KIT | KIT-Bibliothek | Impressum | Datenschutz

Predicting 3D ground reaction forces across various movement tasks: a convolutional neural network study comparing different inertial measurement unit configurations

Yilmazgün, Batin 1; Weber, Jonas 1; Stein, Thorsten 1; Sell, Stefan 1; Stetter, Bernd J. ORCID iD icon 1
1 Institut für Sport und Sportwissenschaft (IfSS), Karlsruher Institut für Technologie (KIT)

Abstract:

Ground reaction forces (GRFs) are crucial for understanding movement biomechanics and for assessing the load on the musculoskeletal system. While inertial measurement units (IMUs) are increasingly used for gait analysis in natural environments, they cannot directly capture GRFs. Machine learning can be applied to predict 3D-GRFs based on IMU data. However, previous studies mainly focused on vertical GRF (vGRF) and isolated movement tasks. This study aimed to systematically evaluate the prediction accuracy of convolutional neural networks (CNNs) for 3D-GRFs using IMUs from single and multiple sensor configurations across various movement tasks. 20 healthy participants performed six movement tasks including walking, stair ascent, stair descent, running, a running step turn and a running spin turn at self-selected speeds. CNNs were trained to predict 3D-GRFs on IMU time series data for different configurations (lower body [7 IMUs], single leg [4 IMUs], femur-tibia [2 IMUs], tibia [1 IMU] and pelvis [1 IMU]). Prediction accuracies were assessed based on leave-one-subject-out cross validations using Pearson correlation (r) and relative root mean squared error (relRMSE). ... mehr


Postprint §
DOI: 10.5445/IR/1000183891
Frei zugänglich ab 06.08.2026
Originalveröffentlichung
DOI: 10.1016/j.jbiomech.2025.112888
Scopus
Zitationen: 3
Web of Science
Zitationen: 3
Dimensions
Zitationen: 3
Zugehörige Institution(en) am KIT Institut für Sport und Sportwissenschaft (IfSS)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 11.2025
Sprache Englisch
Identifikator ISSN: 0021-9290, 1873-2380
KITopen-ID: 1000183891
Erschienen in Journal of biomechanics
Verlag Elsevier
Band 192
Seiten 112888
Schlagwörter Machine learning; Mobile gait analysis; Inertial measurement unit; Prediction accuracy; Ground reaction force; Variability of biomechanical time series
Nachgewiesen in OpenAlex
Web of Science
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page