, idling, and engine off, are distinguished by examining the overall
patterns of the vibration signals, such as increasing and decreasing trends. In [89], IMU
sensors are installed on the bed of a truck and the boom of a loader to identify activities
using orientation and acceleration data. For instance, an increase in the boom angle relative
to the horizontal line, combined with a stable bed angle near zero, shows that the loader is
lifting its boom while the truck awaits loading. In the next step, a discrete event simulation
(DES) model is employed to simulate the work cycle of both pieces of equipment based on
the detected activities. In [90], two smartphones are utilized to gather accelerometer and
gyroscope data from a loader. Firstly, raw data are characterized using 12 features, such
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as mean, variance, peak, root mean values, etc. Then, an SVM and a CNN are employed
to categorize these features and identify the activities of the loader, including engine off,
idling, moving, scooping, and dumping. The results of the activity recognition algorithm
are utilized as input, and the durations are estimated by considering the logical relationship
between the activities. In [18], the possibility of assessing operational efficiency is explored
by utilizing accelerometer data to categorize engine off, idling, and working states of four
types of excavators. Four supervised learning methods, including Naive Bayes (NB),
instance-based learning (IBL), decision tree (DT), and multi-layer perceptron (MLP) are
employed in this research study. In [91], a smartphone is installed in the excavator cabin
to record the 3D acceleration. In the next step, eight supervised classifiers are trained
to estimate the excavator cycle time based on activity modes (e.g., wheel-base motion,
cabin rotation, and arm/bucket movement of the excavator). The accuracy of cycle time
estimation is equal to 75.96%. In [92], a smartphone equipped with an IMU sensor is
installed onto the excavator’s front window. In the proposed method, the dynamic time
warping (DTW) technique and four classifiers, such as random forest, Naive Bayes, decision
tree, and sequential minimal optimization (SMO), are employed to identify the excavator’s
activity. In the next step, the cycle time of the excavator is estimated based on the order of
the activities. The accuracy of cycle time estimation is equal to 91.83%. In [93], DTW is
employed to recognize the task of an excavator, including digging, leveling, and trenching,
using joystick signals. In [94], two IMU sensors are installed on the body of a roller to
identify six activities using LSTM. In [95], synthetic training data are generated using time-
series data augmentation techniques on acceleration and orientation data. A recurrent
neural network (RNN) is employed for the activity classification of four different types of
excavators and front-end loaders. In [96], three IMU sensors are installed on the bucket,
arm, and boom of an excavator to recognize different activities utilizing an SVM, a k-
nearest neighbor (KNN), and an artificial neural network (ANN). The results demonstrate
that the best place to collect motion information is the bucket. In [97], accelerometer data
and a CNN are used to automatically identify the activities of an excavator, including idling,
traveling, scooping, dropping, and rotation (left/right), and a roller compactor, including
forward (high/low/no vibration) and backward (high/low/no vibration). In [98], a random
forest classifier is integrated with the fractional calculus-based feature augmentation
technique to identify construction equipment activities. The method is applied to several
case studies, such as two different models of excavators, a scaled remotely controlled
excavator, and a roller. In [69], a deep learning-based algorithm is presented to determine
equipment productivity using kinematic data collected from smartphone sensors installed
in an excavator. The excavator activities are classified into active and inactive classes to
estimate the utilization ratio.

Vibration and orientation sensors, such as IMUs, can provide a promising solution to the
challenges of CV-based and other sensor-based methods in activity recognition, cycle
time estimation, and productivity monitoring. Even though IMUs require to be directly
attached to the equipment, which is time-consuming in a large fleet, these sensors have
many advantages since they are affordable, not restricted, can be easily installed, or have
been already installed on different machines. IMUs are robust and resilient in challenging
environments, in contrast to CV-based methods [99]. These methods can work easily
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without any lines of sight. Moreover, the accuracy of IMUs is satisfactory. The methods can
achieve a high level of accuracy, around 80-100%, in activity recognition and cycle time es-
timation. Also, they do not need high computational power and can be easily implemented
in real-time [70]. The costs in small-sized worksites are within the range of [$100-$1,000],
and in medium-sized worksites are within the range of [$1,000-$10,000]. Furthermore, in
recent years, in order to estimate the bucket position for automated machine guidance
(AMG) or automated machine control (AMC) systems, equipment manufacturers [166]
and third-party businesses [167], [168] have begun mounting IMUs on the equipment. The
sensors can be utilized for activity recognition and productivity monitoring purposes [174],
[16], [74]. Although there are some approaches for the activity recognition and cycle
time estimation of HDMMs using IMUs, still there are many potentials in using machine
learning and IMUs for the activity recognition in different levels of detail and improving
cycle time estimation. Also, IMU sensors, alongside other onboard sensors, can be utilized
for automatic theoretical productivity and working conditions estimations.

2.2.3 Audio Sensors

Recently, audio-based methods have been introduced which are capable of identifying
the activities of HDMMs utilizing the sounds produced by the equipment. Audio signals
encompass diverse acoustic patterns associated with the equipment’s operational processes.
This identification comprises four key steps: (1) collecting sound data from equipment
using a microphone; (2) filtering or augmenting the signals; (3) extracting features; and
(4) training supervised classifiers [100]. In [72], [101], audio signals are employed to
distinguish between major and minor activities of excavators, loaders, and dozers through
the utilization of short-time Fourier transform (STFT) features and an SVM classifier.
In [102], STFT and continuous wavelet transform (CWT) features are combined with an
SVM classifier to identify the activities of an excavator and a dozer. In the next step, a
Markov chain filter is employed to assess the cycle time and the number of cycles per
hour. Then, the productivity of the backhoe as the volume of excavated soil per hour is
determined based on the average fill factor.

Compared to CV-based methods, the obstacles in worksites cannot affect the quality of the
recorded data in audio-based methods, and neither high computational power nor large
storage space is needed. The audio-based methods have the ability to cover relatively large
areas and record sounds from multiple machines. Unlike some sensor-based methods,
there is no need to attach several sensors to each machine. The costs of microphones
in small-sized worksites are within the range of [$300-$3,000], and in medium-sized
worksites are within the range of [$3,000-$30,000]. Nevertheless, the audio-based methods
face substantial challenges in crowded and noisy construction sites, which can decrease
the accuracy of the methods. Also, some equipment does not generate distinct sound
patterns, making it challenging to detect its activities. Moreover, the audio-based methods
do not have the ability to accurately distinguish between detailed activities of a machine
and then estimate the cycle time. Furthermore, the methods cannot be easily extended
to other machines, such as tower cranes, which do not generate sounds [174], [16], [74].
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Because of the challenges, the audio-based methods cannot be a solution for cycle time
and productivity estimation purposes.

2.2.4 Hybrid Sensors

Hybrid sensors are also employed to obtain more accurate information about equipment
and operations. In [103], displacement and pressure sensors are installed on the cylinders
of the boom, arm, and bucket of the excavator to record its movements, pose, and actual
bucket load. In [104], IMU and microphones are utilized to gather vibration and audio
data during excavators’ operations. In the next step, two types of data are manually
synchronized based on the similarity of signal spikes. Then, an SVM classifier is utilized to
distinguish excavator activities, such as stop, shove, move, and turn, achieving an accuracy
20% higher than using only IMU or audio data. In [105], an algorithm is proposed to
automatically classify the working stages of an excavator based on the main pump pressure
waveform. Three machine learning algorithms, an SVM, a back propagation neural network
(BPNN), and logistic regression (LR), are utilized in this research study. In [106], three
classifiers, an LSTM network, an RNN, and an SVM, are trained using the control signals of
operating handles to recognize the activities of an excavator. In [107], a deep learning-based
hybrid kinematic-visual sensing algorithm is designed for equipment activity recognition.
Kinematic and visual data are collected using built-in sensors, gyroscopes, accelerometers,
and cameras of a smartphone that is installed inside the cabin of an excavator. In [108],
a deep neural network (DNN) model is presented to determine the volume of excavated
earth per day using telematic data, including equipment weight, bucket volume, volume
excavated, fuel rate, total fuel consumed, engine on time, engine on (no dig), engine on
(no move), digging, swing time, travel time, and not operating, from 21 days of operation.
The main drawback of DNNSs is the high computational complexity and requirement for a
large dataset. In [109], a method is proposed to identify activities of an excavator, such as
excavation, leveling, rock excavation, and drive, using a fusion network that combines
sensor and video-based models. This research continues, and in [110], a DNN ensemble
called FusionNet is introduced to identify the activities of excavators, including slope
digging, ditch digging, rock digging, leveling up-down, leveling front-back, leveling left-
right, deep digging, drive, and digging. This algorithm employs the extracted features
from sensor data and video frames of on-site excavators.

Additionally, hybrid sensors are applied for monitoring various productivity-related factors.
In [111], a decision support system called WEATHER is designed to determine the effect of
weather conditions on equipment productivity. In [75], GPS, strain gauges, an accelerom-
eter, and barometric pressure are employed to track equipment location, estimate the
load weight of the truck, identify loading and dumping activities of the loader and trucks,
and measure weather conditions, respectively. Utilizing the sensor data, an automated
data processing algorithm is developed for the near-real-time estimation of earth-moving
productivity. In [112], GPS is employed to track the positions of trucks, pavers, and rollers.
Also, the temperature of the asphalt mat is monitored utilizing temperature sensors on the
pavers. In [113], GPS, IMU, soil water content sensors, and load cells are utilized to assess
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the factors affecting earth-moving productivity. These factors included soil conditions,
hauling and road conditions, equipment operational conditions, and weather conditions.

2.2.5 Productivity Analysis Methods

Construction equipment commonly operates within diverse and complex construction
sites. Equipment productivity can be either predicted using data-oriented methodologies,
such as statistical regression models and neural networks if historical data from similar
operations are available, or using process-oriented methodologies if no historical data is
available [19].

Process-oriented methodologies have been proposed in (a) equipment manufacturers’ hand-
books [114]-[117], (b) editions from contractors’ associations or individual researchers in
Germany [118]-[124] and (c) textbook editions [125], [126]. In the process-oriented models,
operating conditions, such as swing angle (i.e., the angle between digging and dumping
points), digging depth, bucket capacity, skill of human operators, etc., are transformed
into several factors to be able to predict productivity. The factors include the rated bucket
capacity, the cycle time, the swell factor, the bucket fill factor, the job efficiency factor,
the operator skill factor, the equipment availability factor, the swing angle factor, the
excavation depth factor, the combined swing angle and digging depth factor, the bucket
dump factor, the excavator-truck volumes match factor, the bucket teeth wear factor, and
the altitude factor [19].

In data-oriented methodologies, the main productivity influencing factors are supposed
known and employed as models’ inputs to predict productivity. The models are trained
using historical data or using synthetic data generated using process-oriented method-
ologies. In [127], a linear regression model is designed to determine the productivity of
earth-moving equipment. It has been highlighted that the bucket volume, truck travel
time, number of trucks, and haul length are key parameters that influence productivity.
In [128], a two-layer CNN is utilized to predict the excavator productivity based on the
cycle time. The machine weight, digging depth, and swing angle are introduced as three
main influencing factors in productivity estimation. Also, in [129], [130], swing angle, ma-
chine weight, and digging depth are recognized as the key factors in the productivity of an
excavator. In [131], a feed-forward neural network is designed to predict the productivity
of excavators using multiple factors, including relative positions between excavators and
materials, site obstructions, the skill of the human operator, and the type of soil. In [132], a
conjugate gradient algorithm and the feed-forward propagation network are integrated to
estimate the earth-moving productivity using the number of excavators and trucks, bucket
volume of the excavator, loading capacity of the truck, and type of material. In [133], the
loading time of excavators with respect to the relative position with trucks is evaluated.
The study highlights that the loading time is influenced by factors such as horizontal and
vertical distances and swing angles between the excavator and the truck. In [134], the
skill of human operators plays a crucial role in the productivity of an excavator and can
influence other factors. The correlation between the skill level of the operator and the
productivity of the excavator is investigated using the Caterpillar excavator productivity
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model. To enhance the accuracy of productivity estimation, the operator’s skill level is
incorporated into the model as a factor. In [135], a computer dispatch system is employed
to investigate the primary elements impacting the productivity of excavators and trucks
in mining projects. The outcomes of the study reveal that the matching between the
excavator and truck, such as loading position and truck-shovel combinations, can signifi-
cantly influence loading efficiency and, consequently, overall productivity. In [76], a linear
regression method and various sensors are used to evaluate the impact factors, including
humidity, wind speed, temperature, idle time, average speed, etc., on the earth-moving
productivity. In [113], a fuzzy model based on expert investigation is designed to detect
and assess different factors influencing the productivity of earth-moving operations. The
skill of the human operator, snowy road conditions, foggy weather, the water content of
the soil, and waiting times are recognized as the most important productivity factors.

Influencing factors, including the excavator’s relative position in relation to the truck
and soil (i.e., swing angle and digging depth), relative height between the excavator and
truck, and site congestion, pose challenges for both sensors and cameras to accurately
estimate. These parameters have not yet been estimated through any automated methods
and proposed productivity analysis methods only assume that they are known.

Traditionally, surveyors have been responsible for collecting information to monitor
progress and conducting surveys at construction sites. The demand for automated moni-
toring tools has led to the incorporation of 3D sensing technologies, enabling the precise
and accurate gathering of on-site data. This data can then be integrated with a planned
model based on BIM to evaluate the advancement of the project [136].

Researchers are exploring the usage of BIM and 3D sensing technologies for real-time
progress monitoring to address issues related to schedule and cost overruns [137]. This
integration was driven by the utilization of BIM across various dimensions. For example, a
4D BIM-based model, also referred to as a schedule model, has been established to sequence
activities over time. Another dimension of BIM, the 5D BIM-based model, specifically
focuses on tracking activity costs over time [136]. In [138], an object recognition algorithm
is designed to evaluate construction progress by matching on-site photographic images
with 3D BIM models. This method identifies particular objects in the site images using
advanced image processing algorithms to compare them with corresponding 3D objects
in the BIM model. In [139], managing and transferring information are introduced as
major benefits of BIM that can improve our understanding of planned activities. In [140],
modeling and augmented reality are employed to compare the plan with what is actually
happening on-site.

Some research studies proposed techniques for processing point cloud data in construction
and infrastructure applications [141]. In [142], excavation changes are estimated based
on depth differences of the surface using a LIDAR sensor. Obstructions such as piles that
block the sensor’s vision may reduce the precision and accuracy of volume estimation.
In [143], a method is designed using a stereo camera and a LiDAR sensor to establish a 3D
visualization of a construction site. In [144], a method is introduced that utilizes point cloud
data obtained from a laser mobile mapping system (LMMS) to automatically evaluate the
excavation volume required for road widening. In [145], a network-based cloud system is
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presented to manage soil volume progress in a construction site. The daily progress volume
is determined using the bucket cutting-edge historical data that is gathered from sensors
installed on heavy equipment. In [146], a coordinate-based volumetric computational
method is proposed to estimate the volume of stockpiles utilizing data from a laser scanner.
Also, three mining industry surveying methods, photogrammetry, terrestrial laser scanning
(TLS), and aerial laser scanning (ALS), are compared and analyzed. In [147], point clouds,
image data, sensors, and computer-aided design (CAD) models are integrated to estimate
the excavation volume and monitor the excavation progress at a worksite.

The productivity estimations of quality-centered tasks, including trenching and grading
tasks, have been overlooked in the literature review. Recent progress in 3D sensing
technologies and BIM can be a promising solution to automatic productivity estimation
and progress monitoring in these tasks [175].
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3 Scientific Contribution

In this chapter, firstly, the proposed research framework to automatically estimate the
productivity of an excavator in different tasks, including loading, trenching, and grading,
is elaborated. Afterward, the research gaps and practical challenges identified in the
literature review are comprehensively discussed. Then, multiple research questions that
are the main targets of the dissertation are introduced.

3.1 Research Framework

In the context of this dissertation, “productivity” means the production rate at the activity
level of an operation. Since productivity is defined based on the objective of the task, the
definitions of productivity vary for different tasks. Generally, the quantity of material
and the operation cycle time are the main factors for the productivity of most cyclical
types of machinery. The productivity of an excavator in the loading operation means the
quantity of transferred material per unit of time. Although this productivity definition
can effectively represent the productivity of an excavator in the loading operation, it
cannot correctly show the productivity of an excavator in the trenching and grading
operations since quality plays the main role in these operations rather than quantity. In
the grading operation, only a small amount of materials are added or removed. Hence,
the amount of material cannot reflect the productivity. The productivity of an excavator
in a grading operation is defined as the area of the graded surface per unit of time. In
the graded area, the error between the model and the actual terrain should be within the
specified accuracy requirements. In the trenching operation, it is highly significant that
the characteristics and size of the actual trench should be based on the designed model. In
this task, contractors typically estimate the productivity in terms of the linear length of
the trench per unit of time [115], [148]. Therefore, prior to productivity estimation, an
automatic task recognition method is required to identify the duty cycle of the excavator.
In the next step, the productivity should be estimated based on the detected duty cycle.

There are different types of productivity definitions that must be taken into account:

« The absolute or actual productivity that shows the real productivity of a machine.
The actual productivity is estimated using multiple sensors installed on the machine
or the worksite. Another key metric is the actual cycle time, which represents the
duration of a work cycle.
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+ The second productivity definition is the nominal or theoretical productivity that
shows the expected productivity level of a machine. The theoretical productivity
should be estimated based on the capabilities and characteristics of the machine and
ongoing operating conditions. Another important metric is the theoretical cycle time,
which represents the duration the machine is capable of performing a particular task
under specific working conditions.

« The third productivity definition is the relative productivity or production perfor-
mance ratio (PPR), which represents the performance level or operational effective-
ness of a machine. The relative productivity is obtained by comparing the actual
productivity against the theoretical productivity. Another metric is the relative cycle
time which is obtained by dividing the theoretical cycle time by the actual cycle time.

As earlier discussed, the actual productivity of an excavator is highly influenced by different
parameters and working conditions, such as swing angle, digging depth, size of the
excavator, bucket capacity, dumping conditions, type of materials, weather conditions, and
skill of human operators. The actual productivity of an excavator cannot lonely represent
the performance of a machine since working conditions can significantly impact it. To
assess the actual productivity, a benchmark or the theoretical productivity of an excavator
is highly required. Then, the relative productivity can effectively illustrate the performance.
Hence, automatic methods are needed to estimate the actual and theoretical productivity
of an excavator in different tasks, including loading, trenching, and grading operations.
In addition, to be able to automatically determine the theoretical productivity, operating
conditions, such as swing angle and digging depth, should be automatically estimated.

3.2 Research Gaps

As described in Chapter 2, several methods have been proposed to recognize activities,
estimate cycle time, analyze working conditions, and monitor the productivity of an
excavator using different types of sensors and data. Still, some challenges should be

addressed.

Several approaches have been introduced to detect the activities of excavators, mainly
focusing on sub-tasks or low-level information. However, only three research studies [93],
[109], [110] have aimed to identify the primary tasks or major activities performed by
excavators. In [93], a DTW is suggested for recognizing the main working cycles of an
excavator, such as digging, trenching, and leveling, by analyzing joystick measurements.
However, the approach encounters significant challenges when applied in real-world
scenarios. Joysticks used in different excavator models vary among manufacturers, ne-
cessitating substantial time and effort for calibration to interpret joystick output values.
Furthermore, the precision of joystick measurements can differ significantly between ma-
chines, and the method’s accuracy may be heavily influenced by operators’ behaviors and
skills. Additionally, the proposed technique relies on a complex post-processing algorithm
to address errors in the primary algorithm. In [109], [110], a method based on deep learning
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is developed to recognize excavators’ tasks by integrating sensor data and video frames.
Nonetheless, this method faces two main challenges. Firstly, CV-based methods present
numerous challenges that have been introduced in Section 2.1.4. Secondly, deep learning
models have high computational complexity and demand extensive datasets. Therefore, a
method for the excavator’s task recognition should be developed to solve the challenges.

Additionally, the majority of presented sensor-based methods focus on recognizing the
individual sub-tasks of excavators without providing estimates for cycle time and pro-
ductivity. The primary challenge lies in accurately estimating the actual cycle time of
an excavator during the loading operation. Only two research studies have attempted
to estimate excavator cycle time. In [91], the cycle time estimation achieved a low accu-
racy of 75.96%, which could significantly impact productivity estimation due to errors.
In [92], a cycle time estimation accuracy of 91.83% has been achieved. However, in 20%
of cycles, the difference between the estimated cycle time and the ground truth obtained
from videos exceeded 3 s, leading to substantial errors in productivity estimation. Hence,
a method should be designed to improve sub-task recognition and cycle time estimation
of an excavator in the loading operation.

Another notable challenge is the lack of a benchmark for assessing estimated cycle time.
Because working conditions can impact cycle time, solely relying on actual cycle time
cannot accurately indicate whether the machine is operating at optimal performance levels.
Hence, there is a necessity for a reference point to evaluate actual cycle time. To establish
a theoretical cycle time, it is imperative to automatically estimate working conditions,
such as swing angle and digging depth, during the operation.

Based on the literature review, there exists a significant research gap concerning the
integration of real-time data with models to offer insights into ongoing activities at
construction sites. Moreover, current studies predominantly prioritize the quantity of
material, overlooking automated methods for evaluating productivity during grading or
trenching operations using BIM. In grading and trenching operations, the paramount focus
lies in ensuring quality and accuracy.

3.3 Research Questions

This dissertation aims to develop a series of approaches for the automatic productivity
estimation of an excavator in different earth-moving tasks, including loading, trenching,
and grading operations, using IMUs and machine learning techniques. In particular, the
main focus is on the following research questions:

e How can the task recognition of an excavator be improved using IMUs and machine
learning techniques?

e How can the sub-task recognition of an excavator in the loading operation be im-
proved using IMUs and machine learning techniques, and then cycle time be esti-
mated using detected activities?
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e How can the operating conditions, including swing angle and digging depth, be
automatically estimated using detected activities?

e How can the theoretical productivity of an excavator in the loading operation be
automatically estimated based on the operating conditions to determine the relative
productivity?

e How can the actual productivity of an excavator be estimated in quality-centered
tasks, including trenching and grading operations, using 3D sensing technologies
and BIM?

Several methodologies will be proposed to address the research questions outlined. The
dissertation’s scientific contributions are summarized in Table 3.1. Nevertheless, certain
aspects remain unexplored and could be subjects of future investigation. Specifically, the
quantification (either in volume or weight) of materials during the loading operation has
not been examined within this dissertation because of the extensive existing research on
this topic and the satisfactory performance of the proposed methodologies. Additionally,
the definition of relative productivity for an excavator during the loading operation has
been refined to encompass relative cycle time. This implies that the material quantity in
both actual and theoretical productivity is regarded as equivalent. Moreover, the automatic
methodologies for estimating the theoretical productivity of an excavator in trenching

Table 3.1: The summary of the scientific contributions for the productivity estimation of
an excavator in earth-moving tasks.

Excavator’s tasks recognition

Loading Trenching Grading
operation operation operation
PrOdUCtiVity Quantity of material Length of trench Area of graded surface
definition Time Time Time
(1) Excavator’s sub- (1) Int?gration .Of (1) Int§gration 'of
Actual tasks recognition elevajuon terrain eleva‘t1on terrain
productivity (2) Actual cycle mapping and BIM. mapping and BIM.
time estimation (2) Actua.l pro'ductnflty (2) Actua'l pro.ductwlty
estimation estimation
(1) Swing angle
estimation
(2) Digging depth
Theoretical estimation

productivity (3) Theoretical cycle
time estimation
(4) Relative cycle
time estimation
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and grading operations have not been explored. This area warrants consideration in
subsequent research endeavors.

In Chapter 4, an automatic task recognition method using IMUs is proposed to answer
the first research question. In Chapter 5, firstly, a method is proposed to estimate the
cycle time of the loading operation using a sub-tasks recognition algorithm. Then, the
theoretical productivity of an excavator in the loading operation is estimated using a
process-oriented method and automatic working condition estimations. Finally, the relative
productivity is estimated. In this chapter, the second, third, and fourth research questions
are answered. In Chapter 6, two methods are designed using 3D sensing technologies and
BIM to automatically estimate the actual productivity of an excavator in the grading and
trenching operations to answer the fifth research question.
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Task recognition is essential for productivity estimation, maximizing efficiency, ensuring
safety, maintaining equipment, collecting data, and enhancing training and skill develop-
ment in construction and excavation operations. In this chapter, a method is designed
to automatically recognize the excavator’s tasks, including loading, trenching, and grad-
ing, using supervised learning algorithms and motion information obtained from IMUs
attached to different moving parts of the machine, such as the bucket, arm, boom, and
swing body.

4.1 Introduction

Task recognition is a crucial step prior to productivity monitoring since productivity is
defined based on the objectives of the tasks. The schematics of the three most impor-
tant tasks of an excavator, including loading, trenching, and grading, are illustrated in
Fig. 1.2 [8]-[10]. The loading task is pivotal in construction and mining industries, which
typically consist of four primary activities such as scooping, swinging loaded, dumping,
and swinging empty. The productivity of the loading task is defined as the quantity of
transferred materials per unit of time [174]. The next important task is the trenching
operation. In this task, an excavator is employed to dig trenches according to specified
dimensions for the placement of underground utilities. The definition of productivity in
this task is equal to the length of the trench per unit of time [115], [148]. The next critical
task is the grading (or leveling) operation. In this task, an excavator is used to smooth
the ground’s surface for building, landscaping, and paving purposes. The productivity of
the grading operation is defined as the graded area per unit of time. In the grading and
trenching operations, quality is the highest priority instead of quantity [175]. Hence, task
or working cycle recognition of an excavator is one of the essential and primary steps
before the productivity analysis.

Only three research studies [93], [109], [110] have been proposed to identify the tasks or
major activities (loading, trenching, and grading) of an excavator. In [93], a DTW system
is proposed to recognize the excavator’s working cycles using joystick measurements.
The presented approaches face significant challenges in practical implementations. Used
joysticks in different machines vary across different manufacturers, and considerable time
and effort are required for adjustments to interpret joystick output values. Moreover, the
precision of joystick measurements varies among different machines, and the method can
be highly susceptible to the behaviors and skills of operators. In addition, the proposed
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technique uses an intricate post-processing algorithm to mitigate errors in the primary
algorithm. In [109], [110], a deep learning-based method is designed to identify the tasks
of an excavator using the integration of sensor data and video frames. However, CV-
based methods face several practical limitations in real-world construction sites. They are
highly sensitive to lighting and environmental conditions (e.g., dust, snow, rain, fog), and
require a clear line of sight, which is difficult to maintain on congested sites. The need for
multiple cameras, large storage space, high computational power, and access to diverse
training datasets further complicates their use. Privacy concerns and high costs—ranging
from $1,000 to $100,000 depending on site size, also limit their applicability [174]. In
addition, deep learning models have a high computational complexity and require very
large amounts of data.

To address these limitations, our research study proposes an automatic method to recognize
the tasks of an excavator, including loading, trenching, and grading, using multiple low-
cost IMUs installed on moving parts of the excavator. IMUs offer several advantages, they
are affordable, easy to install, already integrated into many machines, and robust against
environmental challenges. Their costs range from $100-$1,000 in small-sized worksites to
$1,000-$10,000 in medium-sized ones. Major equipment manufacturers and third-party
providers have already adopted IMUs for estimating bucket position in AMG or AMC
systems. Furthermore, IMUs have low power consumption and are well-suited for use
in harsh construction environments, making them a practical and scalable alternative to
vision-based systems. The main contribution of this work is the development of a machine
learning-based method for automatic task recognition of excavators using IMUs. To the
best of our knowledge, this is the first study that applies machine learning techniques
to classify excavator’s working cycles (loading, trenching, and grading) based on IMU
measurements. This sets our approach apart from prior studies that rely on vision data or
joystick inputs.

4.2 Methodology

In the proposed method, the excavator’s working cycles, including (1) loading, (2) trenching,
(3) grading, and (4) idling, are recognized using four IMUs that have been installed on
different moving parts of an excavator, including the bucket, arm, boom, and swing
body. A dataset lasting 3 h is collected using a medium-rated excavator operated by one
experienced and one inexperienced operator. Different operating conditions, such as
different swing angles, digging depths, types of material, weather conditions, and the
skill levels of operators, have been covered in the dataset to increase the robustness of
the data-driven method. In the next step, four machine learning techniques, including
a support vector machine (SVM), a k-nearest neighbor (KNN), a decision tree (DT), and
Naive Bayes (NB), are trained using the collected dataset. The flowchart of the proposed
method is illustrated in Fig 4.1. Then, the effects of different configurations, including
time window, overlapping, and feature selection methods, on classification accuracy are
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Figure 4.1: Flowchart of the activity recognition algorithm [174].

extensively investigated. Finally, the results show the presented algorithm has the ability
to automatically recognize the major tasks or working cycles of an excavator.

4.2.1 Field Data Collection

Firstly, field data was collected using the crawler excavator shown in Fig. 4.2. Although the
excavator is old, it has been kept in good condition since it has received regular maintenance
and inspections every 500 working hours. The model is a Komatsu® PC138US with a mass
of 13.4 tonnes and a typical mono boom structure that is equipped with a Novatron Xsite®
machine control system. The bucket was attached to the arm using quick couplers and a
tiltrotator. The tiltrotator was not used during the data collection. There was no active
construction project in the worksite during the data collection.

There are two standards for heaped bucket capacity, the Society of Automotive Engineers
(SAE) standard and the Committee for European Construction Equipment (CECE) standard.
The schematics of SAE and CECE standards are illustrated in Fig. 4.3. The angles of repose
for material above the strike-off plane in SAE and CECE standards are 1:1 (45°) and 1:2 (~

Figure 4.2: Excavator used in data collection. In the picture, (1) cabin, (2) boom, (3) arm,
and (4) bucket are highlighted with red boxes [176].
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Figure 4.3: Heaping according to the SAE and CECE standards [174].

27°), respectively. It has been observed that Vsag[m3] ~ [1.10 — 1.20] X Vepcp[m®] [148].
The heaping bucket capacity of the used excavator in the data collection is equal to 0.37 m®
according to the SAE standard J-296.

The operations represent realistic construction scenarios, which means no direction is
provided to operators on how to do the operations to increase the robustness of the
presented method. The collected dataset covers various operating conditions, such as
swing angle, digging depth, weather conditions, and types of material. Several types of
material, such as sand, gravel, clay, and mixed, were used in the data collection phase.
The digging depth increased up to 2 m, and the swing angle varied from 60° to 120°. The
operations were performed in different seasons during 18 months by two operators with
different levels of competence in a private worksite. The inexperienced operator performed
47% of the experiments, and the rest of the dataset was gathered by the experienced
operator.

An IMU is a versatile sensor module widely utilized in different applications, such as orien-
tation tracking, gesture recognition, robotics, and virtual reality, which is equipped with a
3-axis accelerometer and gyroscope. The accelerometer and gyroscope simultaneously
measure acceleration along three orthogonal axes and angular velocity, respectively. These
two units enable the IMU to capture complex motion dynamics in 3D space to facilitate
precise motion analysis and improve the capabilities of various devices ranging from
smartphones to unmanned aerial vehicles [97]. The used IMU in the data collection step
is shown in Fig. 4.4. This sensor was produced by Novatron® Ltd. and placed in robust
casings.

Figure 4.4: The IMU used in the data collection phase [177].
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Four IMUs were attached to the moving parts, including the bucket, arm, boom, and swing
body, to measure the orientation and angular velocities of the excavator. Attaching the
sensor directly to the bucket increases the risk of damage. Therefore, instead of mounting
the IMU directly on the bucket, it is positioned on the side link. The configuration of IMUs
on the excavator is demonstrated in Fig. 4.5. IMUs were precalibrated utilizing the Xsite®
machine control system. The sensor data is transferred with the sampling frequency f;
of 200 Hz using the controller area network (CAN) bus. The CAN bus is connected to
the MATHWORKS® SIMULINK model using a Kvaser leaf light CAN to USB interface. The
length of the dataset is around 3 h, which means that based on the sampling frequency fs,
approximately 2,160,000 data points were collected for each sensor’s channel. The amount
of data corresponding to each label is presented in Table 4.1.

Table 4.1: The duration of different working cycles in the collected dataset.

Working Cycle

Loading Trenching Grading Idling
Duration [min]  68.43 41.14 35.26 37.27

Each sensor unit measures the quaternion orientation based on the accelerometer and
gyroscope’s measurements. Afterward, the quaternion measurements are utilized to
determine the joint angles between each moving component of the machine connected by
the revolute joints. The quaternion to Euler angles conversion is stated in Eq. (4.1c):

T
q(t) = [qw() gx(0) qy(t) g=(1)] (4.1a)
2 _ 2 2, 2, 2 _
9" =q, + g +qy +q; =1 (4.1b)
[ 2(qwax+4y9-)
y arctan (—1_2 (q§+;’2y) )
0| = |-m/2+2arctan ( %) (4.1¢)
¢ 2( wqdy—qxqz
Guwdz+0xqy)
arctan (W)

where g indicates the unit quaternion, and ¢, 8, and ¢ represent the roll (rotation around
the x-axis), pitch (rotation around the y-axis), and yaw (rotation around the z-axis),
respectively [149].

The global angular velocities, which are measured using the gyroscope in the IMU, are
utilized to compute the local angular velocity of each moving part. The local angular
velocity is the actual angular velocity of the particular body part, which the movements
of the other machine parts have been subtracted. The local angular velocity illustrates
the movement of the measured body part as a result of the operator’s movement of that
particular body part. However, the global angular velocity comprises all movements caused
by the machine. The local angular velocities and orientation variables are demonstrated in
Fig. 4.6. The task recognition algorithm employs the joint angles and angular velocities of
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Figure 4.6: The local angular velocities and orientation variables are visualized on an
excavator’s side profile [177].

the machine parts as input data, and the quaternion data is discarded for further analysis.
The input variables comprise the angular velocities of four IMUs (three axes per sensor
unit), the local angular velocity of the boom (w,), the local angular velocity of the arm
(ws3), the local angular velocity of the bucket (w4), the pitch angle of the boom (6;), the
pitch angle of the arm (653), and the pitch angle of the bucket (04).

4.2.2 Data Windowing

A data windowing scheme is employed in the presented techniques to recognize the
tasks of an excavator. The position of a moving part is shown by a single data point at a
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single instant of time, while a working cycle is made of sequential motions distributed
over a period of time. For example, the loading operation occurs over a period of time,
not instantly. In the data windowing scheme, time-series data is divided into numerous
smaller and constant-sized pieces using a defined windowing function which is moved
along all data. A window is a group of consecutive data points. Because most research
studies presented in the literature review mostly concentrate on short-term motions or
detailed activities of an excavator, the time window is chosen within a range of [1,5] s.
Nonetheless, the tasks, that consist of several sub-tasks and take a much longer time
compared to an individual sub-task, are the main targets in our proposed method. The
cycle time of an excavator is mostly within the range of [10, 20] s based on the Komatsu®
performance handbook [115]. Therefore, a sliding rectangular windowing function with
five different window sizes (10, 12, 15, 18, and 20 s) and four overlapping configurations
(0%, 25%, 50%, and 75% overlap between two consecutive windows) is employed in the
presented technique.

4.2.3 Data Annotation

In the supervised learning algorithms, the data samples must be coupled with so-called
ground truth information. To record operations, an external USB webcam with a frame
rate of 20 fps was attached inside the cabin of the excavator. The webcam is connected
to the MATHWORKs® SIMULINK model using the Image Acquisition Toolbox. Then, the
dataset is manually labeled using the synced video. During the labeling process, if the
activity changes, the user informs the program, and the label is changed. In the next
step, the most frequent label in each window is selected as the representative label of
that window. The recorded video is used only for the data annotation, and the classifiers
employ only the motion information obtained from IMUs.

4.2.4 Feature Extraction

After segmenting the time series data into windows, feature extraction is performed before
the model training to extract useful information from each labeled data window. Feature
extraction aims to generate variables from raw measurements to maximize the amount of
information related to the phenomenon that a classifier will be used to model. Ten time-
domain statistical features (also called feature vectors), including (1) mean, (2) maximum,
(3) minimum, (4) standard deviation, (5) mean absolute deviation, (6) root mean square, (7)
peak-to-peak, (8) interquartile range, (9) skewness, and (10) kurtosis, are extracted from
each window in the collected dataset.

4.2.5 Feature Selection

Since some features do not contain value-adding information, they cannot be beneficial for
the classification problem and should be discarded for further calculations. In the feature
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selection step, a subset of the initially extracted features that contain the most information
regarding the classification problem is selected to minimize the feature space and provide
a faster and more cost-effective algorithm. In the proposed method, three different subsets
of features: (1) selected features using the ReliefF algorithm, (2) selected features using the
minimum redundancy maximum relevance (MRMR) algorithm, and (3) selected features
using the Chi-squared test, are utilized to train classification models.

4.2.6 Classification Models

Even though activity recognition techniques are presented using both supervised and
unsupervised techniques, supervised learning methods demonstrate higher performance
in activity recognition problems [17]. The characteristics and size of the dataset specify
which classification model should be used. To recognize the tasks based on the given
dataset, four classification models, including an SVM, a KNN, a NB, and a DT, are chosen
based on the most commonly used supervised classifiers in construction resource activity
identification algorithms in the literature review.

4.2.7 Performance Measures

The performance of classification models is evaluated using four standard metrics: accuracy,
precision, recall, and Fyscore. The accuracy metric is calculated using Eq. (4.2):

TP+TN
accuracy = X 100% (4.2)
TP+TN+FP+FN

where TP, FP, FN, and TN indicate true positives, false positives, false negatives, and true
negatives, respectively. The accuracy is a fundamental metric that provides an overall
measure of correct predictions by calculating the ratio of correctly predicted instances to
the total instances. Even though the accuracy metric is informative, it may not be sufficient,
particularly in imbalanced datasets, where the class distribution is skewed. The cost of
misclassification is analyzed using the precision and recall metrics. The recall metric is
the percentage of true instances (i.e., true positive + false negative) that are accurately
predicted as positive (i.e., true positive), whereas the precision metric is the percentage
of predicted positive instances (i.e., true positive + false positive) that are truly positive
(i.e., true positive). The precision and recall metrics are calculated using the following
equations:

.. TP
precision = ——— X 100% (4.3)
TP+ FP
TP
recall = ———— X 100% (4.4)
TP+ FN

High precision and recall values are desirable, but it might be challenging to maximize
both metrics for a classification model. The F;score, which is the harmonic mean of
precision and recall metrics, is computed as follows:

precision X recall

Fiscore = 2 X (4.5)

precision + recall
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The Fiscore provides a balanced metric that considers both false positives and false nega-
tives [150].

4.3 Results

In this section, the results of the presented method are demonstrated. Firstly, a small part
of the dataset is used to show the difference between the skill and behavior of experienced
and inexperienced operators. In the next step, the dataset is divided into train and test
subsets, and the most informative features are obtained using the introduced feature
selection techniques. Then, the supervised learning models are trained using selected
features. The impacts of different time windows and overlapping configurations on the
performance of the models are assessed. Moreover, k-fold cross-validation is performed to
illustrate the robustness of the method.

4.3.1 Data Visualization

The pitch angles of the boom, arm, and bucket in two loading operations that were carried
out by experienced and inexperienced operators are illustrated in Fig. 4.7. In order to show
the difference between the way of using the excavator by experienced and inexperienced
operators, the operating conditions of these operations, including swing angle and type of
material are chosen the same. In these two operations, the type of used material is sand,
and the swing angle is around 60°. As shown, the experienced operator can effectively
control the boom, arm, and bucket of the excavator, and the pitch angles show cyclic
behaviors. Nonetheless, the inexperienced operator cannot easily control the manipulator,
and different types of movements can be seen.

4.3.2 Classification Model Training and Evaluation

The presented method has been implemented using Statistics and Machine Learning
Toolbox in MATHWORKS® MATLAB R2021a on a laptop with a 1.8 GHz Intel Core i7 CPU
and 16 GB of RAM running on a Windows 10 operating system. To assess machine learning
techniques, different subsets of the dataset are employed for model training and testing. In
this step, the dataset is divided into train and test datasets, with 50% of the data used for
the training and 50% used for the test to show the robustness of the proposed method.

Firstly, the feature selection methods introduced in Section 4.2.5 are utilized to select the
most important features from the training dataset. Then, after training the models, the
performance measures are calculated using the test dataset. The accuracy, precision, recall,
and F;score of different classification models utilizing different feature selection algorithms
with associated time windows and overlapping configurations are shown in Table 4.2.

The time window and overlapping configurations indicate the highest accuracy for the
corresponding classification model and feature selection algorithm. In addition, the best
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performance (highest accuracy) is highlighted in bold for each classification model. The
presented results demonstrate that the proposed data-driven algorithm can automatically
recognize the tasks of an excavator with an accuracy of more than 99%. Moreover, it can be
concluded that the IMU sensors, their placements on moving parts of the machine, and the
motion variables are chosen correctly. The confusion matrices of the twelve classification
algorithms, which are introduced in Table 4.2, are shown in Table 4.3. Two classification
algorithms, including the SVM with MRMR feature selection algorithm, a time window of
20 s, and 0% overlapping, and the KNN classifier with MRMR feature selection algorithm,
a time window of 20 s, and 50% overlapping, have the highest accuracy of 99.62%. Each
matrix shows the number of correctly and incorrectly classified samples for four excavator
activities: loading (L), trenching (T), grading (G), and idling (I). The rows represent the
true classes (actual operations), and the columns represent the predicted classes, allowing
for detailed analysis of classification performance. Diagonal values indicate correctly
classified instances, while off-diagonal entries represent misclassifications. For example,
under the ReliefF feature selection method, the SVM classifier correctly identified 217
loading operations, misclassifying 2 as trenching.
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Figure 4.7: The pitch angles of the boom, arm, and bucket in two loading experiments
operated by experienced and inexperienced operators [177].
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4.3.3 Time Window Analysis

In this step, the effects of the time window on the accuracy of classification algorithms
are evaluated. The classification accuracy of the SVM classifier with the MRMR feature
selection algorithm using different configurations is presented in Fig. 4.8a. On average,
the time windows of 20 s and 10 s represent the highest and lowest accuracy in different
overlapping configurations, respectively. In Fig. 4.8b, the classification accuracy of the
KNN classifier with the MRMR feature selection algorithm using different configurations
is shown. On average, the time windows of 20 s and 10 s illustrate the highest and lowest
accuracy, respectively. The classification accuracy of the Naive Bayes classifier with the
ReliefF feature selection algorithm and the DT with the MRMR feature selection algorithm
are presented in Fig. 4.8c and Fig. 4.8d, respectively. On average, the time windows of 20 s
and 18 s illustrate higher performance compared to the time window of 10 s, 12 s, and 15 s.
In Table 4.4, the average classification accuracy of different classification algorithms for
different time windows is shown.

4.3.4 Overlapping Analysis

In this step, the effects of overlapping configuration on the classification algorithm are
analyzed. Figure 4.9a shows the classification accuracy of the SVM classifier with the
MRMR feature selection algorithm using different overlapping configurations. On average,
the overlaps of 75% and 25% demonstrate the highest and lowest classification accuracy,
respectively. The classification accuracy of the KNN classifier with the MRMR feature

Table 4.2: The performance measures for different classifiers with different configura-
tions.

Classification Feature Time Over- Metrics
models selection  window  lapping accuracy precision  recall  Fyscore
ReliefF 18s 50% 99.31% 99.33% 99.36%  99.34%
SVM MRMR 20s 0% 99.62% 99.59% 99.50% 99.55%
Chi-squared 20s 0% 99.24% 99.10% 99.50%  99.30%
ReliefF 20 s 50% 99.23% 99.18%  99.12% 99.15%
KNN MRMR 20s 50% 99.62% 99.54% 99.62% 99.58%
Chi-squared 18s 50% 99.31% 99.36% 99.28%  99.32%
ReliefF 20s 75% 98.93% 98.76% 98.91% 98.83%
NB MRMR 20s 0% 98.86% 98.94% 98.75%  98.85%
Chi-squared 20s 50% 98.85% 98.93% 98.65%  98.79%
ReliefF 20s 75% 98.25% 98.01% 98.41%  98.21%
DT MRMR 15s 75% 98.71% 98.85% 98.59% 98.72%
Chi-squared 18s 50% 98.11% 98.05%  98.37%  98.21%
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selection algorithm is illustrated in Fig. 4.9b. On average, the overlaps of 75% and 0%
represent the highest and lowest accuracy, respectively. The classification accuracy of the
Naive Bayes classifier with the RelieF feature selection algorithm and the DT classifier with
the MRMR feature selection algorithm are shown in Fig. 4.9c and Fig. 4.9d, respectively.
On average, the overlaps of 75% and 50% demonstrate the highest classification accuracy.
The average classification accuracy of different classification algorithms for different
overlapping configurations is shown in Table 4.5.

Table 4.3: The confusion matrices of different classification algorithms. The time win-
dow and overlapping configurations of the classification algorithms are shown in Ta-
ble 4.2.

Feature selection algorithms

Classification
models ReliefF MRMR Chi-squared
b
PP v T ¢ 1|L T G 1|L T G I
Tr¢
L¢ 217 2 0 0 100 O 0 0 98 1 1 0
T4 131 0 0 0 60 0 0 0 60 0 0
SVM
G*¢ 0 1 111 0 0 49 0 0 0 50 0
il 0 0 0 118 0 0 0 54 0 0 0 54
L 196 0 0 0 196 0 1 0 218 O 0 1
T 0 118 0 0 0 118 O 2 130 O 0
KNN
G 0 3 97 0 0 1 99 0 0 111 1
I 0 0 0 106 0 0 0 106 0 0 0 118
L 385 2 1 0 99 1 0 0 196 1 0 0
NB T 1 230 4 0 0 60 0 0 0 118 0 0
G 0 1 197 0 1 1 48 0 2 1 97 0
I 0 0 2 208 0 0 0 54 0 2 0 54
L 378 2 8 0 521 3 1 0 213 5 0
DT T 1 232 1 1 4 311 2 0 3 127 2 0
G 1 4 193 0 6 2 260 O 0 0 112 O
I 0 0 0 210 0 0 0 284 0 0 0 118

Tr stands for true.

Pr stands for prediction.

¢ L stands for loading operation.

4 T stands for trenching operation.
¢ G stands for grading operation.

I stands for idling.

~
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Table 4.4: The average classification accuracy of different classification algorithms in
different time windows (the best performance is highlighted in bold).

Classification  Feature Over- Time window [s]
models selection  lapping [%] 10 12 15 18 20
SVM MRMR [0,25,50,75] 97.38% 97.90% 97.77% 98.62% 99.18%
KNN MRMR [0,25,50,75] 96.35% 97.18% 97.82% 98.58% 98.81%
NB ReliefF [0,25,50,75] 91.81% 93.60% 97.37% 98.11% 97.97%
DT MRMR [0,25,50,75] 95.93% 95.49% 95.38% 96.84% 96.42%
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(a) The accuracy of the SVM classifier with the
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Figure 4.8: The analysis of the impacts of the time window on different classification
algorithms and feature selection algorithms. The combinations of classification meth-
ods and feature selection techniques are chosen based on the highest accuracy in Ta-
ble 4.2 [177].
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Figure 4.9: The analysis of the impacts of the overlapping configuration on different
classification algorithms and feature selection algorithms [177].

Table 4.5: The average classification accuracy of different classification algorithms in
different overlapping configurations (the best performance is highlighted in bold).

Classification ~ Feature Time Overlapping [%]
models selection window [s] 0 95 50 75
SVM MRMR [10,12,15,18,20] 97.94% 97.40% 98.37% 98.98%
KNN MRMR [10,12,15,18,20] 96.57% 97.60% 98.16% 98.67%
NB ReliefF [10,12,15,18,20] 95.05% 95.63% 95.83% 96.57%
DT MRMR [10,12,15,18,20] 94.92% 94.47% 96.99% 98.09%
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k-fold Cross-Validation
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Figure 4.10: Analysis of k-fold cross-validation. Each box chart displays following infor-
mation: median, lower and upper quartiles, and minimum and maximum values [177].

4.3.5 K-Fold Cross-Validation

The k-fold cross-validation is also conducted to show the robustness of the suggested data-
driven method. Cross-validation is a widely used approach in applied machine learning to
evaluate how well a model responds to unseen data. A dataset is randomly divided into
k folds with the same size. One fold is considered the test dataset, while the other k-1
folds are used to train the model. This scheme is performed k times and the performance
is calculated based on the average of the outcomes of the k test datasets. The results of
k-fold cross-validation (k equals 4) for the classification algorithms presented in Table 4.2
are shown in Fig. 4.10. The obtained results are approximately equal to the outcomes
presented in Table 4.2.

4.4 Conclusions

In this chapter, a data-driven method is designed to recognize the major tasks or duty
cycles of an excavator, including loading, grading, trenching, and idling. Initially, a dataset
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compromising orientation variables and angular velocities is gathered using a medium-
rated excavator equipped with four IMUs mounted on moving parts of the machine,
including bucket, arm, boom, and swing body. The tasks were performed by both an
experienced and an inexperienced operator in different operating conditions, such as
different types of material, swing angles, digging depths, and weather conditions. Four
supervised learning methods, including an SVM, a KNN, a DT, and a Naive Bayes classifier,
with three feature selection algorithms, including the ReliefF algorithm, MRMR algorithm,
and Chi-squared test, are used to automatically recognize tasks. Moreover, the effects of
different time windows and overlapping configurations on the classification accuracy are
assessed. The comprehensive analyses show the resilience and adaptability of the method
in real-world scenarios.

The proposed method can be a robust solution for automating excavator task recognition
to improve productivity, operational efficiency, safety, and control. Task recognition and
productivity monitoring systems can be integrated to show task-specific metrics, such as
task-dependent productivity, completion times for specific tasks, and equipment utilization.
Moreover, managers and operators are capable of monitoring progress and identifying
areas for improvement. Identification of behavioral patterns that may pose safety risks
allows for their incorporation into training programs, ensuring a proactive approach to
safety. For example, the system can trigger an alert for a corrective action if an operator
engages in unsafe task execution.

Task identification also plays a crucial role in improving collaboration between human
workers and automated elements. Task identification data can enhance the accuracy of
predictive maintenance for machinery by examining usage patterns, enabling proactive
scheduling, and reducing downtime. Analyzing task identification data also helps in recog-
nizing trends and patterns, providing valuable insights for making well-informed decisions
regarding resource allocation, equipment upgrades, and process improvements.

In the future, it is proposed to broaden this methodology to encompass other types of
HDMMs, including front-end loaders and compactors. The installation of motion sensors,
such as IMUs on various moving parts of a machine will enable the tracking of different
types of activities. For instance, IMUs can be attached to the bucket, boom, and cabin of
front-end loaders to accurately recognize various activities.

The proposed method faces several limitations and challenges. Firstly, the dataset’s dura-
tion is approximately 3 h, and both the test and training datasets are collected from the
same machine. To enhance the dataset’s effectiveness, it should be expanded by gathering
data from a variety of excavators with different sizes. Additionally, it is important to test
the resulting model with an operator whose data was not included in the training dataset,
as operators utilize machines in different manners. Ensuring the algorithm’s robustness
requires accounting for various operational conditions during data collection, such as
different swing angles, digging depths, material types, and weather conditions. Another
drawback of the suggested approach is the labeling of the dataset, which is a crucial and
time-consuming step in supervised learning techniques.
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5 Excavator Productivity Estimation in
Loading Operation

Cycle time and productivity estimation of an excavator in loading operations are highly
important since they help in project planning and scheduling, cost management, resource
allocation, performance monitoring, optimization opportunities, contractual obligations,
and competitive advantage. In this chapter, a method is designed to automatically deter-
mine the cycle time and operational effectiveness of an excavator in the loading operation.
The proposed method estimates the excavator’s actual, theoretical, and relative cycle times
in the loading operation. Firstly, a supervised learning method is suggested to identify
the excavator’s activities in the loading cycle using motion data obtained from four IMUs
installed on different moving parts of the machine. Then, the actual cycle time is deter-
mined based on the sequence of detected activities. In the next step, the theoretical cycle
time is automatically estimated based on the working conditions, such as swing angle
and digging depth. Two approaches are proposed to automatically estimate the swing
angle and digging depths. Afterward, the relative cycle time is calculated by dividing
the theoretical cycle time by the actual cycle time. The relative cycle time can efficiently
monitor the performance of an excavator in the loading operation.

5.1 Introduction

The loading operation stands as a pivotal task within the construction and mining indus-
tries. It entails utilizing the excavator’s manipulator to pick up and move materials from
one place to another, encompassing activities such as digging or gathering materials for
site preparation or loading them onto trucks for transportation. Precise estimation of an
excavator’s productivity during loading operations offers guidance to contractors and
project managers in effectively planning and budgeting projects. This can result in cost
savings by ensuring efficient resource utilization and timely project completion. Addition-
ally, productivity estimation aids in determining the appropriate size and type of excavator
required for the project, thereby optimizing equipment usage and minimizing downtime.
Also, deviations from expected productivity levels can be identified early, allowing for
corrective actions to be taken to keep the project on track. In many cases, construction
contracts have specific productivity requirements or performance metrics that contractors
must meet. Accurate estimation of productivity helps ensure that contractual obligations
are fulfilled, reducing the risk of penalties or disputes. Construction projects are often
bid on by multiple contractors, and productivity estimates can be a significant factor in
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Scooping

Swinging Empty

Figure 5.1: Excavator loading cycle [32].

winning bids. Contractors who can provide more accurate estimates and demonstrate
higher productivity levels are more likely to secure contracts and gain a competitive edge
in the industry [176].

The productivity of most cyclical types of machinery is commonly estimated by assessing
both the quantity of material and the cycle time of the operation. For excavators, the loading
operation encompasses four main steps: (1) scooping, (2) swinging loaded, (3) dumping,
and (4) swinging empty. Figure 5.1 illustrates the schematic of an excavator during the
loading task. The cycle time of an excavator in the loading operation depends on the
various working conditions [16], including:

1. Excavator
a) Size of the excavator
b) Bucket capacity
2. Relative position between the excavator and material
a) Digging depth
3. Relative position between the excavator and dumping position
a) Swing angle
b) Relative height
¢) Dumping condition
4. Site conditions
a) Type of material

b) Site congestion
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5. Skills of the human operator
6. Weather conditions

In the scooping activity, digging depth and type of material are critical factors. Deeper
excavation or harder materials inherently prolong the scooping sub-task [95]. Additionally,
the swing angle is a crucial parameter affecting the swinging time, both when loaded and
empty, thus impacting the overall cycle time. Furthermore, the size of the machine can
significantly affect the swinging time since smaller machines can generally swing faster
than larger machines. Moreover, the proficiency of the operator also plays an important
role in the excavator’s productivity [98].

As discussed in Chapter 2, multiple approaches have been presented to recognize the
activities of an excavator in the loading operation. CV and audio-based methods have many
challenges that have been completely described. Moreover, most presented sensor-based
methods recognize the sub-tasks of an excavator without estimating the cycle time and
productivity. The first critical challenge is the estimation of the actual cycle time of an
excavator in the loading operation. Only two research studies have been presented that
estimate the excavator’s cycle time. In [91], the cycle time of an excavator is estimated
with a low accuracy of 75.96%. This error can cause a significant error in productivity
estimation. In [92], the cycle time is estimated with an accuracy of 91.83%. In 20% of
cycles, the difference between the cycle time estimation and ground truth obtained from
videos is more than 3 s, which can bring about a huge error in productivity estimation.
Another significant challenge is the lack of a benchmark to evaluate the estimated cycle
time. Since the working conditions can affect the cycle time, the actual cycle time cannot
solely represent whether the machine is working at high or low performance. Therefore,
a reference is needed to assess the actual cycle time. To determine the theoretical cycle
time, the working conditions, such as swing angle and digging depth, should be estimated
automatically during the operation.

Designing an automatic method for the cycle time estimation of an excavator in the loading
operation is the primary purpose of this chapter. Initially, a machine learning-based method
is proposed to identify the excavator’s sub-tasks in the loading operation using IMUs’
measurements mounted on different moving parts of the machine. Then, based on the
sequence of identified activities, the cycle time is determined. The accuracy of estimated
cycle time using the presented method is approximately equal to 97%, which shows higher
accuracy compared to the proposed methods in the literature review. In the next step, to
estimate the theoretical cycle time based on the operating conditions, the online estimation
of the swing angle, digging depth, and information about the excavatability level of the
material in the operation are highly required. Finally, the relative cycle time is estimated
by dividing the theoretical cycle time by the actual cycle time. The performance of the
machine is divided into three classes (satisfactory, average, and poor performance) based
on the relative cycle time and simple thresholding.

Construction companies, contractors, and worksite managers can monitor and track the
operational effectiveness of each machine during the loading operation using the actual cy-
cle time and relative cycle time index. They have the capability to detect project challenges,
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address issues promptly, refine planning and operational parameters, promote efficient
resource utilization, enhance equipment usage, and accurately forecast future project
budgets. Additionally, the suggested algorithm could serve as a feature for construction
machinery manufacturers, facilitating automatic productivity monitoring. Researchers
could utilize the relative cycle time index to contrast the effectiveness of autonomous
solutions against human operators with varying levels of experience. Demonstrating that
autonomous operations yield higher productivity than manual ones is a crucial and chal-
lenging task. Furthermore, training institutions can utilize the provided data as feedback
to enhance the proficiency of human operators.

5.2 Methodology

Two important variables in defining productivity in the loading operation are the amount
of transferred materials and cycle time. Excavator weighing systems have already been
developed and are commercially available. Therefore, the development of a new weighing
method is not considered necessary, as the area is already mature. Instead, attention is
directed toward the estimation of cycle time, which remains relatively underdeveloped.
Firstly, the activity recognition method for an excavator in the loading operation is intro-
duced. The presented method is very similar to the task recognition method proposed
in Chapter 4. Then, the actual cycle time is estimated based on the sequence of detected
activities. In the next step, two methods are proposed to estimate the swing angle and
digging depth. The proposed methods employ the recognized activities. The theoretical
cycle time is calculated using the BML model [121], information about the excavatability
level of the material, and estimated swing angle and digging depth. Finally, the relative
cycle time is estimated by dividing the theoretical cycle time by the actual cycle time.

5.2.1 Activity Recognition

The initial step of the proposed method involves employing a supervised learning method
to recognize the excavator’s activities. The activities during the loading operation com-
prise (1) scooping, (2) swinging loaded, (3) dumping, (4) swinging empty, and (5) idling.
Motion sensors are employed to capture data concerning various movements and actions
performed by the excavator. Firstly, a dataset is collected to offline train classifiers. The
crawler excavator used in the operations has been shown in Fig. 4.2. The collected dataset
covers different working conditions, such as swing angles, digging depth, weather con-
ditions, and types of material. The swing angles vary from 60° to 120°, and the digging
depths increase up to 2 m. Two types of material, such as sand and gravel, are used in
the operations. Two operators with different levels of competence performed the loading
operations in different weather conditions during 18 months. In the experiments, opera-
tors were not given instructions on how to perform the tasks, reflecting real construction
situations. This was done to make the algorithms more robust and reduce the impact of
human behavior on the classification process.
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Four IMUs have been mounted on the bucket, arm, boom, and swing body of the excavator
to measure the orientation and angular velocities of the moving parts of the machine. The
configuration of IMUs on the machine has been illustrated in Fig. 4.5. The duration of
the dataset is around 75 min, which means that based on the sampling frequency f; of
200 Hz, approximately 900,000 data points have been collected for each channel of the
sensor. An inexperienced operator performed roughly 35% of the operations, and the rest
of the dataset was collected by an experienced operator.

In Chapter 4, motion variables obtained from IMUs have been completely described. The
joint angles and angular velocities of the machine parts are used as input data in the
activity recognition algorithm. The local angular velocities and orientation variables have
been demonstrated in Fig. 4.6. The input variables comprise the angular velocities of four
IMUs (3 axes per sensor unit), the local angular velocity of the boom (w), the local angular
velocity of the arm (ws), the local angular velocity of the bucket (w,4), the pitch angle of
the boom (0,), the pitch angle of the arm (65), and the pitch angle of the bucket (04).

In the next step, data windowing approaches are implemented to recognize sub-tasks or
short-term motions of an excavator. The overlapping configuration is chosen the same as
the task recognition. Nonetheless, the length of time window should be chosen smaller
compared to the task recognition method since a sub-task takes shorter than a task or a duty
cycle. In the method, a sliding rectangular windowing function with four different window
sizes (0.5, 1, 2, 3 s) and with four overlapping configurations (0%, 25%, 50%, and 75% overlap
between two consecutive windows) are used. In the next step, the data annotation step is
performed using the recorded videos to divide the dataset into five groups: (1) scooping,
(2) swinging loaded, (3) dumping, (4) swinging empty, and (5) idling. The extracted features
are completely the same as the task recognition algorithm introduced in Section 4.2.4. Next,
four different subsets of features, including (1) all features, (2) selected features using the
ReliefF algorithm, (3) selected features using the MRMR algorithm, and (4) selected features
using the Chi-squared test, are used to train the classification models. Four supervised
learning models, including a support vector machine (SVM), a k-nearest neighbor (KNN),
a decision tree (DT), and a Naive Bayes (NB), are trained using the collected dataset. All
performance metrics have been introduced in Section 4.2.7.

5.2.2 Actual Cycle Time Estimation

In the previous step, the processes of data collection and training of the classification
models have been outlined. The trained models can subsequently be deployed online to
identify the activities of excavators. In this step, the actual cycle time of an excavator
is determined by analyzing the sequence of activities within a work cycle. Initially, the
work cycle and cycle time should be defined. In [151], a definition for a work cycle of
construction equipment is presented: “A work cycle is an activity performed in a finite
time-frame by the equipment where all the states of the equipment are in the same range
at the start and the end of the work cycle”. The loading task comprises four sub-tasks,
including scooping, swinging loaded, dumping, and swinging empty. In [92], the cycle
time is defined based on the time between two consecutive anti-clockwise rotations if
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there is one clockwise rotation between them. In our proposed method, to mitigate the
effects of classification errors and increase the robustness, the cycle time is defined based
on the time between two consecutive scooping activities if there are at least one swinging
loaded activity, one dumping activity, and one swinging empty activity between them.
The accuracy definition, introduced in [92], is used to compare the results of the proposed
method with the literature review. The real cycle time or ground truth information is
obtained based on the recorded video by manually measuring the cycle times. The accuracy
of the estimated cycle time is computed by the ratio of deviation between the estimated
cycle time and real cycle time to the total real cycle time. The accuracy of cycle time
estimation is formalized by Eq. (5.1):

2:'1:1|ici - ti|

(5.1)
Z;l:l"ti

accuracycr =1 —

where accuracycr denotes the accuracy of cycle time estimation [—], #; is the estimated
cycle time [s], ¢; denotes the real cycle time [s], and n is the total number of cycles.

5.2.3 Theoretical Cycle Time Estimation

As mentioned earlier, relying solely on the actual cycle time may not effectively depict the
machine’s performance, given the various factors that can impact the excavator’s produc-
tivity. To assess or analyze the estimated actual cycle time, it is necessary to establish a
theoretical cycle time. This theoretical cycle time serves as a standard or comparison point
for evaluating the actual cycle time of an excavator. In this section, the theoretical cycle
time of an excavator in the loading operation is computed, taking into account factors such
as swing angle, digging depth, and the excavability level of the material. Construction
equipment manufacturers, Komatsu® [115] and Caterpillar® [117] have developed two
models aimed at calculating the theoretical cycle time and productivity of excavators. How-
ever, the proposed model by Caterpillar®, cannot be used in an automatic manner since it is
a descriptive model requiring human input. Additionally, an industry guideline introduced
an alternative model [121]. The BML guideline was developed collaboratively by the
Central Association of German Construction Companies (Zentralverband des Deutschen
Baugewerbes) and the Federation of the German Construction Industry (Hauptverband
der Deutschen Bauindustrie). In this study, the BML approach is adopted because it is
more conservative and offers a theoretical cycle time that aligns more closely with reality,
unlike the Komatsu model, which tends to be more optimistic [178].

The BML model formalizes the cycle time of an excavator in the loading operation through

Eq. (5.2):
t t X ! X !
th tical = linitial X 7
eoretica initia f;wing f;lepth

(5.2)
where tipeoretical denotes the theoretical cycle time [s], tjniriq Shows the initial guess of

theoretical cycle time [s], fuing is the swing angle factor [—], and fze,s is the digging
depth factor [—].
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Within the BML model, the initial guess of the theoretical cycle time t;,;;;4; is determined by
considering the heaped bucket capacity alongside the soil excavability categories outlined
in Table 5.1. The initial estimate of the theoretical cycle time for materials characterized
by high excavability, such as sand and gravel is formalized by Eq. (5.3):

2

V. %
CECE +4.19 X CECE
32 m3

Linitial _ 0.50 X
N ' m

+13.13 (5.3)

and the calculation for materials with medium and low excavability, such as hard compacted
clay, is determined by Eq. (5.4):

2

4 Ve
CECE | 3 30+ JCECE

Linitial
= -0.07 X 22 3

S m

+15.52 (5.4)

where Vegcg is heaped bucket capacity according to the standard of CECE. The BML model
does not provide an estimation for the theoretical cycle time of materials categorized as
having very low excavability [178], [152].

Next, the initial estimation of the theoretical cycle time is adjusted based on two factors
related to the swing angle and digging depth of the operation. In the loading process, the
swing angle refers to the horizontal angle between scooping and dumping positions. The
BML method approximates the swing angle factor f;,ing using Eq. (5.5):

fowing ~ 1.754 X 05,0"%%; 0y, € [45°,180°] (5.5)

Table 5.1: Material categories in the BML model.

Excavability Material

Loose or even compressed sand, gravel sand mix, gravel with
<15% (of mass) binding components and <30% stones of 63—

High 100 mm diameter, clay with organic components, soft, cuttable
such as sea chalk, rotting mud; piles with <30% stones of <200 mm
diameter such as rough gravel

Ground with solid components of mixed size (15-40% binding
components), soft, such as meadow loam or loam with <30%
stones of 63-100 mm diameter; clay with >40% binding compo-
nents, soft (various examples of clay or loam types)

Medium

Ground with solid components of mixed size (>30% stones of
63-100 mm diameter), stiff; piles with 30-60% stones of <200 mm

Low diameter or 30% stones of 0.01-0.1 m>, such as gravel at the bottom
of cliffs; clay with >30% stones of 63-100 mm diameter, stiff and
glutinous

Loosely packed stones that are brittle; rock that was blasted or
Very low ripped apart (edge lengths <300 mm); clay with very high dry
toughness and a lot of stone inclusions
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where 0, indicates the swing angle [°] of the operation. Variations of swing angle within
the range of [45°,180°] affect +10% variations in the cycle time.

In the BML method, the digging depth factor fzep:s for soil types categorized as low and
very low excavability is roughly determined using Eq. (5.6):

Faeptn = h"1%% hg > 1m, (5.6)

and for materials classified as high and medium excavability, the digging depth factor
faepen is approximately evaluated using Eq. (5.7):

faeptn = h"1%% hg > 1m (5.7)

where h; shows the digging depth [m] of the operation. When the digging depth h; is
less than 1 m, the digging depth factor fg,, is assumed to be one. As the digging depth
increases, it only negatively affects the cycle time, leading to an increase of up to 20% in
extreme cases (i.e., for hy greater than 8 m).

To automatically estimate the theoretical cycle time of an excavator during the loading
operation, it’s essential to have real-time automatic estimations of the swing angle and
digging depth at the end of each cycle. The following sections describe how the swing
angle and digging depth are estimated based on the identified excavator activities.

5.2.3.1 SwingAngle Estimation

Swing angle is a vital operational parameter that significantly affects the cycle time and
productivity of an excavator in the loading operation. In [176], a method is presented

ol

Scooping position Dumping position
| (average of cabin | (average of cabin
o encoder . encoder
measurments) measurments)
r» Scooping Swinging loaded Dumping —»| Swinging empty |- 1

Figure 5.2: Flowchart of methods for swing angle and digging depth estimations based
on activity recognition algorithm [174].
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that employs Otsu’s technique, known for achieving optimal thresholding by maximizing
variance between classes. In the section, an algorithm is introduced to estimate the swing
angle by utilizing cabin encoder measurements and the excavator activity recognition
algorithm. All excavators are equipped with cabin encoders, which provide measurements
specifying the horizontal angle of the excavator cabin during operation. The swing angle is
defined as the absolute deviation of horizontal angles between the scooping and dumping
positions. To determine the horizontal angles of the scooping and dumping positions in
the loading operation, the scooping and dumping activities need to be detected. The start
and end of each cycle are identified using the method proposed in Section 5.2.2. In each
cycle, four sets of activities occur (scooping, swinging loaded, dumping, and swinging
empty). The average of the horizontal angles (cabin encoder measurements) during the
identified scooping and dumping activities are considered as the scooping and dumping
positions, respectively. Figure 5.2 illustrates the flowchart of the method for swing angle
estimation.

5.2.3.2 Digging Depth Estimation

The digging depth is another crucial factor to consider in estimating the theoretical cycle
time. As the digging position becomes deeper, it requires more time to complete the
scooping task. In this study, digging depth is estimated based on both bucket position
estimation and the excavator activity recognition algorithm. As previously mentioned,
each cycle comprises four activities. The digging depth is determined as the minimum of
the vertical axes of the bucket position estimation during the identified scooping activities.
The scooping activity is recognized using the trained classification model, and the bucket
position is estimated using IMUs and the forward kinematics of the machine. The flowchart
of the method for estimating digging depth is depicted in Fig. 5.2.
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Figure 5.3: Excavator coordinate systems in Denavit-Hartenberg convention [153].
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The movement of the excavator’s manipulator is described using kinematic equations,
excluding the consideration of driving forces and torques. An excavator can be modeled
as an open-loop articulated chain comprising a boom, arm, and bucket. In an excavator, a
sequence of rigid bodies, referred to as links, are interconnected by revolute joints [154].
Figure 5.3 displays the forward kinematics of an excavator.

Each link has its own Cartesian coordinate system, which moves with the link itself. The
local coordinate system for each link is constructed based on the Denavit-Hartenberg (D-H)
convention (refer to Table 5.2), wherein the z-axis aligns with the direction of rotation
of the revolute joint, and the x-axis aligns with the adjacent joint within the same link.
Hence, the direction of the y-axis is determined using the right-hand rule [153]. The

Table 5.2: Denavit-Hartenberg parameters [153].

Linkl- di a; [24] 9,’

10 L 90° 6
2 0 L, 0° 0,
30 I3 0° 65
4 0 I, 0° 64

angle 0;, i € {1,2,3,4} are calculated using quaternion measurements, and the conversion
formula (Eq. (4.1)). In addition, the length [;, i € {1,2,3,4} are obtained from machine
specifications. Forward kinematic equations are employed to determine the positions of
the manipulator links based on the joint angles and lengths of the links. A transformation
matrix between two consecutive coordinate systems (from (i + 1), to i;;) on a link can be
expressed using the Denavit-Hartenberg convention:

cosBi.1 —cosajrsinbiy;  sinaip;sinfiyq  ajyq cos Oi4q

i _ |sinfiy  cosaipgcos By —sSinaiysinBiyq iy sin i (5.5)
i+1 = . .
! 0 sin ajyq COS Ujtq disq
0 0 0 1

where 'T;;; denotes the transformation matrix from (i + 1), coordinate system to iy,
coordinate system, 6;;; is the rotation angle about z;-axis, a;4; is the rotation angle of
z;-axis about x;y1-axis, d;jy; is the offset along the z;-axis, and a;;; is the length of the
link [153]. Any point in any local coordinate system can be represented in the origin
coordinate system using the coordinate transformation matrix as follows:

OpOT7 "p=OT1T,2T; .. .~ TP, (5.9)

where °P represents the position vector in the origin coordinate system, °T, denotes the
transformation matrix from the n;, coordinate system to the origin coordinate system,
and "P indicates the position vector in the n;; coordinate system [153].
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5.2.4 Relative Cycle Time Estimation

Finally, the relative cycle time is derived by comparing the actual cycle time to the theo-

retical cycle time:
Ltheoretical (5 10)

relative = '
actual

where t,¢41i0e Tepresents the relative cycle time [—], tpeorericar denotes the theoretical cycle
time [s], which is computed according to the model introduced in Section 5.2.3, and t4.4y41
shows the actual cycle time [s], estimated using the method outlined in Section 5.2.2. A
higher relative cycle time indicates better performance. This metric can be utilized by
worksite managers to assess both excavator and operation performance, enhancing project
planning and scheduling. Additionally, the relative cycle time can serve as feedback to
evaluate the proficiency and skill level of human operators.

5.3 Implementation and Case Studies

In this section, the presented method is evaluated using the dataset. Initially, classification
models are trained offline, and then, the method is applied and tested through two case
studies presented in Section 5.3.2. These case studies investigate the accuracy of cycle
time estimation, wherein swing angle, digging depth, theoretical, and relative cycle time
are all assessed. Finally, using the obtained relative cycle time index, the performance of
experienced and inexperienced operators is compared. The designed method has been
implemented using Statistics and Machine Learning Toolbox in MATHWORKs® MATLAB
R2021a on a laptop with a 1.8 GHz Intel Core i7 CPU and 16 GB of RAM running on a
Windows 10 operating system.

5.3.1 Classification Model Training and Evaluation

Initially, the accuracy of classifiers with different feature selection algorithms is examined.
Additionally, it assesses the effects of different window sizes and overlapping configurations

Table 5.3: Accuracy of different classifiers and feature selection algorithms: The num-
bers represent “the best accuracy (time window, overlapping configuration)”.

Feature selection Classification models

algorithms SVM KNN Naive Bayes  Decision Tree
All features 0.9203(3,75%)  0.9173(2,75%) 0.8915(2,25%) 0.9054(1,75%)
ReliefF 0.9438(2,75%) 0.9433(2,50%) 0.9129(2,75%) 0.9443(1,75%)
MRMR 0.9523(2,75%) 0.9356(2,75%) 0.9274(2,25%) 0.9371(2,75%)
Chi-squared 0.9041(3,0%)  0.9273(3,0%)  0.7727(3,0%)  0.9068(3,0%)
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Confusion Matrix
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Figure 5.4: Confusion matrix of SVM classifier and MRMR feature selection algorithm
with 2 s time window and 75% overlapping [174].

Table 5.4: Accuracy of the SVM classifier and MRMR feature selection algorithm with
different time windows and overlapping configurations.

Time window [s]

Overlapping
0.5 1 2 3
0% 0.9322 0.9397 0.9366 0.9136
25% 0.9327 0.9485 0.9433 0.9334
50% 0.9418 0.9404 0.9516 0.9385
75% 0.9189 0.9422 0.9523 0.9501

on classification accuracy. When comparing multiple data-driven modeling techniques,
different subsets of the dataset must be utilized for model training and testing. To achieve
this, the entire dataset was divided into training and testing subsets, with 70% of the
data allocated for training and the remaining 30% for testing purposes. The accuracy of
different classifiers and feature selection algorithms with the associated time window and
overlapping configurations is presented in Table 5.3. The SVM classifier with the MRMR
feature selection algorithm shows the highest accuracy. The MRMR feature selection
algorithm not only demonstrates superior accuracy compared to the ReliefF algorithm but

54



5.3 Implementation and Case Studies

also proves to be more cost-effective and entails lower computational complexity than
ReliefF. Table 5.4 displays the accuracy of the SVM classifier and MRMR feature selection
algorithm across various time windows and overlapping configurations. The highest
accuracy is attained when the time window is set to 2 s, with an overlapping rate of 75%.
Figure 5.4 depicts the confusion matrix of the proposed supervised learning algorithm
using the optimal configurations. The central matrix displays the number of correctly and
incorrectly classified samples for each excavator activity. The diagonal elements represent
correct classifications, while the off-diagonal elements show misclassifications between
activity classes. To enhance readability, a color gradient has been applied: darker blue cells
indicate a higher number of correctly classified instances, while lighter shades represent
fewer correct classifications. The right-hand column shows per-class recall (true positive
rate) and false negative rate, where darker blue indicates higher recall. The bottom row
shows per-class precision and false positive rate, using the same blue gradient to highlight
high precision.

Additionally, k-fold cross-validation (k equals 4) is conducted to demonstrate the robustness
of the proposed classification algorithm. The outcomes of k-fold cross-validation for

k-fold Cross-Validation
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Figure 5.5: Analysis of k-fold cross-validation. Each box chart displays the following
information: median, lower and upper quartiles, and minimum and maximum val-
ues [174].
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different classification models and feature selection algorithms are illustrated in Fig. 5.5.
The accuracy of the classification algorithms aligns closely with the results presented in
Table 5.3.

In the next sections, the trained classification model is employed to online recognize
machine activities. Then, the actual cycle time, swing angle, and digging depth are
computed based on the detected activities.

5.3.2 Case Studies

The performance of the presented method is demonstrated through implementation in
two case studies. Each case study comprises two experiments conducted by experienced
and inexperienced operators, with the digging depth being nearly zero due to the material
being on the ground surface. In the first case study, the swing angle is approximately
120°, with sand as the material type, while in the second case study, the swing angle is
around 60°, with gravel as the material type. Each experiment lasts approximately 5 min,
resulting in the collection of roughly 60,000 data points per sensor channel at the data
sampling frequency f; of 200 Hz. Further details are provided in Table 5.5. Additionally,
the operation is recorded using a camera to obtain ground truth for the cycle time.

Table 5.5: Specifications of case studies.

Case Study Operator Digging Depth  Swing Angle [°] Material Duration [min]

Inexp. 1¢ Inexperienced Ground surface 120° Sand 5.3
Exp. 1° Experienced  Ground surface 120° Sand 5.2
Inexp. 2 Inexperienced Ground surface 60° Gravel 5.4
Exp. 2 Experienced  Ground surface 60° Gravel 44

¢ Inexp. stands for an inexperienced operator.
b Exp. stands for an experienced operator.

5.3.3 Actual Cycle Time Estimation

Figure 5.6, displays the cycle time estimations for the first case study. As illustrated, the
cycle time in case study Exp. 1 which is conducted by the experienced operator is lower
than in case study Inexp. 1. It can have a notable influence on the overall productivity of
the operation. The cycle time estimations in the second case study are depicted in Fig. 5.7.
As anticipated, the cycle time of case study Inexp. 2 is higher than the estimated cycle time
in case study Exp. 2. The presented method demonstrates its effectiveness in accurately
estimating the cycle time, achieving an error of less than 1.5 s in both case studies. The
accuracy of cycle time estimations, as defined by Eq. (5.1), is shown in Table 5.6. In the
case studies, only 5 out of 66 cycles (approximately 7.5%) exhibit absolute error exceeding
1s.
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Figure 5.6: Cycle time estimations in the first case study (6, ~ 120°) [174].
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Figure 5.7: Cycle time estimations in the second case study (65, = 60°) [174].
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Table 5.6: Accuracy of cycle time estimations based on Eq. (5.1) for each case study.

Case study

Inexp.1 Exp.1 Inexp.2 Exp.2

accuracycr 09811  0.9777 09642  0.9717

5.3.4 Swing Angle Estimation

To compute the theoretical cycle time, estimations of the swing angle and digging depth
are needed. In this section, the swing angle is estimated utilizing the method described
in Section 5.2.3.1. Figure 5.8 presents the estimations of the swing angle for the first case
study. In this particular study, operators aimed to maintain the horizontal angle between
the scooping and dumping positions at approximately 120°. Notably, the experienced
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Figure 5.8: Swing angle estimations in the first case study (65, ~ 120°) [174].
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Figure 5.9: Swing angle estimations in the second case study (6, ~ 60°) [174].
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operator demonstrates adept control over the swing motion of the cabin, resulting in
minimal variations. Figure 5.9 displays the estimations of the swing angle for the second
case study. In this scenario, operators aim to maintain the swing angle around 60°.
The proposed method accurately identifies the scooping and dumping activities in both
scenarios, effectively estimating the swing angle.

5.3.5 Digging Depth Estimation

In this section, the digging depth of the operation is estimated utilizing the technique
outlined in Section 5.2.3.2. Figure 5.10 shows the digging depth estimations for the first
case study. The estimations are approximately zero, consistent with the fact that the pile
of material is situated on the ground surface. The digging depth estimation for the second
case study is depicted in Fig. 5.11. The method accurately estimates the digging depth
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Figure 5.10: Digging depth estimations in the first case study (0,,, ~ 120°) [174].
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Figure 5.11: Digging depth estimations in the second case study (0s,, & 60°) [174].
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during the operations. As anticipated, the experienced operator demonstrates greater
control over the bucket position, resulting in fewer variations in bucket movements.
Conversely, there are numerous fluctuations in bucket movements when the inexperienced
operator performs the task. Despite the significant difference in human operators’ skills,
the proposed supervised learning method effectively manages this challenge.

5.3.6 Relative Cycle Time Estimation

In this section, the theoretical cycle time is initially computed using the estimated swing
angle, digging depth, and the type of material. Subsequently, the relative cycle time is
determined based on the estimated and theoretical cycle times.

The theoretical, estimated, and relative cycle times for the first case study are illustrated in
Fig. 5.12. In the first case study, the theoretical cycle times for both experiments are nearly
identical due to similar operating conditions. In this figure, areas above 0.8 are colored
green, indicating satisfactory performance, while areas between 0.6 and 0.8 are colored
yellow, representing average performance. Conversely, regions below 0.6 are colored red,
indicating poor performance. The colors have been inspired by traffic lights to be easily
understandable for everybody. In the case study Inexp. 1, operated by the inexperienced
operator, most of the cycles exhibit relative cycle times in the yellow area, indicating
average performance. Conversely, in Exp. 1, operated by the experienced operator, nearly
all cycles show relative cycle times exceeding 0.8, representing satisfactory performance.
Figure 5.13 illustrates the relative, estimated, and theoretical cycle times for the second
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Figure 5.12: Relative cycle time estimations in the first case study (6, ~ 120°) [174].
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Figure 5.13: Relative cycle time estimations in the second case study (65, ~ 60°) [174].

case study. In Inexp. 2, operated by the inexperienced operator, the relative cycle time falls
within the yellow area, indicating average performance. However, in Exp. 2, the relative
cycle time demonstrates satisfactory performance.

5.4 Conclusions

This chapter proposes a method to estimate the actual, theoretical, and relative cycle
times of an excavator during the loading operation. Initially, a supervised learning algo-
rithm is introduced to recognize excavator activities, utilizing orientation variables and
angular velocities collected from four IMUs installed on different moving parts of the
machine. Multiple classification algorithms and feature selection methods are tested on
the collected dataset. In addition, the impacts of various time windows and overlapping
configurations on the activity recognition method are evaluated. The model can recognize
the activities with an accuracy of approximately 95%. Subsequently, the cycle time is
estimated based on the sequence of identified activities. Then, the theoretical cycle time is
calculated using the BML model and ongoing operating conditions to assess the actual
cycle time. The calculation of the theoretical cycle time needs automatic estimations
of swing angle and digging depth. Two approaches are presented for these estimations
based on recognized activities. Relative cycle time is then derived from the actual and
theoretical cycle times, serving as an index of operational effectiveness, with higher values
indicating superior performance. The method is evaluated through implementation in
two case studies performed by experienced and inexperienced operators. The working
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conditions, such as swing angle and type of material, are varied in the two case studies.
Results demonstrate that the method can estimate the actual cycle time, with an average
accuracy of approximately 97%. Furthermore, relative cycle time comparisons highlight
differences between experienced and inexperienced operators, facilitating classification
into three performance levels (satisfactory, average, and poor) via simple thresholding.

The suggested approach can be employed across various excavators for automated moni-
toring of cycle time, productivity, and operational efficiency. By incorporating data on
the quantity of material, the concept of actual, theoretical, and relative cycle times can
be extended to actual, theoretical, and relative productivity. These approaches have the
potential to significantly reduce cost in the overall process by optimizing machine usage.
They provide worksite managers with valuable insights into the productivity of each
machine and its operators, enabling them to enhance operator training and streamline
processes. Future plans include expanding the presented method to other applications,
such as trenching and grading operations for excavators, as well as short and long loading
cycles for front-end loaders.

Currently, there is a substantial demand for automated monitoring of productivity and
performance in HDMMs. Based on existing data, there seems to be a lack of automated
methods for evaluating the relative cycle time and operational efficiency of an excavator
during loading operations under current operational circumstances. The proposed method
offers automated monitoring of an excavator’s cycle time and performance during loading
operations. This data enables worksite managers and contractors to promptly identify
issues, leading to significant reductions in operation time, improved scheduling, and
enhanced productivity. Additionally, the method accounts for how operating conditions,
such as swing angle and digging depth, can impact cycle time and productivity, marking
another innovative aspect of the proposed method.

This study gathers a dataset by operating one excavator with both an experienced and
inexperienced operator at a private worksite to train the classification models. The same
machine is used to collect the test dataset. A significant limitation of the proposed method,
as well as data-driven algorithms in general, is the limited amount of data available.
Expanding the dataset is crucial, using data gathering from excavators of different sizes
operated by individuals in varying competency levels. To enhance accuracy and consider
differing operating conditions, data collection should encompass diverse swing angles,
digging depths, material types, and weather conditions since the variables significantly
impact the accuracy of the algorithm and the machine’s productivity. Additionally, a
notable limitation is the labeling of the dataset, a fundamental time-intensive process for
supervised classification algorithms.

Material type plays a significant role in influencing both the cycle time and productivity
of an excavator during loading operations. However, a limitation of the proposed method
is the assumption of knowing the excavability level of the material. Project managers or
operators should provide this information to the system. An artificial intelligence (AI)-
driven approach for automatically identifying materials on construction sites could offer a
promising solution, addressing certain challenges in productivity estimation algorithms.
Another crucial variable to estimate during loading operations is the quantity of material
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handled in each cycle. This can be accomplished by estimating the weight of material
in the bucket through dynamic bucket payload estimation methods or by estimating the
volume of material using advanced sensors, such as LiDAR. Typically, bucket volume
estimation algorithms are more expensive and intricate, and they tend to offer lower
accuracy compared to dynamic bucket payload estimation methods.

63






6 Excavator Productivity Estimation in
Trenching and Grading Operations

In this chapter, two automatic methods are proposed to automatically estimate the pro-
ductivity of an excavator in the trenching and grading operations. Firstly, a grid-based
height map from working areas is obtained using a Livox Horizon® LiDAR sensor and
localization data from the Global navigation satellite system (GNSS), and IMUs. In addition,
BIM is employed to obtain information regarding the designed model and required accu-
racy. The productivity is determined based on the map comparison between the working
areas and the target model. The obtained information can help worksite managers and
contractors to analyze the productivity of each individual machine and enhance planning
and time-scheduling.

6.1 Introduction

As described in the previous chapter, conventional manual productivity monitoring meth-
ods are time-consuming, costly, labor-intensive, and prone to errors. Additionally, in
grading and trenching tasks, the quantity of material moved does not matter; but, preci-
sion within specified tolerances is crucial [165]. Hence, there is a need for an automated
method to estimate the productivity of HDMMs in grading and trenching operations,
which depends on predefined target models [16], [147].

In a grading operation, an excavator is employed to level and refine the ground surface,
often for building or landscaping objectives. This preparation can involve leveling a site
for construction or creating an even surface for paving. The excavator utilizes its bucket
to shift and distribute material, ensuring a smooth and level terrain. Unlike other tasks,
grading demands heightened precision, typically within +0.05 or +0.1 m, and in certain
instances, accuracy as fine as +0.02 m is necessary [165]. Figure 6.1 depicts an excavator
engaged in a grading task. The excavator’s productivity in this operation is significantly
influenced by various factors such as the type and condition of the material, the desired
surface’s size and complexity, the required level of accuracy, the excavator’s size and
capabilities, the specifications of the bucket, and the proficiency of the operator.

Productivity assessment should align with the goals of the duty cycle. Typically, the
quantity of material and the cycle time are two crucial elements in the productivity
definition of the most cyclical types of machinery. While quantifying an excavator’s
productivity by material moved per time unit is common, it cannot be used for grading
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Figure 6.1: The grading operation using an excavator [169].

tasks. The quality and time of the grading operation are given utmost priority by worksite
management since only a small amount of materials are added or removed. Therefore,
material volume alone fails to adequately capture the operation’s productivity. In this
study, excavator productivity in grading tasks is quantified by the area of the graded

surface per time unit:
a

Qgrading = ? (6.1)

where Qyyqqing indicates the excavator’s productivity in the grading operation [m?/s], a is
the area of the graded surface [m?], and ¢ is the time [s].

Trenching operations entail the use of an excavator to dig trenches in the earth for laying
underground utilities, such as water and sewer pipes. The operator utilizes the excavator
to dig into the ground, shaping a trench to meet specific size and depth requirements.
Various factors play a crucial role in determining the productivity of an excavator during
trenching operations. These include the excavator’s size and capabilities, the type and
condition of the ground, the operator’s proficiency and experience, the trench’s depth
and width requirements, and the type and size of the bucket. In trenching operations,
contractors commonly estimate productivity based on the linear length of the trench per
time unit [117], [155], [156]. Figure 6.2 depicts the trenching operation conducted with an
excavator. In this study, productivity in the trenching operation is defined as the length of

the trench per unit of time:

!
; (6.2)

where Qrenching indicates the excavator’s productivity in the trenching operation [m/s],
I shows the length of the trench [m], and ¢ is the time [s]. Productivity depends on

Qtrenching =

66



6.1 Introduction

Figure 6.2: The trenching operation using an excavator [170].

several factors, including the type of material, swing angle, bucket size and type, cross-
sectional area of the trench, the skill of the human operator, and weather conditions. This
productivity definition enables contractors and managers to monitor operation productivity
effectively. It aids in estimating the time required to finish trenching work and determining
the number of excavators needed to adhere to project deadlines. Furthermore, worksite
managers can utilize the estimated productivity to plan future projects.

Traditionally, progress tracking and construction site surveys have relied on manual
methods performed by surveyors. However, the demand for automated monitoring tools
has led to the integration of 3D sensing technologies for the precise and accurate collection
of on-site data. By combining this data with a BIM-based planned model, project progress
can be effectively assessed [136].

According to the literature review presented in Chapter 2, there is a noticeable gap in re-
search focusing on integrating real-time data with models to provide insights into ongoing
activities on construction sites. Additionally, existing studies predominantly emphasize
the quantity of material as a primary concern. Several key challenges identified in existing
studies include the absence of input from the construction industry regarding their specific
requirements and practical use cases, inadequate integration with BIM systems, and the
failure to develop efficient visualization tools for assessing the performance of construction
equipment. Furthermore, there is a notable lack of automated approaches for assessing
productivity during grading or trenching operations utilizing BIM. Quality and accuracy
have the highest priority in the grading and trenching operations and must be taken into
account.
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This study introduces two innovative algorithms for estimating the actual productivity of
an excavator in grading and trenching operations, leveraging target models derived from
BIM. The productivity metrics for grading and trenching operations are defined as the area
of graded surface per unit of time and the length of the trench per unit of time, respectively.
A LiDAR sensor installed on top of the excavator is employed to map the surrounding
areas using an elevation terrain mapping technique. The positions of the bucket, arm, and
boom are estimated utilizing the excavator’s forward kinematics and IMUs mounted on
different moving parts of the excavator. This allows for the removal of redundant points
resulting from the movements of the excavator’s manipulator. Furthermore, BIM provides
the designed surface and trench models. The algorithm compares the acquired actual maps
with the desired model to compute productivity, ensuring that the margin of error remains
within the specified accuracy threshold. Finally, the methods are tested by implementation
on a real dataset. The dataset is gathered using a medium-rated excavator in a private
worksite, and the operations are conducted by a skillful operator. The outcomes indicate
that the proposed methods can efficiently estimate the actual productivity of an excavator
and monitor the operation progress.

This study makes a notable contribution to the construction domain by introducing an
automated approach for estimating excavator productivity in grading and trenching tasks.
The research demonstrates the efficiency of this method in accurately estimating and mon-
itoring productivity, providing valuable assistance to project managers in tracking project
progress. It streamlines project management processes, facilitates cost estimation and
budgeting, and overcomes the challenges associated with manual data collection. Further-
more, the study highlights the underexplored potential of leveraging BIM in productivity
estimation algorithms for HDMMs, emphasizing the significance of precision and quality
in grading and trenching tasks, rather than merely the material quantity. Overall, this re-
search offers a promising solution to improve cost-effectiveness, minimize environmental
footprint, and elevate management strategies in earth-moving operations.

6.2 Methodology

This section provides a comprehensive description of the proposed techniques. Initially,
it details the process of elevation terrain mapping, leveraging LiDAR sensor data, GNSS,
and IMUs to cover the working area of the excavator. Additionally, the algorithm uses a
forgetfulness scheme [157] to adapt to dynamic conditions efficiently. Next, the algorithm
estimates the positions of the excavator’s revolute joints to eliminate the manipulator
from the 3D point clouds. Subsequently, the concept of BIM and its benefits are elaborated.
Lastly, productivity estimation involves comparing the heights between the desired model
and the actual map from the surrounding areas. Given the different productivity definitions
for grading and trenching, two methodologies are presented for calculating productivity.
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6.2.1 Elevation Terrain Mapping

In this method, acquiring a height map of operational zones is crucial for assessing the
excavator’s productivity in grading and trenching tasks. Typically, this map is generated
by integrating sensor data from LiDAR, stereo cameras, and radio detection and ranging
(RADAR), along with localization information from the GNSS, IMUs, or wheel odometry.
A common data representation for characterizing a robot’s environment is the elevation
map. Each cell within a grid-based height map represents the terrain’s height within
that cell relative to a designated reference level, such as elevation above sea level. The
accuracy and precision of localization data and sensor calibrations greatly influence the
map’s accuracy in the global frame [158].

A LiDAR sensor is a typical mapping tool. It captures measurements in its Spherical
coordinate system and transforms them into a global Cartesian coordinate system to
create a 3D point cloud of spatial data. However, errors can occur in this transformation
process if the LIDAR sensor’s actual position and orientation differ from the measured
values. The final elevation map is typically constructed through a series of transformations,
from the sensor’s coordinate frame to the machine’s body frame and eventually into the
global frame. However, the cumulative effect of minor transformation errors can lead to
substantial inaccuracies in the resulting map.

6.2.1.1 Transformation

To utilize LiIDAR measurements for mapping purposes, the data initially provided in
the sensor’s Spherical coordinate system must be transformed into point clouds in a
global Cartesian coordinate system. This transformation is achieved through a series
of coordinate transformations. Three frames A; € {g, m, s} indicate the main frames in
coordinate transformations where g, m, and s represent the global, machine, and sensor
frames, respectively. An affine coordinate transformation is formalized by Eq. (6.3):

. IR, Jip;

i _ i i

T, = [leg ! ] (6.32)
R Vo1, 70i, Y1) = Ryout (" 01) Rpiten (76:) Ryaw ("41) (6.3b)

IP; = [Pxi, Ty V2] (6.3¢)

where /T; shows the 4 by 4 transformation matrix from i frame to j;; frame, /R; indicates
the 3 by 3 rotation matrix from i, frame to j;, frame, /P; represents the 3 elements
translation vector from iy, frame to j,, frame, R,oy; (“¢;) is the rotational matrix around the
x-axis, Rpitch (j Gi) indicates the rotational matrix around the y-axis, Rya (j g&,) shows the
rotational matrix around the z-axis, /¢;, /0;, and /iJ; represent roll, pitch and yaw angles,
respectively [159].

A single LiDAR measurement is represented by either Spherical coordinates (r, 6, ¢)
or Cartesian coordinates (x,y,z). The relationship between Spherical and Cartesian
coordinates is illustrated in Fig. 6.3. The point 9P in the global frame is calculated utilizing
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Figure 6.3: Relationship between Spherical coordinates and Cartesian coordinates [171].

the point °P in the sensor frame and a chain of transformations:
Ip =9T,"T;°P, (6.4)

where ™T; shows the transformation matrix from the sensor frame to the machine frame
and 9T, indicates the transformation matrix from the machine frame to the global frame.
The transformation matrix from the sensor to the machine is acquired through a target-
based calibration method. During calibration, the frames of the sensor and the machine
are precisely aligned using spherical targets with known dimensions and positions relative
to the machine frame. These targets serve as reference points, and corresponding points in
both the sensor and machine coordinate frames are required to compute the transformation
matrix [160]. The transformation matrix from the machine frame to the global frame
is obtained using IMU and GNSS measurements. This method integrates the machine’s
acceleration and angular velocity data from the IMU, along with position data from
GNSS (latitude, longitude, and altitude), using an extended Kalman filter (EKF). By fusing
information from multiple sensors, this approach ensures a high-accuracy and drift-free
estimation of the machine’s position in the global frame.

Initially, the EKF employs a mathematical model, known as the “priori” estimate, to predict
the current state of the machine. Subsequently, it updates this estimate by comparing
it with the current sensor measurements, generating a “posteriori” estimate through a
process known as the measurement update. This update involves applying the Kalman gain
to weigh the relative contributions of the a priori estimate and the sensor measurements.
This prediction and update cycle is iteratively performed at regular intervals using the
latest sensor data [161].

In a 2D grid, known as a height map, the average and variance of heights are recorded
within individual cells. To construct this height map, each point within the 3D point cloud
is allocated to a specific cell based on its x and y coordinates. Subsequently, the z coordinate
values of all 3D points assigned to a particular cell are treated as new measurements for
that cell.

Employing a Bayesian updating approach, the existing estimation within a cell is adjusted
based on the new measurements. The proposed algorithm incorporates a forgetfulness
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scheme [157] to handle dynamic conditions effectively. The height observations z; are
modeled using a Gaussian distribution N(z;, aft). Using the observation z; recorded at

time t and the Kalman filter, the height estimate his updated as follows:

n 1 n
(1) = ——— (azzth(t ~1)+0? (H)zt) , (6.5)
2 T h(e-1)
1
2 _
T = T (6.6)
O-fz(t—l) 9zt

The primary impact originates from the latest measurements. The update procedure
escalates the variance of the current estimate proportionally to the time elapsed between
the prior and current measurements. Points with variance exceeding a predefined threshold
are excluded from processing, effectively filtering out uncertain information [159]. In
the subsequent stage, the height map undergoes cropping using a rectangular filter. The
dimensions of this filter are determined based on the excavator’s maximum digging reach
and width, ensuring coverage of the entire working area.

6.2.1.2 Revolute Joints’ Positions

As the LiDAR sensor is mounted on top of the excavator to map the working area, the
presence of the boom, arm, and bucket adds extra points that do not accurately reflect
the ground’s height. Furthermore, the dynamic movement of these components means
their locations are not fixed. Therefore, it is necessary to eliminate these extra points
from the acquired point clouds. In the proposed method, the positions of the excavator’s
revolute joints are initially estimated, followed by the removal of points in proximity to
the estimated positions. To determine the positions of the revolute joints, the forward
kinematics of an excavator introduced in Section 5.2.3.2 are employed.

Figure 6.4: Schematics of the modeled boom, arm, and bucket using cylinders [175].
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Next, each link is modeled as a simple cylinder, where the axis of the cylinder corresponds
to the line connecting two adjacent coordinate systems. All cylinders have a constant
radius value. The schematics of the modeled boom, arm, and bucket are illustrated in
Fig. 6.4. Points that intersect with both the cylinders and the point clouds are discarded,
leaving behind the remaining points for use in the elevation terrain mapping process.
Occasionally, when the bucket is in close proximity to the ground, some ground points
may be removed. However, this is not an issue since as the bucket moves away from the
surface, the previously obscured area becomes visible and can be incorporated into the
height map.

6.2.2 Building Information Modeling (BIM)

BIM is a methodology used to generate and manage digital representations of both the
physical and functional aspects of construction projects throughout their entire lifespan.
These models encompass detailed information about the project’s geometry, construction
elements, systems, and various components. Although BIM has been in development since
the 1970s, its widespread adoption only occurred in the early 2000s. BIM is supported by a
wide range of technologies and software tools to facilitate its implementation and usage.
The initial stage of the BIM process involves creating a 3D model of the construction
project, which is continuously revised to incorporate alterations and updates throughout
the design and construction phases. BIM enables visualization of the construction project
and facilitates simulation of its performance. Furthermore, it allows the estimation of costs
and time requirements for the project, along with identifying and resolving any potential
issues or conflicts [108], [136].

Furthermore, Infrastructure BIM, often referred to as InfraBIM, encompasses the appli-
cation of BIM principles and methodologies in the planning, design, construction, and
maintenance of infrastructure projects. InfraBIM finds applications across various infras-
tructure projects such as roads, bridges, tunnels, airports, rail systems, as well as water
and wastewater treatment facilities. InfraBIM facilitates real-time monitoring of progress
by comparing as-built data with the initial design. Additionally, it aids in monitoring
resource allocation and utilization, thereby ensuring efficient use of resources throughout
the project lifecycle. Moreover, it can enable the integration of various disciplines and the
coordination of intricate systems, fostering collaboration and communication among stake-
holders, boosting efficiency and overall project quality, and streamlining decision-making
processes while minimizing errors and rework [172], [162].

Currently, the integration of BIM and machine control systems, such as Xsite® PRO 3D, can
greatly facilitate construction projects. The Xsite® PRO 3D system is depicted in Fig. 6.5.
Using machine control systems, operators can efficiently and precisely execute tasks by
comparing the position of the bucket tip with the target model. These target models are
designed by construction professionals utilizing 3D design software programs.
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Figure 6.5: Xsite® PRO 3D system that is installed in the excavator cabin [173].

6.2.3 Productivity Estimation

In this section, two approaches are introduced for estimating the actual productivity of
excavators in grading and trenching operations. These algorithms begin by designing a
target model using BIM, and then the operator executes the task according to this model.
The Xsite® PRO 3D system, located within the cabin, assists the human operator in aligning
the bucket tip position with the target model. Concurrently, the elevation terrain mapping
algorithm continuously updates the height map of the working areas at regular intervals
during operations. These methodologies calculate productivity by comparing the desired
model with the actual maps obtained from the surrounding areas.

6.2.3.1 Grading Operation

During the grading operation, it is crucial that the height difference between the initial
and target surfaces is less than the bucket’s height. If the height difference is more than
the bucket’s height, preliminary digging operations become necessary. In the proposed
approach, initially, a region of interest (ROI) around the i;; point of the desired model is

o Actual point

;| : .
- d »| ® Desired point

d Grid Sizel2

Figure 6.6: The desired and actual points within the ROI in the grading operation [175].
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Figure 6.7: Flowchart of the productivity estimation in the grading operation [175].

selected. The point is located in the center of the square-shaped ROL The size of the ROI
is equal to the grid size of the target model. Subsequently, the actual points inside the
defined ROI are identified. A simplified schematic of desired and actual points inside an

ROl is illustrated in Fig. 6.6.
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The desired height, denoted as Zs;req, corresponds to the z coordinate value of the i,
point in the model. Equation (6.7) formalizes the average height of actual points within

the ROLI:
Z?]ﬂzj
Zactual = Ta ] € {13 23 33"'9N}: (67)

where Z,.1,q1 shows the average actual height, z; denotes the z coordinates of the j
point within the ROL and N indicates the total number of points within the ROI The
flowchart of the presented method is illustrated in Fig. 6.7. In this method, the ROI area
is added to the productivity calculation when the point has not been labeled as a valid
point yet, and the deviation between the actual and desired height values falls below the
specified accuracy threshold. Moreover, it is necessary to verify the current height of a
point previously validated, as it could have altered. If the error exceeds the designated
accuracy level, the point is marked as unaccepted, and the ROI area is subtracted from the
productivity calculation. This scenario could lead to negative productivity, indicating that
the error exceeds the threshold.

6.2.3.2 Trenching Operation

As previously outlined, the actual productivity of the trenching operation is defined as the
length of the trench per unit of time. In this method, the ROI represents a narrow strip of
the trench. Figure 6.8 provides a basic illustration of the desired and actual points within
an ROI in the trenching operation. The desired height Z,;.q for a strip corresponds to
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Figure 6.8: The desired and actual points within the ROI in the trenching opera-
tion [175].

the average of the z coordinates of desired points within the ROL It is computed using

Eq. (6.8): N

7 _ Zl’=lzi- . M
desired = T; i€{1,23,...,M}, (6.8)

where z; shows the z coordinates of i;; desired point within the ROI, and M indicates the
total number of the desired points inside the strip. The average height of actual points
inside a strip is calculated using Eq. (6.9):

N_lzj
Zactual = J_T> ] € {15 2> 3’ . '5N}> (6.9)

where Z,.4,q1 indicates the average actual height, z; denotes the z coordinates of j;; actual
point inside the ROIL and N shows the total number of the actual points within the ROL
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Figure 6.9: Flowchart of the productivity estimation in the trenching operation [175].

Figure 6.9 illustrates the flowchart of the proposed method for estimating the actual
productivity of an excavator in trenching operations.
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In the algorithm outlined, the length of a strip contributes to the productivity estimation if
the strip has not been previously accepted as a valid strip and if the deviation between the
average actual and desired heights falls below the specified accuracy threshold. Addition-
ally, the actual heights of previously validated strips must be verified for potential changes.
If the error exceeds the specified accuracy threshold, the strip’s length is deducted from
the productivity estimation, and the strip is labeled as an unaccepted strip. This scenario,
where the error exceeds the required accuracy, results in negative productivity.

6.3 Results

In this section, the effectiveness of the proposed methods is illustrated through their
applications in grading and trenching operations. Initially, the sensor setups and data
acquisition procedure are elaborated. Subsequently, the actual and aggregate productivity
of the excavator in both grading and trenching tasks are estimated. The suggested methods
have been implemented using MATHWORKS® MATLAB R2021a on a laptop with a 1.8 GHz
Intel Core i7 CPU and 16 GB of RAM running on a Windows 10 operating system.

6.3.1 Data Collection Procedure
During the tests, data was collected using a Komatsu® PC138US excavator. The crawler
excavator utilized in the experiments is depicted in Fig. 4.2. A Livox Horizon® LiDAR was

mounted on top of the excavator cabin, providing a field-of-view (FOV) of 25.1° vertically
and 81.7° horizontally. The LiDAR’s coverage area was aligned with the area that the

:::ROS
<X

NVIDIA.

MATLAB

CAN bus Ethernet connection

S S SO S

IMU||IMU| .. [|IMU| |GNSS| |LiDAR

Figure 6.10: Schematic of various connections in the excavator [175].
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bucket could reach. Data collection took place at a private worksite without any active
construction activity. The experiments were conducted by a skilled operator, and two types
of materials, clay and a mix of sand and gravel were used for the grading and trenching
operations, respectively.

The data from the excavator is collected using the robot operating system (ROS) and the
MATHWORKs® SIMULINK model. ROS serves as a communication interface that ensures
seamless compatibility between programs written in various languages and operating on
diverse platforms [163]. This communication framework facilitates the access of various
components to different measurements and variables, including the height map and the
positions of the revolute joints. Figure 6.10 illustrates the schematic of the connections
between different sensors and processors. In this setup, the NVIDIA® Jetson AGX Xavier
functions as the ROS master, while Simulink® generates and links its own ROS node to it.
IMU measurements are transmitted via the CAN bus at a sampling frequency f; of 200 Hz.
To connect Simulink® to the CAN bus, a Kvaser leaf light CAN to USB interface is used.
Ethernet connections are utilized to link the LiDAR, GNSS, NVIDIA® Jetson AGX Xavier,
and Simulink® to the ROS framework. Figure 6.11 depicts the configuration of the IMUs,
GNSS, Xsite® PRO 3D, and LiDAR sensor on the excavator.

Xsite Pro 3D

IMUs

Figure 6.11: The configuration of IMUs, GNSS, Xsite® PRO 3D, and LiDAR sensor on the
excavator [175].
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6.3.2 Grading Operation

Initially, the operator inside the excavator’s cabin utilizes the Xsite® PRO 3D to design a
surface as the target model for the grading operation. Subsequently, the 3D-Win® software
program is utilized to generate a 3D point cloud. Figure 6.12 displays the 3D point cloud of
the desired model in the grading operation, representing a roughly 3 m X 4 m rectangular
surface. The desired surface is set to be 0.5 m deeper than the ground surface, and the
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Figure 6.12: The target model designed in BIM in the grading operation [175].
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Figure 6.13: The productivity of the excavator in the grading operation [175].
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slopes of the desired surface and the initial terrain are both equal to zero. In the operation,
the BIM model’s required accuracy and the point cloud’s grid size are both set to 0.1 m.

The elevation map from the surrounding areas is updated at intervals of 5 s. Figure 6.13
depicts the actual productivity of the excavator in the grading operation. As shown, the
productivity occasionally falls below zero. Negative productivity arises when the deviation
between the desired and actual heights exceeds the specified accuracy threshold. For
instance, this occurs when a large volume of material spills from the bucket onto a section
that has already been graded or when the bucket digs too deeply, leading to an error that
exceeds the threshold.

Figure 6.14 illustrates the aggregate productivity of the excavator during the grading
operation. The total area of the target model is approximately 12 m?. In this operation, the
average actual productivity is approximately 0.037 m?/s. In certain parts, the aggregate
productivity experiences a decline, primarily due to instances of negative productivity
in the operation. Towards the end of the operation, the aggregate productivity aligns
closely with the entire area of the target model. It means that almost in the whole area, the
deviation between the target model and the actual map is within the specified accuracy
threshold. Figure 6.15 depicts the progress of the operation at four different time points.
Areas where the error exceeds the specified accuracy threshold are highlighted in red,
while those with errors within the accuracy threshold are depicted in green. Using the
described algorithm, both managers and contractors gain a convenient means to monitor
productivity and track operational progress. This productivity data proves beneficial for
project managers in scheduling tasks and conducting cost analyses. Additionally, the
comparison of the machine’s productivity to industry benchmarks or other machines
offers insights into potential productivity enhancements and efficiency optimizations.

Aggregate Productivity
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Figure 6.14: The aggregate productivity of the excavator in the grading operation [175].
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Figure 6.15: Progress monitoring during the grading operation: (-) green points indicate
the area where the error is less than the required accuracy, and (+) red points represent
the area where the error is higher than the required accuracy [175].

Furthermore, human operators can leverage the provided feedback to improve their skills
and execute operations with high accuracy in a short time.

6.3.3 Trenching Operation

In the second use case, the performance of the suggested method is demonstrated through
its application in the trenching operation. Initially, a target model is designed to align with
the project’s specifications and requirements, utilizing the Xsite® PRO 3D system installed
inside the excavator’s cabin. Subsequently, the 3D point cloud representing the desired
trench is generated using the 3D-Win® software, as depicted in Fig. 6.16. The trench’s
dimensions include a depth of 1 m and a width of 0.825 m. The total length of the trench
is approximately 23.8 m. In the trenching operation, the BIM model’s required accuracy
and the elevation map’s grid size are equal to 0.1 m.
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Figure 6.16: The target model designed in BIM in the trenching operation [175].
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Figure 6.17: The productivity of the excavator in the trenching operation [175].

As previously described, the actual productivity in the trenching operation is defined as
the length of the trench excavated per unit of time. The excavator’s actual productivity in
the trenching operation is depicted in Fig. 6.17. Similar to the grading operation, instances
of negative productivity are observed, typically occurring when materials spill from the
bucket or trench sides or when the operator digs too deeply.

Figure 6.18 illustrates the aggregate productivity of the excavator in the trenching operation.
On average, the excavator achieves a productivity rate of approximately 0.01 m/s. The
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Figure 6.18: The aggregate productivity of the excavator in the trenching opera-
tion [175].

aggregate productivity at the end of the operation does not match the entire length of
the trench. This discrepancy arises because, in certain sections of the trench, the error
between the model and the actual map exceeds the defined threshold. Figure 6.19 depicts
the progress of the trenching operation at four different time intervals. It is evident that
the quality of the operation is inadequate at both the beginning and end of the trench. At
the beginning of the trench, the error between the model and the actual map is higher
than the defined threshold. At the end of the trench, the operation suddenly stopped due
to safety concerns, resulting in the operator being unable to complete the task.

6.4 Conclusions

Trenching and grading operations stand as pivotal tasks across diverse worksites. These
tasks prioritize attaining high-quality outcomes, placing a focus on precision and accuracy
rather than mere quantity. Existing methodologies in the literature predominantly focus
on material quantity rather than the operational quality of these tasks. The productivity
metrics for grading and trenching operations entail the area of graded surface per unit
of time and the length of trench per unit of time, respectively. This paper introduces
two innovative approaches aimed at autonomously estimating the productivity of an
excavator in these operations. The suggested algorithms encompass three primary stages:
(1) elevation terrain mapping, (2) BIM, and (3) productivity calculation. Initially, the
elevation profile of working areas is determined and updated every few seconds using a
LiDAR sensor installed on top of the machine and the elevation terrain mapping algorithm.
In the subsequent stage, the removal of additional points resulting from manipulator
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Figure 6.19: Progress monitoring during the trenching operation: (-) green points show
the area where the error is less than the required accuracy, and () red points indicate
the area where the error is higher than the required accuracy [175].

movements, such as the bucket, arm, and boom, is addressed by computing the positions of
revolute joints. The excavator’s forward kinematics alongside IMUs mounted on various
moving components of the machine are used to estimate the revolute joints. Next, the shape
of the desired surface or trench is retrieved from BIM. Estimation of actual productivity
involves comparing maps derived from the target model with elevation maps. For trenching
productivity calculation, the ROI is a narrow strip, whereas for grading productivity
calculation, it is a small square. The presented algorithms are applied to a dataset obtained
from a real excavator performing grading and trenching tasks. The outcomes show that the
proposed methods efficiently estimate actual productivity and monitor operation progress.
Monitoring progress and estimating productivity provide valuable insights for contractors
and worksite managers to analyze operations and identify issues. Additionally, they can
compare individual machine productivity to industry standards or the productivity of
other machines. Furthermore, human operators can utilize productivity estimation as
feedback to enhance their skills based on performance evaluation.
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Effectively managing ongoing projects and ensuring precise costing and budgeting for
future projects are crucial aspects in diverse worksites. The suggested automated methods
for productivity estimation and progress monitoring represent a significant move towards
achieving autonomous functionality in excavators. Autonomous machines rely on per-
formance data to optimize their operations. Nonetheless, a limitation of the presented
algorithms is their specificity to grading and trenching tasks, making them unsuitable for
other operations. In the future, the methods should be expanded to encompass a broader
range of tasks and machinery, including bulldozers and compactors, based on their unique
operational needs.

The proposed algorithms aim to assess the excavator’s actual productivity in the grading
and trenching tasks. In the future, it would be beneficial to compute the theoretical or
highest feasible productivity given specific task requirements, objectives, and working
conditions, such as material type, swing angle, trench’s cross-sectional area, bucket and
machine size, etc. This theoretical productivity can serve as a benchmark to normalize the
actual productivity. By establishing the relative productivity or the production performance
ratio, it becomes possible to determine the machine’s operational effectiveness based on
the current operating conditions.

Another challenge is that the required accuracy in certain tasks and applications is + 0.02 m.
Attaining such high precision in elevation terrain mapping algorithms poses challenges
due to the need for exceptionally accurate and costly sensors, as well as time-consuming
calibration procedures.
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7 Conclusions and Future Directions

The construction industry is not just an essential sector of the economy; it is the backbone
that supports economic growth globally. Moreover, it serves as a crucial link between
various industries. However, despite its importance, the construction sector faces several
challenges, including low productivity and outdated practices. One of the key issues
plaguing the construction industry is its relatively low productivity growth. This slow
pace of improvement stands in stark contrast to other industries, highlighting the urgent
need for innovation and efficiency enhancement within the construction sector.

HDMMs are integral to various construction projects, with equipment costs often account-
ing for a significant portion of total project expenses. Among these machines, excavators
play a central role, undertaking diverse earth-moving tasks. However, assessing the perfor-
mance of these machines has traditionally been a labor-intensive and error-prone process,
relying on manual data collection and on-site observations. To address these challenges,
there is a growing recognition of the importance of accurately measuring the productivity
of HDMMs. This research study focuses specifically on excavators and aims to develop
innovative approaches for assessing their productivity. By leveraging advanced technolo-
gies, the study seeks to streamline productivity estimation and progress monitoring for
excavators across different tasks and working conditions. By better understanding and
managing excavator productivity, the construction industry can anticipate challenges
more effectively, refine planning and operating parameters, reduce costs, and ultimately
deliver projects more successfully.

Chapter 2 of the dissertation explores the current state of research in monitoring the
productivity of HDMMs. Traditional methods for monitoring productivity rely heavily
on manual observations, proving time-consuming and prone to errors. To address these
limitations, researchers have turned to integrating information technology for automated
data collection. The chapter delves into the latest developments in this field, focusing
on two main categories: CV-based techniques and sensor-based techniques. CV-based
approaches involve gathering operational data from cameras, while sensor-based methods
deploy various sensors or tags to capture position and pose information. The chapter
discusses the challenges and potential of both approaches, highlighting their applicabil-
ity and limitations in real-world construction scenarios. CV-based methods encounter
considerable practical challenges in real applications. It is suggested that vibration and
orientation sensors, such as IMUs, present a promising alternative for overcoming the chal-
lenges associated with CV-based and other sensor-based methods in activity recognition,
cycle time estimation, and productivity monitoring.
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It also explores the use of process-oriented and data-oriented methodologies for predicting
equipment productivity. Additionally, the integration of BIM and 3D sensing technologies
for real-time progress monitoring and productivity estimation is discussed, emphasizing
the potential for improving understanding and management of construction tasks. Lastly,
the chapter notes a gap in the literature, specifically the lack of focus on productivity
estimation for quality-centered tasks, such as trenching and grading.

Chapter 3 of the dissertation outlines the scientific contributions of the research. It begins
by detailing the proposed research framework for automatically estimating the produc-
tivity of an excavator across various tasks, such as loading, trenching, and grading. The
framework aims to address the identified research gaps and practical challenges discussed
in the literature review. The chapter introduces multiple research questions that serve as
the primary targets of the dissertation. These questions revolve around improving task
and sub-task recognition of an excavator, estimating cycle time, automatically assessing
operating conditions, such as swing angle and digging depth, and determining theoretical
and actual productivity using IMUs and machine learning techniques. Furthermore, the
dissertation aims to bridge the gap in integrating real-time data with planned models to
provide insights into construction site activities, particularly focusing on quality-centered
tasks, such as trenching and grading. In addition, certain unexplored aspects that could
be subjects of future investigations, including the automatic estimation of theoretical
productivity in trenching and grading operations and adding the quantity of materials to
the actual, theoretical, and relative cycle time concepts, have been discussed. These areas
represent potential subjects for further research, contributing to the ongoing advancement
of productivity monitoring techniques in construction contexts.

Chapter 4 of the dissertation presents a method for automatically recognizing tasks per-
formed by an excavator using supervised learning algorithms and motion data obtained
from IMU sensors attached to different parts of the machine. It highlights the essential
tasks of an excavator, such as loading, trenching, and grading, with different productivity
definitions, and emphasizes the significance of task recognition for productivity estima-
tion. The proposed data-driven method is positioned as a robust solution for automating
excavator task recognition. The method collects orientation and angular velocity data
from the excavator’s moving parts, and then four supervised learning algorithms are
employed, along with feature selection techniques, to automatically recognize tasks. The
method’s resilience and adaptability in real-world scenarios are demonstrated through
comprehensive analyses.

Moreover, it discusses the integration of task recognition and productivity monitoring sys-
tems, enabling task-specific metrics and progress monitoring. The potential for enhancing
collaboration between human workers and automated elements, predictive maintenance,
and decision-making through trend analysis is also highlighted. Future directions for
research include broadening the methodology to encompass other types of HDMMs, such
as front-end loaders and compactors, by installing motion sensors on moving parts. Also,
the integration of task recognition and DES can be utilized for management purposes in
construction sites. The chapter acknowledges limitations, such as the duration and scope
of the dataset, emphasizing the need for expansion and robustness testing under various
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operational conditions. Additionally, the time-consuming labeling process in supervised
learning techniques is noted as a challenge. Addressing these challenges is essential
for ensuring the effectiveness and applicability of the proposed method in real-world
scenarios.

Chapter 5 of the dissertation introduces a method for estimating the actual cycle time
and operational effectiveness of an excavator in the loading operation. It emphasizes the
importance of accurate productivity estimation for project planning, cost management,
resource allocation, and competitive advantage in the construction and mining industries.
Existing challenges in estimating cycle time and productivity are outlined, including
limitations of current methods and the lack of a theoretical value for evaluating actual
cycle time. The proposed method aims to address these challenges by automatically
determining the actual, theoretical, and relative cycle times of an excavator during loading
operations.

The proposed approach involves utilizing supervised learning algorithms to identify
excavator activities based on motion data from IMUs mounted on different machine
parts, estimating actual cycle time based on the sequence of identified activities, and
automatically estimating theoretical cycle time using swing angle and digging depth
information. Afterward, the relative cycle time is calculated by comparing actual and
theoretical cycle times to indicate the machine’s operational effectiveness.

The chapter also discusses potential applications and benefits of the proposed method,
including automated cycle time and productivity monitoring, performance evaluation,
and optimization of machine usage. Future research directions are suggested, such as
extending the method to other excavator operations and addressing limitations related to
dataset size, material type identification, and material quantity estimation. Overall, the
proposed method offers a promising solution for enhancing productivity estimation and
operational efficiency in excavator loading operations.

Chapter 6 introduces cutting-edge methods designed to automate the estimation of excava-
tor actual productivity in trenching and grading operations, where precision and accuracy
are paramount. Traditionally, manual productivity monitoring in earth-moving operations
is time-consuming, labor-intensive, and prone to errors, necessitating automated solutions
to accurately estimate productivity. Also, existing methods often prioritize material quan-
tity over operational quality. Two automated methods are proposed based on an elevation
terrain mapping algorithm and BIM to compare actual maps with target models. These
methods allow for the estimation of actual productivity in quality-centered tasks based on
predefined target models.

By emphasizing precision and quality over material quantity, these methods address the
specific requirements of quality-centered tasks. They offer valuable insights for contractors
and worksite managers, enabling them to analyze operations, identify issues, and compare
machine productivity to industry standards. Challenges include algorithm specificity to
grading and trenching tasks and the need for high precision in elevation mapping, which
requires costly sensors and calibration. Future research directions include expanding the
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methods to other tasks and machinery, such as bulldozers and compactors, thereby broad-
ening their applicability and impact in the construction domain. Also, productivity can be
used as a reward function in reinforcement learning algorithms. Future improvements
could also involve computing theoretical productivity benchmarks for normalization and
operational effectiveness evaluation.
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