KIT | KIT-Bibliothek | Impressum | Datenschutz

Stability of two-dimensional SISO LTI system with bounded feedback gain that has bounded derivative

Ponomarev, Anton ORCID iD icon 1; Gröll, Lutz 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract:

We consider a two-dimensional SISO LTI system closed by uncertain linear feedback. The feedback gain is time-varying, bounded, and has a bounded derivative (both bounds are known). We investigate the asymptotic stability of this system under all admissible behaviors of the gain. Note that the situation is similar to the classical absolute stability problem of Lurie--Aizerman with two differences: linearity and derivative constraint. Our method of analysis is therefore inspired by the variational ideas of Pyatnitskii, Barabanov, Margaliot, and others developed for the absolute stability problem. We derive the Hamilton--Jacobi--Bellman equation for a function describing the "most unstable" of the possible portraits of the closed-loop system. A numerical method is proposed for solving the equation. Based on the solution, sufficient conditions are formulated for the asymptotic stability and instability. The method is applied to an equation arising from the analysis of a power electronics synchronization circuit.


Volltext §
DOI: 10.5445/IR/1000183901
Veröffentlicht am 08.08.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2025
Sprache Englisch
Identifikator KITopen-ID: 1000183901
Verlag arxiv
Umfang 7 S.
Schlagwörter Optimization and Control (math.OC); Systems and Control (eess.SY)
Nachgewiesen in arXiv
OpenAlex
Dimensions
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page