KIT | KIT-Bibliothek | Impressum | Datenschutz

The ATLAS of Traffic Lights: A Reliable Perception Framework for Autonomous Driving

Polley, Rupert 1; Polley, Nikolai ORCID iD icon 2,3; Heid, Dominik 1; Heinrich, Marc 1; Ochs, Sven 1; Zöllner, J. Marius 1,2,3
1 FZI Forschungszentrum Informatik (FZI)
2 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)
3 Kompetenzzentrum für angewandte Sicherheitstechnologie (KASTEL), Karlsruher Institut für Technologie (KIT)

Abstract:

Traffic light perception is an essential component of the camera-based perception system for autonomous vehicles, enabling accurate detection and interpretation of traffic lights to ensure safe navigation through complex urban environments. In this work, we propose a modularized perception framework that integrates state-of-the-art detection models with a novel real-time association and decision framework, enabling seamless deployment into an autonomous driving stack. To address the limitations of existing public datasets, we introduce the ATLAS dataset, which provides comprehensive annotations of traffic light states and pictograms across diverse environmental conditions and camera setups. This dataset is publicly available at https://url.fzi.de/ATLAS. We train and evaluate several state-of-the-art traffic light detection architectures on ATLAS, demonstrating significant performance improvements in both accuracy and robustness. Finally, we evaluate the framework in real-world scenarios by deploying it in an autonomous vehicle to make decisions at traffic light-controlled intersections, highlighting its reliability and effectiveness for real-time operation.


Originalveröffentlichung
DOI: 10.1109/IV64158.2025.11097347
Scopus
Zitationen: 2
Dimensions
Zitationen: 2
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Kompetenzzentrum für angewandte Sicherheitstechnologie (KASTEL)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 22.06.2025
Sprache Englisch
Identifikator ISBN: 979-8-3315-3804-0
ISSN: 1931-0587
KITopen-ID: 1000183940
HGF-Programm 46.23.03 (POF IV, LK 01) Engineering Security for Mobility Systems
Erschienen in 2025 IEEE Intelligent Vehicles Symposium (IV), Cluj-Napoca, 22nd-25th June 2025
Veranstaltung 36th IEEE Intelligent Vehicles Symposium (IV 2025), Klausenburg, Rumänien, 22.06.2025 – 25.06.2025
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 2215–2222
Nachgewiesen in Dimensions
OpenAlex
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page