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Abstract—Biologically-inspired Spiking Neural Networks
(SNNs) have emerged as a promising avenue toward
energy-efficient neuromorphic computing, particularly in

edge applications such as soft robotics, wearable health monitors,
and IoT devices. Printed Electronics (PE), offering advantages
of ultra-low cost fabrication and mechanical flexibility, present
a viable platform to realize such neuromorphic systems at
scale. However, designing adaptable and efficient spiking circuits
that meet the unique constraints of PE applications remains a
challenge. To address this, we propose a novel analog spiking
neuromorphic circuit with a learnable spike generator (LSG).
Unlike fixed-threshold models, our generator adapts spike
timing dynamics during training, enabling better task-specific
performance. To optimize for ultra-low power consumption
on resource-constrained platforms, we further introduce a
robustness-aware training framework that further minimizes
the energy consumption adaptively. Simulation results across 13
benchmarks demonstrate an average 57.6% power reduction for
the LSG while improving the average classification accuracy by
8%, area and energy reduction by 89% and 28.7% respectively
compared to the state-of-the-art printed analog spiking neural
networks (P-SNNs).

I. INTRODUCTION

The evolution of modern electronics is increasingly driven by
the demand for energy-efficient systems capable of performing
cognitive tasks through brain-inspired neuromorphic comput-
ing. Applications such as soft robotics, on-body health moni-
toring, edge intelligence, smart packaging and large-scale IoT
networks as shown in Fig. 1! require electronic platforms that
are flexible, lightweight, and cost-effective. Unfortunately, con-
ventional silicon technologies—though powerful—are funda-
mentally constrained by their rigid substrates, high-temperature
processing, and expensive fabrication infrastructure, making
them unsuitable for many of these emerging use cases [1].

In this regard, printed electronics (PE) has emerged as
a ultra-low-cost fabrication technology that overcomes these
challenges through additive manufacturing of electronic circuits
and components directly onto flexible substrates [1]. This
approach eliminates the need for complex lithography and
etching steps, drastically reducing both production time and
costs [2]. Moreover, PE supports the integration of electronics
into flexible, stretchable, and even foldable materials, enabling
seamless embedding into fabrics, plastics, and other unconven-
tional carriers. Such characteristics are especially valuable for
applications with tight mechanical constraints or disposability
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Fig. 1.
smart food packaging, RFID tags and smart milk carton etc [3,4].

Target application domains of printed electronics: smart bandages,

requirements, making PE a compelling candidate for the next
generation of intelligent and form-adaptive devices [3,4].

Traditional computing systems based on von Neumann
architecture are increasingly facing fundamental challenges
when applied to cognitive tasks requiring perception, learning,
and real-time decision-making. These limitations—especially
in terms of energy consumption, parallelism, and adaptabil-
ity—have sparked growing interest in alternative models in-
spired by the human brain [5]. Among the most promising
developments are the Spiking Neural Networks (SNNs), which
form the foundation of neuromorphic computing [6, 7].

To address these challenges, researchers have turned to
brain-inspired neuromorphic computing paradigms, particu-
larly SNNs [8]. Unlike conventional artificial neural networks
(ANNs), which process information using continuous-valued
signals and synchronous updates [9], SNNs operate using
discrete electrical pulses or spikes” to encode and transmit
information. This biological inspiration enables SNNs to per-
form cognitive tasks with very high energy efficiency and
lower computational complexity [10]. Such characteristics align
ideally with the constraints and opportunities of PE, providing a
compelling rationale for integrating SNN-based neuromorphic
computing. Specifically, analog SNNs inherently offer ultra-
low-power operation and compact implementations, making
them highly suitable for the low-power, resource-constrained
environments typically targeted by PE applications [11].

The decision to select an appropriate paradigm for SNN,
either digital or analog, remains a crucial decision in neuro-
morphic system design. Digital SNNs are built using standard
digital circuits and are known for their reliability, especially
in noisy environments. They are also easier to scale up for
large networks and can be designed using existing digital
tools [12, 13]. On the other hand, analog SNNs work by mim-
icking how real neurons and synapses behave using continuous
electrical signals. These designs can be much more energy-
efficient and use less chip area, which is helpful in systems
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where power and space are limited, making them a promising
choice for PE applications with strict energy constraints. Ana-
log SNNs also process data in real-time and are naturally suited
for tasks where quick, energy-efficient responses are important.

Leveraging the benefits offered by PE and neuromorphic
computing, prior studies successfully realized the implemen-
tation of analog printed spiking neurons on organic substrates
[14, 15]. Additionally, researchers presented adaptations to the
architectures and training algorithms for analog Printed Artifi-
cial Neural Networks (P-ANNs) [16]. Also, they introduced
training algorithms that account for variation, aging effects,
fault sensitivity and power considerations [17]-[20]. Although
prior work has demonstrated the feasibility of analog spiking
neuron circuits using PE and even proposed architecture-level
and algorithmic adaptations for P-ANNs [14]-[16], most im-
plementations rely on fixed spike generation mechanisms. In
contrast, our work introduces a programmable and learnable
spike generation module, where the temporal firing behavior of
the neuron is parameterized and co-optimized during training.

This learnable spike generator (LSG) provides a novel analog
neuron architecture from conventional designs by allowing the
neuron to adapt its temporal dynamics in response to both
task objectives and circuit-level constraints. Furthermore, we
incorporate robustness-aware training not only on the weights,
but within the spike generation process itself, accounting for
device-level non-idealities such as process variation or ag-
ing [17,18,21]. To the best of our knowledge, this is the first
demonstration of a learnable analog SNN implemented in PE.
In this work, we propose an analog printed spiking neuron
circuit design and its associated learning algorithm for neural
network computation. In short, the contributions are:

« We propose a novel spiking neuron architecture with a
learnable and trainable spike generator, enabling the neu-
ron to adapt its temporal firing dynamics during learning.

o We incorporate robustness-aware design methodology into
the spike generation process itself, accounting for process
variation, and training with bounded hardware constraints.

Through simulations on 13 benchmarks, we demonstrate that
our design achieves a 57.6% average reduction in learnable
spike-generator (LSG) power, 89% area reduction, achieves
classification accuracy of 83%, and a 28.7% reduction in
inference energy compared to non-adaptive P-SNNss.

The rest of this paper is structured as follows: Sec. II,
provides the background of this work. Sec. III proposes the
learnable printed analog spiking neuron design and develops a
learning algorithm to solve specific classification tasks. Sec. IV
introduces the robustness-aware training of the P-LSNN con-
sidering variations of the parameters. In Sec. V, we evaluate the
effectiveness of the proposed models on benchmark datasets,
compare our results with the existing printed neuromorphic
circuits, and discuss its application. Finally, Sec. VI concludes
this paper.
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Fig. 2. Schematic of (a) gravure printing (b) screen printing; (c) aerosol printing
and (d) inkjet printing [26]

II. PRELIMINARIES
A. Printed Electronics (PE)

PE refers to a fabrication technology which is based on
printing processes, such as jet-printing, screen- or gravure-
printing [22]. Due to the simple manufacturing process as
well as low equipment costs, ultra low-cost electronic circuits
can be fabricated, much cheaper compared to silicon-based
processes, which require expensive foundries even for semi-
conductor manufacturing foundries [23] with older technology
nodes. Moreover, electronics on flexible substrates are enabled
by using contact-less printing methods such as inkjet-printers
in combination with highly optimized functional inks such
as conductive, semi-conductive and non-conductive materials.
From these inks, organic [24] or oxide-based [25] transistors
can be built. While organic materials are easy to be processed,
they have lower environmental stability. On the other side,
oxide-based inks have excellent conductivity and environmental
stability, but are harder to be printed and suffer from impurities

due to surfactants [22].
TABLE 1

KEY PROPERTIES AND PARAMETERS OF DIFFERENT PRINTING METHODS

Property/Parameter Gravure Screen | Aerosol Inkjet
Throughput (m?/s) 3-60 2-3 0.01-0.1 | 0.01-0.5
Resolution (lines/cm) 20400 50 10-100 60-250
Printing Speed (m/min) | 100-1000 10-15 5-50 15-500

Printing technologies, as shown in Fig. 2, are broadly cate-
gorized into two main types, each tailored for specific appli-
cations and material requirements: (i) contact printing and (ii)
non-contact printing. Contact printing includes: (a) replication
printing, exemplified by gravure printing (illustrated in Fig. 2
(a)), which is optimized for high-volume production; and Fig. 2
(b) screen printing, which entails considerable manufacturing
time and costs and yields relatively low resolution. In contrast,
non-contact printing involves: Fig. 2 (c) aerosol printing, ideal
for lower-volume production due to its slower printing speeds
and higher maintenance demands; and Fig. 2 (d) jet printing,
with inkjet printing as an example, for customized fabrication of
electronic circuits in smaller quantities. The key properties and
parameters of the different printing techniques are summarized
in Tab. L

However, PE utilizes either additive or subtractive manu-
facturing methods. As shown in Fig. 3 (a), the subtractive
process alternates between deposition and etching, similar to
traditional silicon-based methods and is more expensive due
to specialized processing, costly equipment, and infrastructure.
Conversely, the additive process as in Fig. 3 (b) involves only
deposition steps, layering materials to create transistors, passive
components, and interconnects. Although fully additive PE
typically operate slower, have larger feature sizes, and exhibit
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greater variability than their subtractive counterparts, they offer
significant cost advantages particularly appealing for the ultra-
low-cost electronics.

Most state-of-the-art inkjet-printed field-effect transistors
rely on organic semiconductors structured as channels between
source and drain electrodes. Typically, organic FETs use P-type
materials exhibiting low field-effect mobility [27] and require
high operating voltages (> 25 V), making them unsuitable for
low-power PE applications for energy harvesting or small bat-
teries. In contrast, inorganic oxide semiconductors employing
N-type electrolyte-gated transistors (nEGTs, Fig. 3 (c)) provide
higher electron mobility, enabling sub-1V operation ideal for
energy-constrained scenarios [28,29].

B. Printed Artificial Neural Networks (P-ANNs)

P-ANNs are analog computing architectures designed to
replicate the core operations of ANNs using low-cost, large-
area fabrication techniques. These systems can operate directly
on analog sensory inputs, bypassing the need for digitization
and enabling compact, energy-aware edge computing [16].
Weighted summations are typically performed using printed
resistor crossbar arrays, negative weights are handled using
analog inverters, and nonlinear activation functions such as
tanh or ReLU are implemented through analog primitives—all
within a fully analog domain. Recent advancements have
extended the capabilities of printed architectures by introducing
printed temporal filters [30], thereby allowing P-ANNs to
handle time-varying signals to some extent. However, despite
this progress, P-ANNs remain inherently dense and contin-
uously active, lacking the sparse, event-driven computation
model that characterizes SNNs. This continuous activity leads
to higher static power consumption, especially in scenarios
involving sparse or infrequent inputs. Additionally, the analog
weights and nonlinearities in P-ANNSs are typically fixed post-
fabrication, limiting their adaptability and reconfigurability in
changing environments or across different tasks.

C. Printed Spiking Neural Networks (P-SNNs)

P-SNNs offer a biologically inspired computing paradigm
well-suited for next-generation flexible and energy-efficient
electronic systems. Modeled after the brain’s communication

network design given a specification of a desired functionality realized through
robustness-aware P-LSNN training.
mechanism, SNNs utilize discrete voltage spikes to transmit

information, mimicking the behavior of biological neurons.
A typical spiking neuron comprises three components: the
dendrite, which receives external stimuli; the soma, which ac-
cumulates input signals and triggers spikes based on membrane
potential thresholds; and the axon, which conveys the output
signal to downstream neurons. In PE, these components are
realized using printed transistors [31], capacitors, and resistive
elements, allowing the entire neuron circuit to be fabricated
on flexible, ultra-low-cost substrates. Unlike traditional ANNS,
which rely on continuous signal propagation and synchronous
updates, printed SNNs operate in an asynchronous manner,
significantly reducing power consumption and enabling real-
time signal processing at the edge [32].

D. Low-Power and Energy-Efficient Neuromorphic Design

Although neuromorphic computing has already been proven
to be significantly power and energy-efficient compared to
conventional approaches [33], ongoing research aims to further
reduce the power consumption of these neuromorphic circuits.
For instance, [34] developed a novel device to decrease the
power required for the activation functions. The work of [35]
utilized hardware-software co-design to optimize circuit struc-
ture for data flow in the computing process. Regarding com-
putational paradigms, numerous silicon circuits have adopted
brain-inspired SNN to minimize power in analog, digital, or
mixed-signal by integrating synaptic inputs, generating action
potentials, and transmitting them along neuron axons to connect
with post-synaptic terminals [10, 12, 36].

III. PROPOSED LEARNABLE PRINTED SPIKING NEURAL
NETWORKS (P-LSNNS)

The proposed P-LSNN begins with the design of a physically
realizable spiking neuron circuit, followed by a Transformer-
based surrogate model that enables differentiable training. Once
the spiking network is trained using this surrogate, the learned
parameters are systematically mapped back to corresponding
analog circuit components, completing the design loop as
illustrated in Fig. 4.

A. Implementation of Learnable Printed Spiking Neuron

The architecture of the proposed Learnable Printed Spiking
Neuron is organized into three key stages: synaptic input,
charge accumulation, and reset-discharge control. The synaptic
stage interfaces with external stimuli and mimics biological
synapses by modulating inputs based on assigned weights. The
subsequent charge network governs the membrane potential’s
integration over time, while the reset and discharge network
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Fig. 5. Circuit level implementation of proposed printed learnable spiking neuron which includes three stages: Synapses, Charge Network, and Reset and
Discharge Network. The feasible design space for the learnable design parameters are tabulated in the right side of the figure.

manages spike generation and membrane reset, collectively
forming a trainable spike-generation mechanism.

a) Synapses: Synapses act as the interface between presy-
naptic and postsynaptic activity, emulating biological signal
transmission. In our circuit, presynaptic neurons are modeled
as voltage input sources. Each input is weighted via a resistor
crossbar network, enabling scalable and tunable input process-
ing. This crossbar structure facilitates parameter learnability,
allowing the neuron’s response to adapt during training. Apply-
ing nodal analysis, the synaptic current reaching the neuron’s
core is modeled as the weighted sum of all input voltages:

Vi VE-V Vi - vy
F T - S

Here, Vg1 denotes the gate voltage of transistor M7, while Vul1
represents the input voltage applied to the neuron. The resistor
RY forms part of a voltage divider, establishing the input
biasing condition. The resistors R} through RY encode the
synaptic weights of [V presynaptic neurons, enabling weighted
summation in the analog domain. These resistance values are
tunable, allowing the circuit to adapt its response based on
learned synaptic strengths.

To support both excitatory and inhibitory connections, an
additional subcircuit is included to handle negative weights,
following the strategy proposed in [16]. For the computation
of the optimal gate voltage Vg1 corresponding to the learned
parameters, please refer to the detailed calculation procedure
in Sec. III-B.

b) Learnable Spike-generator (LSG): As illustrated in
Fig. 5, the LSG converts a weighted sum of incoming synaptic
voltages into a precisely timed train of output spikes. Its input
is at the gate voltage Vg1 of transistor M, which encodes the
weighted sum of N synaptic inputs V! via resistive weights
RY, (as described in Sec. I1I-B2); whereas its output is a spiking
waveform Vs whose timing (delay, width, and inter-spike
interval) encodes the learned integration of those inputs. As
shown in Fig. 5, the LSG implements an event-driven transfer

characteristics and integrates the charge until an internal node
Ven(t) exceeds the threshold voltage of Ms, triggers a firing
event, then resets and enters a short refractory period before
repeating. The overall LSG circuit consists of i) charge network,
ii) thresholding and iii) reset and discharge network.

o Charge Network: The components R, and C,j, together
form a passive RC network that generates a delayed volt-
age signal V;, across the capacitor C,j,. This delay is influ-
enced by both the time constant R.,C., and the frequency
of incoming spikes. The gate voltage of transistor M,
denoted as Vgl, plays a critical role by regulating the drain
current I}, thereby dynamically adjusting the charging
behavior of C.p,. This modulation directly influences the
timing and frequency of spike generation, making the
system responsive to learnable parameters.
Thresholding: The voltage signal across Cy, is amplified
using a two-stage inverter-based amplifier. The first in-
verter, composed of an N-type pull-down transistor and a
resistive pull-up network, provides initial amplification but
introduces a 180° phase shift. To correct this inversion and
stabilize the signal, a second inverter stage is cascaded.
The amplifier output is subsequently connected to two
cascaded RC networks: the first comprising [2,_» and
Cgis—1, and the second composed of Rg;s and Clyis_o.
These networks introduce phase delays essential for sus-
taining oscillatory behavior in the spiking neuron.

Reset and Discharge Network: The final capacitor,
Cl4is—2, modulates the gate voltage Vg2 of transistor Ms.
When V2 exceeds the threshold voltage of My, current I3
is activated, discharging C,} and thereby initiating a reset.
Meanwhile, as synaptic inputs continue to inject charge
through the weighted resistor network, C.; gradually
recharges, enabling periodic spiking behavior. This cycle
supports adaptive spiking dynamics, with timing influ-
enced by both circuit-level parameters and learnable input
conditions. While the first amplification stage increases
the signal amplitude at V;,, the resulting output voltage



Vout may still be insufficient to drive subsequent neurons.
To address this, a second amplification stage is included,
boosting the final output voltage V;/ut to approach the
supply level (~ 1V), ensuring reliable transmission to
postsynaptic neural circuits.

B. Modeling and training of P-LSNN

By interconnecting multiple printed spiking neurons, the
behavior of a SNN can be effectively realized in hardware,
enabling a wide range of neuromorphic computations. To
understand the architecture, however, it is essential to tailor
the circuit-level parameters—such as the conductances in the
resistor crossbar that encode synaptic weights—to the require-
ments of specific target tasks. Achieving this requires the
formulation of a learnable optimization framework for the
P-LSNN, allowing the component values to be systematically
adjusted through task-driven training objective.

1) Modeling of P-LSNN: The behavior of the printed LSG
circuit is modeled using a transformer-based architecture that
predicts the output voltage time series Vi (t) as a function
of the input voltage V;,(t) and a set of hardware parameters
expressed as the vector v where each component, such as the
resistances or width and length of the transistors, is restricted
with v;“in < v; < v"®*. These parameters are constrained
within physically realizable ranges to reflect the functionality
within PE.

To respect hardware constraints, each unconstrained parame-
ter (; € R is passed through a scaled tanh function. The output
of the surrogate model is given by:

LSG (Vin(t), u) 2)
where the components are given by
max min max __ ,,min
v= St k() )

and [v™™", v;"®*] defines the hardware-feasible interval for
parameter v;. These transformed values are provided as input to
the surrogate model. The input voltage is given by the crossbar:

Vin(t) = > Vi (#) (wy - 1g,>0) + inv(Vi (£)) (wy, - To, <o) -

4)
Here 6,, represents the learnable parameter where the absolute
value is the crossbar conductance, i.e. g, = |0,| and ]l{‘} I

the indicator function that returns 1 if its condition is met and
is otherwise 0 and inv(-) denotes the negative function that
is realized by the negation circuit. The weights w,, are given

by the conductances normalized by all conductances w,, =
9n

Z:Tf)g?g’urrogate model for the LSG with hardware constraints:
To facilitate gradient-based training through backpropaga-
tion [37], it is essential to construct a fully differentiable
model that accurately captures the transfer characteristics of
the printed spike-generator circuit. This work introduces a
novel training methodology for P-LSNNs by integrating a
differentiable, hardware-agnostic surrogate model directly into
the optimization pipeline. Unlike prior approaches [32] that

relied on surrogate modeling for behavioral approximation,
we leverage the Transformer architecture to enable end-to-
end gradient-based learning of both network and circuit-level
parameters.

The proposed methodology treats these hardware parame-
ters as trainable entities bounded within limits, allowing for
simultaneous optimization of functional accuracy and physical
realizability. By embedding the Transformer-based surrogate
into the training loop, the model captures the dynamic response
of the spike generator circuit from input voltages Vi,(t) to
output voltages Vo (t), while maintaining differentiability for
backpropagation [37]. This closed-loop, hardware-constrained
training flow allows for co-design of the neural architecture
and its physical implementation, enabling adaptive and task-
optimized behavior in printed spiking neuromorphic systems.
Transformer architectures have demonstrated exceptional ver-
satility across a wide range of domains, forming the backbone
of state-of-the-art models like BERT [38] and GPT [39]. In
this work, we leverage their sequence modeling capabilities to
construct a fully learnable and differentiable approximation of
the printed LSG’s temporal dynamics.

Algorithm 1 End-to-End Training of P-LSNN with LSG
Surrogate Model.

Require: Training dataset D = {z, y}
Require: SPICE simulation dataset S
1: Train surrogate model LSG on S using MSE loss
2: Freeze surrogate model parameters
3: Initialize network weights @ and LSG parameters ¢
4: while Ir > Ir,;, do
5 for each (z,y) € D do
6: Generate temporal input sequence z(*)
7: Run forward pass through P-LSNN that includes:
8 Compute crossbar voltage Vj, using equation (4)
9 Compute LSG output V, using equation (2)

10: Compute loss with equation (5) or (7) (without or
with robustness-aware training respectively)

11: Backpropagate loss w.r.t. 8 and ¢

12: Update parameters using Adam optimizer

13: end for

14: if Patience > 100 then

15: Ir < Ir/2

16: end if

17: end while

To generate the dataset for training the LSG surrogate model,
we conducted over 64K SPICE simulations using the well-
established Printed Process Design Kit (P-PDK) [40]. Each
simulation was executed for a duration of 15 ms with a temporal
resolution of 10 s to capture fine-grained transient behavior of
the circuit. The input voltage Vi, (¢) was varied across multiple
regimes to ensure that the surrogate model could generalize
to both static and dynamic spiking conditions. The following
input categories were considered:

« Constant voltages, ranging from OV to 2V in steps of

0.2V, which serve as baseline inputs for characterizing
stable responses;



o Cascaded neuron outputs, where the output from a first
neuron is used as the input to a second neuron, thereby
modeling signal propagation through a multi-layer spiking
network;

e« A set of harmonic input voltage signals with varying
amplitudes (A), DC offsets (B), frequencies (f from O Hz
to 5Hz), and phase shifts (0 to 27), intended to emulate
dynamic and noisy spiking activity.

Each simulation instance is parameterized by range of
learnable parameters as tabulated in Fig. 5. These parameters
are constrained within the intended functionality of the spike
generator and serve as the input features to the surrogate
model. This comprehensive SPICE dataset uses more than ten
times the size of that used in previous studies [32], which did
not account for learnable hardware parameters. This enables
accurate modeling of the spike-generator circuit under diverse
operating conditions. A Transformer model with 3 encoder
layers, 3 attention heads, and an embedding size of 48 achieved
the best performance during evaluation, resulting in a mean
squared error (MSE) of 7.3 - 10~2 on the test set.

3) Training of the P-LSNN: After pretraining, the surrogate
model is frozen and used to replace the LSG circuit in the
full P-LSNN. The additional parameters (; are now treated as
independently trainable variables for each LSG circuit. These
are optimized together with the rest of the P-LSNN using
gradient descent.

The P-LSNN receives temporally extended input signals and
produces spike-based outputs over time. To promote consistent
prediction, the cross-entropy loss is computed at every time
step and averaged across the sequence, which leads to this
optimization objective:

T
1

minimize — L(x:,y,0,¢), 5

imize o ; (+,9.6,¢) 5)

where € RE*T is the input data series with batch size B,

y € RE denotes the corresponding classes, 6 is the vector
of all the learnable parameters from the crossbar conductances
and ¢ is the vector of the learnable hardware parameters of the
LSG circuit. Since all components, including the LSG model
with constrained v;, are differentiable, the full system supports
end-to-end training.

This methodology enables full backpropagation-based train-
ing of P-LSNNs by introducing a differentiable surrogate for
the LSG circuit, parameterized by constrained learnable vari-
ables, allowing both the circuit-level parameters and network
weights to be jointly optimized in a hardware-aware adaptive
manner. The entire end-to-end training of the P-LSNN is shown
in algorithm 1.

IV. ROBUSTNESS-AWARE P-LSNN TRAINING

In PE, the parameters associated with hardware compo-
nents are highly susceptible to process-induced variations.
These variations arise due to factors such as ink spreading,
droplet jetting irregularities, and satellite droplet wetting on
the substrate [42]. Specifically, printed n-type electrolyte-gated

TABLE 11
ACCURACY COMPARISON ACROSS DIFFERENT PRINTED NUEROMORPHIC
ARCHITECTURES ACROSS 13 BENCHMARK DATASETS

Dataset SNN!  P-ANN? [41]  P-SNN3 [32] P-LSNN*

Acute. 1.00  0.9994+0.002 1.000 4 0.000  1.000 % 0.000
Bal. 0.84  0.89340.020 0.43040.000 0.819 & 0.073
Breast. 098  0.91540.020 0.97540.000 0.966 & 0.007
Cardio. 0.84 0.82440014 0.74740.000 0.755 =+ 0.015
En(yl) 1.00  0.91840.014 0.84840.000 0.848 4 0.000
En(y2) 098  0.89240.010 0.860=40.000 0.869 & 0.026
Iris 1.00  0.9584+0.009 0.71040.171  0.946 & 0.019
Mamm. 0.82  0.78940.006 0.81040.007 0.810 & 0.013
Pen. 038  0.37140.034 0.40040.070  0.536 & 0.060
Seed. 1.00  0.900+0.015 0.837£0.070 0.915+0.013
Tic-Tac. 100  0.81840.004 0.78940.019 0.873+0.125
Vert.(2cl) 085  0.7684+0.038 0.6354 0.000 0.635 % 0.000
Vert(3cl)  0.83  0.819+0.004 0.683+0.016 0.778 +0.057
Average 0.886  0.836 + 0.015  0.748 + 0.027  0.830 + 0.031

L SNN: Software Spiking Neural Network 2 P-ANN: Printed Artificial
Neural Network 3 P-SNN: Printed Spiking Neural Network 4 P-LSNN:
Printed Learnable Spiking Neural Network.

transistors (n-EGTs) exhibit variability across multiple fabrica-
tion stages—including channel, dielectric, and top-gate forma-
tion—resulting in non-Gaussian distributions for electrical and
structural properties [40].

To account for these fabrication non-idealities during train-
ing, we model both 6 and &‘ as random variables drawn from
distributions p(6) and p(¢), respectively. ¢ represents the pa-
rameters for the LSG circuit and 6 the remaining parameters in
the P-LSNN. These distributions capture the statistical nature of
variation introduced during the printing process. Consequently,
the training objective is defined over these distributions:

minimize L(D, 0, ¢), (©6)
6.¢

where the parameters 6 and ¢ are resampled from their
respective distributions at each forward pass, allowing the
model to encounter diverse perturbations over the course of
training. Here, D = {x,y} denotes the training dataset, and
L(-) is the task-specific loss function (e.g., cross-entropy [43]).
To make the formulation differentiable and trainable via
gradient-based methods, we employ a reparameterization

trick [44], expressing the random variables as:

0=00¢p, C=C(0Oe,

where 6 and ¢ are the nominal, learnable parameters, and g9 ~
p(eq) and €. ~ p(e¢) represent multiplicative noise sampled
from the variation distributions, which in our case are uniform.
Substituting this into the loss yields modified training objective:

mineirélizeL(D,O ©®ep, O ). (7

V. EVALUATION FRAMEWORK

To assess the effectiveness of the proposed P-LSNN with
learnable spike-generation capabilities, we first designed the
spike-generator incorporating synaptic inputs, and implemented



TABLE III

ROBUSTNESS-AWARE ACCURACY ACROSS MODELS WITH £ 10%
COMPONENT VARIATION ACROSS 13 BENCHMARK DATASETS

TABLE IV
COMPARISON OF POWER, AREA, AND TRAINING TIME WITH THE
EXISTING METHODS ON 13 BENCHMARK DATASETS.

Dataset P-ANN [41] P-SNN [32] P-LSNN

Acute. 1.000 £+ 0.012 1.000 £ 0.000 0.999 £ 0.007
Bal. 0.877 £ 0.008 0.457 £ 0.049 0.548 £+ 0.147
Breast. 0.931 £ 0.039 0.974 £ 0.030 0.958 £ 0.016
Cardio. 0.763 £ 0.002 0.747 £ 0.000 0.757 £0.017
En(y1l) 0.847 £0.012 0.857 £0.012 0.883 £ 0.052
En(y2) 0.867 £+ 0.026 0.841 4+ 0.026 0.854 £+ 0.055
Iris 0.843 £0.045 0.637 £ 0.068 0.909 £ 0.076
Mamm. 0.766 £ 0.053 0.808 £ 0.010 0.808 £ 0.011
Pen. 0.548 £ 0.047 0.486 £+ 0.058 0.466 £+ 0.078
Seed. 0.820 £ 0.041 0.709 £ 0.042 0.856 £ 0.092
Tic-Tac. 0.660 £+ 0.017 0.763 £ 0.026 0.804 £0.119
Vert.(2 cl.) 0.661 £ 0.000 0.635 £ 0.000 0.635 £ 0.000
Vert(3 cl.) 0.634 £ 0.075 0.677 £0.012 0.683 £ 0.050
Average 0.786 +£0.029 0.738 £0.024 0.781+0.055

the complete training pipeline using PyTorch [45].> We per-
formed a comparative evaluation of our learnable P-LSNN
against prior works [16,32] and SNNs based on benchmark
frameworks [46].

A. Experiment Setup

1) Circuit Setup: To evaulate our proposed approach, we uti-
lized the well-established n-electrolyte-gated transistor (EGT)
P-PDK [40] to design both the synapses and the learnable
spike-generator. To evaluate their spiking behavior, we con-
ducted more than 60K SPICE simulations to understand the
circuit spike-timing behavior w.r.t the components variation in
Cadence Virtuoso’, as shown in Fig. 5.

2) Training and Evaluation Setup:

a) Datasets and Hyperparameter choices: To evaluate
the proposed P-LSNN we used 13 benchmark datasets which
are aligned to the applications in PE. We used a datasplit of
60%, 20% and 20% for the training, validation and test set,
respectively. To optimize the model parameters including the
learnable hardware parameters (; we used the ADAM [47]
algorithm with an inital learning rate of 0.1. This initial learning
rate was halved if the validation accuracy showed no further
improvement for 100 epochs. This process was repeated 10
times until a sufficiently small learning rate was reached. To
ensure to reduce the sensitivity to initialization, the process was
executed 10 times with random seeds from O to 9, ensuring the
reliability of the resulting solution.

b) Baselines: We employed another two approaches as
the baselines of P-SNNs to validate the major motivation of
this work, that is, energy saving. P-ANNs [16] with the same
topologies as P-SNNS are trained on the corresponding datasets.
Additionally, considering the target computing paradigm of
this work, P-SNN is compared with its hardware-agnostic
counterpart by conducting training on SNNs with the leaky-
integration-fire mechanism [46].

Zhttps://github.com/Neuromophic-Computing/SpikeSynth
3https://www.cadence.com/en_US/home.htm]

Dataset Power (mW)
P-ANN [41] P-SNN [32]
Total! 567 Total!  LSG?  Total!
Acute. 6.20 0.85 1.744 0.389 1.223 1.65 12.51 1.36 0.55 475 527
Bal. 4.50 1.02 1.694 0.426 1.186 2.68 15.03 1.80 1.69 9.85 16.17
Breast. 11.00 0.85 1.189 0411 0.664 1.76 12.50 1.70 1.39 16.46 15.98
Cardio. 18.50 1.02 3.767 0.353 2.560 2.38 15.06 2.02 1.98 29.02 35.20
En(yl) 7.70 1.02 1.680 0.466 1.138 2.28 15.07 1.71 1.48 19.69 2442
En(y2) 7.98 1.02 1.424 0455 1.119 1.88 15.03 1.90 1.38 2145 21.20

Area (cm?) Training Time (hr)

P-LSNN | P-ANN [41] P-SNN [32] P-LSNN |P-ANN [41] P-SNN [32] P-LSNN

Iris 5.50 1.02 1.778 0.382 1353 227 15.01 1.81 0.54 4.31 543
Mamm. 6.54 0.85 1410 0.382 0.981 2.13 12.52
Pen. 11.12 2.21 4730 0.878 3.083 5.51 32.54
Seed. 7.89 1.02 1.693 0410 1.376 2.62 15.07
Tic-Tac. 11.10 0.85 1.506 0.366 1.109 1.99 12.53
Vert.(2cl.) 5.65 0.85 1362 0.422 1.084 2.38 12.57 1.30 0.78 7.72 7.53
Vert(3cl.) 5.75 1.02 1.697 0392 1427 238 15.01 1.53 0.92 721 7.59
Average 8.42 1.04 1,974 0.44] 1.407] 2.46 1541 1.67] 132 1431 16.39

1 Total: Total Power 2 SG: Spike-generator power 3 LSG: Learnable SG
power

3) Accuracy Calculation: For a robust estimation of accu-
racy, we selected the top-k models (£ = 3) from 10 independent
training runs with different random seeds. The average accuracy
and standard deviation were then calculated from these models
on the test set. For robustness-aware training, we injected noise
onto the weights to emulate imprecise hardware components.
Since the evaluation results on the test set are not determin-
istic, we sample each test dataset 10 times per model in the
robustness case and average the results.

4) Power Calculation: To evaluate the efficiency of the
proposed P-LSNN architecture, we estimated the total power
consumption by summing the contributions of three distinct
components: the crossbar array, the negation circuit (inverter),
and the spike-generation (LSG) circuit. Each component is
modeled based on its specific electrical behavior to ensure
accurate and hardware-relevant power estimates. To estimate
the power of the crossbar and the negation circuit we used
similar methods as in prior works [41]. Estimating the power
consumption of the LSG circuit is more complex due to its
temporal and nonlinear behavior. To address this, we trained a
feed-forward neural network to predict the LSG power based
on the learned hardware parameters (;. This power model was
trained on a dataset of SPICE simulations with a wide range
of parameter combinations and input patterns. The data was
split into a training (70%), validation (15%) and test (15%) set.
After hyperparameter optimization we trained a feed-forward
network with 3 hidden layers (256, 128, 64) until the validation
accuracy did not change for 100 epochs. The resulting test loss
(MSE) was 7.0 - 1075,

B. Results

Tab. II reports per-dataset classification accuracy under stan-
dard (non-robustness-aware) training for four models: the ref-
erence SNN, P-ANN, baseline P-SNN, and proposed P-LSNN.
Averaged across all datasets, the SNN achieves 88.6 % accu-
racy, followed by P-ANN at 83.6 %, P-LSNN at 83.0 %, and P-
SNN at 74.8 %. To assess robustness under hardware variability,
we trained and evaluated each model with +10% random
weight perturbations ( Tab. III). Under these perturbations, P-
ANN achieves 78.6 %, P-LSNN 78.1 %, and P-SNN 73.8 %.

Fig. 6 plots energy consumption in millijoules (mJ) for P-
ANN, P-SNN, and P-LSNN across all datasets: P-ANN ranges
from 13.50mJ (Bal) to 55.50 mJ (Cardio); P-SNN ranges from
3.57mJ (Breast) to 14.19 mJ (Pen); and P-LSNN ranges from
1.99 mJ (Breast) to 9.25mJ (Pen).


https://github.com/Neuromophic-Computing/SpikeSynth
https://www.cadence.com/en_US/home.html
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Fig. 6. Comparison of energy (mlJ) utilization for P-ANN [41], P-SNN [32] and proposed P-LSNN across 13 benchmark datasets.

Tab. IV compares power consumption (mW), area (cm?),
and training time (hr) for P-ANN, P-SNN, and P-LSNN across
all datasets. On average, P-ANN consumes 8.42 mW, occu-
pies 2.46cm?, and requires 1.32hr of training; P-SNN con-
sumes 1.97 mW, occupies 15.41 cm?, and requires 14.31 hr; and
P-LSNN consumes 1.41 mW, occupies 1.67 cm?, and requires
16.39hr. Additionally, on average, the LSG circuit’s power
drops from 1.04 mW in the printed SG [32] to 0.44 mW.

C. Discussion

The comparison between the proposed P-LSNN architecture
and the baseline P-SNN model demonstrates notable improve-
ments in accuracy, area, and energy efficiency. Incorporating
learnable adaptive parameters into the LSG circuit significantly
enhances performance across several datasets. In particular,
certain benchmarks exhibit substantial accuracy gains, while
others maintain performance levels comparable to the baseline.

On average, the P-LSNN achieves an 8.2 % increase in
classification accuracy relative to the P-SNN model. In addition
to improved accuracy, the P-LSNN also shows a considerable
power reduction. Specifically, the average energy utilization
of the P-LSNN (as shown in Fig. 6) is reduced by 28.7 %
compared to P-SNN and by 83.2% when compared to the
P-ANN baseline [41]. Our experiments also reveal that, on
average, our proposed LSG reduced the power consumption by
57.6% compared to previous works [32] resulting in a highly
energy-efficient printed spiking neuromorphic circuit. Also,
the large capacitors (10 uF') in the P-SNNs [32] significantly
increased area requirements. By reducing capacitor values from
10 pF to 10 — 100 nF' range, the proposed P-LSNN’s average
circuit area is significantly reduced by 89%, which is much
smaller than the P-SNN and even smaller than the P-ANN
(2.46 cm?). Thus, the remaining trade-off for the P-LSNN
model is the increased training time—averaging 16.39 hours,
compared to 1.32 hours for the P-ANN and 14.31 hours for the
P-SNN. Despite this longer training duration, the considerable
gains in power efficiency, reduced area footprint, and improved
robustness justify the additional training cost.

Furthermore, the robustness was also evaluated under 10%
process variation by injecting noise into the network weights
and learnable circuit components. As expected, both P-SNN
and P-LSNN models exhibited a slight degradation in perfor-
mance. The P-SNN showed an average drop of 1.0%, while
the P-LSNN experienced 4.9% reduction. This is attributed

to the fact that, for P-SNN, the SG circuit components were
excluded from noise injection, whereas in the P-LSNN, all
learnable parameters were subject to variation. Despite this,
the average accuracy of the proposed approach under variation
remained 3.3% higher than that of the baseline without vari-
ation, underscoring the robustness and generalization capacity
of the proposed approach.

Overall, the integration of adaptive parameters into the LSG
not only improves accuracy and power efficiency but also im-
proves the circuit adaptability with respect to the spike-timing
events and also offers resilience against practical variability,
making P-LSNN a promising candidate for ultra-low-power
adaptive neuromorphic applications.

VI. CONCLUSION

Designing spiking circuits that are both energy-efficient and
adaptable is especially difficult on printed electronics, whose
low-cost processes introduce wide device variations and tight
power constraints. To address this challenge, we proposed an
analog printed spiking neural network with a learnable spike
generator trained under a robustness-aware framework.

Across thirteen public benchmarks, the learnable spike gen-
erator lowers its own average power by 57.6 % relative to prior
spike-generation circuits. Furthermore, the learnable printed
spiking neural network trims energy per inference by 28.7 %
compared with the non-adaptive printed spiking neural network
and raises average classification accuracy from 75 % to 83 %.
These gains come with a reduction in area, making the design
more compact, and only a small increase in offline training
time, which remains acceptable for ultra-low-power printed
hardware. Under a +10 % process-variation test, the proposed
network still outperforms the baseline by 3.3 % without vari-
ation, showing that the learned circuit parameters generalise
beyond nominal conditions.

Future work may integrate online learning for real-time
adaptation to changing conditions and extend the framework to
fully event-driven, asynchronous operation, further enhancing
the practicality of printed spiking systems for always-on edge
and IoT applications.
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