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Abstract

The research field of evolutionary bioinformatics describes the evolutionary origins of organ-
isms, primarily using (mathematical) trees. These trees are based on statistical models that
account for variations among the observed genomic data. While phylogenetic trees describe
the shared evolutionary history among distinct species, genealogical trees consider distinct
individuals of the same species. The amount of available genomic data grows exponentially,
and therefore presents major challenges for applications in evolutionary bioinformatics. For
instance, as single-core performance plateaus, we require both, work-efficient and highly-
parallel algorithms. However, existing petascale systems experience hardware failures 0.8 to
5.7 times per day, and future exascale systems are expected to fail every 30 to 60 minutes. To
avoid loosing progress, algorithms should mitigate from these failures. Further, algorithms
that yield bit-identical results across different hardware environments strengthen scientific
claims. Finally, software libraries facilitate efficient application development by providing
abstractions to manage the growing complexity of scientific codes.

In this thesis, we address four concrete instances of the challenges outlined above: We
address the reproducibility challenge by presenting the first parallel phylogenetic tree inference
tool that yields bit-identical results under varying core counts. To this end, we also present
a bit-reproducible operation-agnostic distributed reduction algorithm. Additionally, we
address the algorithmic challenge by proposing to compress sets of genealogical trees into a
Directed Acyclic Graph and thus encode shared subtrees only once. This enables straight-
forward memoization, thereby yielding substantial runtime reductions over the state-of-the-art.
Moreover, we address the hardware failure challenge by substantially accelerating the failure
recovery of a fault-tolerant RAXML-NG version — a widely-used tool for phylogenetic tree
inference. To this end, we present the, to the best of our knowledge, first general-purpose
checkpointing solution allowing for in-memory recovery after a fail-stop hardware-failure
without requiring spare cores (shrinking recovery). Finally, we address the software complezity
challenge by developing high-level C++ bindings for MPI. Our C++ bindings enable a faster,
less error-prone development of distributed applications, including access to MPI’s failure-
mitigation mechanisms and our bit-reproducible parallel reduce implementation.

Reproducibility Challenge Maximum-Likelihood phylogenetic tree inference searches for the
tree and evolutionary model that best explain the observed genomic data. The likelihood score
calculations at different genomic loci/sites are independent, and thus they are commonly
computed in parallel and then reduced into a single tree score. However, fundamental
arithmetic operations on IEEE 754 floating-point numbers, such as addition, inherently
introduce rounding errors, causing the order of floating-point operations to affect the result.
Consequently, how common parallel reduction algorithms re-associate operations under
varying core counts, results in different round-off errors. We observe this effect to cause
phylogenetic tree searches to diverge under varying degrees of parallelism for 31 % of 10130
empirical datasets. 8 % of these divergent datasets even yield trees that are significantly worse
than the best found tree (AU-test, p < 0.05). To alleviate these diverging results, we present a
variant of RAXML-NG that ensures bit-reproducible results under varying core-counts, with a
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slowdown of only 0 to 6.7 % (median 0.93 %) on up to 768 cores. To this end, we introduce the
general-purpose distributed reduction algorithm ReproRed, which ensures bit-identical results
under varying core counts by maintaining a fixed order of operations independent of the
communication pattern. Thus, ReproRed is applicable to all associative reduction operations
— in contrast to competitors, which are confined to summation only. ReproRed exchanges only
the theoretical minimum number of messages, overlaps communication with computation,
and utilizes a fast base-case for conducting local reduction. Further, ReproRed is able to
all-reduce (via a subsequent broadcast) 4.1 x 10° operands across 48 to 768 cores in 19.7 to
48.61 ps, exhibiting a slowdown of 13 to 93 % over a non-reproducible all-reduce algorithm
and 8 to 25 % over an non-reproducible Reduce-Bcast algorithm. ReproRed outperforms the
state-of-the-art reproducible algorithm (summation only) beyond 10000 elements per core.

Algorithmic Challenge In population genetic studies of recombining organisms (e.g., hu-
mans), sets of genealogical trees provide a more comprehensive view on evolution than a
single tree, as commonly used in phylogenetics. Here, each of the (highly-correlated) trees
describes the evolutionary history of a distinct genomic region. The current state-of-the-art
data structure compresses these trees via edit operations when moving from one tree to the
next along the genome. In contrast, we propose to compress the input trees into a Directed
Acyclic Graph, such that subtrees are encoded only once, even if they appear multiple times
in the input. This allows for a straight-forward memoization of intermediate results. Queries
on our data structure are 2.1 to 11.2 (median 4.0) times faster than the state-of-the-art for
obtaining important population genetic statistics such as Patterson’s f, Tajima’s D, pairwise
Lowest Common Ancestor, and others on empirical, and simulated datasets.

Hardware-Failure Challenge When mitigating hardware failures, it is often impractical to
either request replacement for failed cores, or to maintain spares. Thus, algorithms must
continue with the remaining cores, necessitating them to restore lost data and to redistribute
the workload and respective data to the remaining cores. However, current checkpointing
libraries often do not support such a data redistribution. Moreover, they typically write
checkpoints to the parallel file system instead of the main memory, resulting in slow recoveries
due to low disk access speeds and disk/network congestion. We present ReStore, which, in
turn, supports the data redistribution that is required by shrinking recovery and backs-up the
application data in memory. ReStore reloads lost data in milliseconds on up to 24 576 cores
and thereby accelerates the reloading of data during failure recovery for the failure-tolerant
version of RAXML-NG by one to two orders of magnitude.

Software Complexity Challenge The Message Passing Interface (MPI) abstracts over
message exchanges in parallel distributed-memory machines. However, although high-level
programming languages such as C++ yield software development faster and less error-prone,
MPI does not provide C++ bindings. To this end, we propose such bindings along an
extensively tested, open-source implementation, KaMPIng, that covers all abstraction levels
from low-level MPI calls to convenient STL-style bindings. Through a configurable inference
of parameter defaults, fine-grained memory allocation control, enhanced safety guarantees,
and a flexible plugin system, KaMPIng enables both, rapid prototyping and careful fine-
tuning of distributed algorithms. By utilizing template-metaprogramming, KaMPIng incurs
(near) zero running time overhead. We also integrate ReproRed as well as abstractions
over MPT’s failure-mitigation interface into KaMPIng and showcase KaMPIng via multiple
application benchmarks. Various scientific C++ projects already utilize KaMPIng and we



are working with the MPI language binding working group towards the development of novel
MPI C++ bindings with KaMPIng as a reference implementation.

Impact Our work allows researchers to analyze the exponentially growing phylogenetic and
population genetic datasets, to perform novel, work-intensive, analyses, publish reproducible

results, and to develop complex distributed algorithms through appropriate abstractions.

We demonstrate this by developing the, to the best of our knowledge, first bit-reproducible
phylogenetic tree inference tool as well as by substantially accelerating recovery of the
fault-tolerant RAXML-NG version. Thus, our contributions push the scalability frontier in
evolutionary bioinformatics in particular and High Performance Computing in general.

vii
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Zusammenfassung

Das Forschungsfeld der Evolutiondren Bioinformatik beschreibt die Evolutionsgeschichte
von Organismen, primér mithilfe von (mathematischen) Baumen. Diese Baume basieren auf
statistischen Modellen, welche die Differenzen zwischen den beobachteten Genomen erklaren.
Hierbei beschreiben Phylogenetische Baume die gemeinsame Evolutionsgeschichte zwischen
Organismen verschiedener Spezies und Genealogische Bdume die Evolutionsgeschichte zwi-
schen Individuen derselben Spezies. Die Menge der verfiigharen genomischen Daten wéchst
exponentiell und stellt damit Anwendungen der Evolutiondren Bioinformatik vor komplexe
Herausforderungen. Zum Beispiel stagniert die Rechengeschwindigkeit einzelner Rechenkerne,
was sowohl arbeitseffiziente als auch hoch-parallele Algorithmen notwendig macht. Allerdings
beobachten wir schon bei heutigen Petascale-Systemen pro Tag 0.8 bis 5.7 Hardwareausfélle
und fiir zukiinftige Exascale-Systeme werden solche Ausfille alle 30 bis 60 Minuten erwartet.
Damit eine Anwendung bei einem Hardwareausfall nicht ihren kompletten Fortschritt verliert,
muss sie mit diesen umgehen kénnen. Des Weiteren férdern Algorithmen, welche bitidentische
Ergebnisse iiber verschiedenste Hardwareumgebungen ausgeben, die Glaubwiirdigkeit der
von ihnen erzeugten wissenschaftlichen Ergebnisse. Schlussendlich sind Softwarebibliotheken
unabdingbar fir die effiziente Softwareentwicklung, da sie Abstraktionen bereitstellen, um
mit der wachsenden Komplexitat wissenschaftlicher Programme umzugehen.

In dieser Thesis befassen wir uns mit vier konkreten Instanzen der oben beschriebenen
Herausforderungen: Wir gehen die Reproduzierbarkeits-Herausforderung an, indem wir das
erste parallele, bitreproduzierbare Programm fiir Phylogenetische Inferenz vorstellen. Hier-
fiir stellen wir einen operatorunabhéngigen, verteilten Reduktionsalgorithmus vor, welcher
bitidentische Ergebnisse unabhéngig von der Anzahl der Rechenkerne garantiert. Wir gehen
die Algorithmische-Herausforderung an, indem wir eine neue Datenstruktur vorschlagen,
welche eine Menge genealogischer Bdume zu einem Directed Acyclic Graph komprimiert und
dabei geteilte Teilbdume nur einmal speichert. Dies erlaubt die einfache Wiederverwendung
von Zwischenergebnissen und reduziert dadurch die Laufzeit gegentiber dem bisherigen Stand
der Wissenschaft substantiell. Des Weiteren gehen wir die Hardwareausfall-Herausforderung
an, indem wir die, nach unserem besten Wissen, erste allgemein anwendbare Checkpointing-
Bibliothek présentieren, welche das Wiederherstellen des Programmzustands nach einem
fail-stop Hardwareausfall aus dem Arbeitsspeicher erlaubt, ohne dabei zuséatzliche Rechenk-
noten zu bendtigen. Mithilfe dieser Checkpointing-Bibliothek erreichen wir eine substantielle
Beschleunigung der ausfalltoleranten RAXML-NG Version — ein weit verbreitetes Programm
zur Inferenz Phylogenetischer Baume. Schlussendlich gehen wir die Software- Komplexitdits-
Herausforderung an, indem wir eine hoch-abstrahierte C++-Schnittstelle fiir MPI entwickeln,
welche eine schnellere, weniger fehlerbehaftete Entwicklung von verteilten Anwendungen er-
moglicht. Sie erlaubt zudem den Zugriff auf die Fehlermitigationsmechanismen von MPI 5, auf
unseren bitreproduzierbaren parallelen Reduktionsalgorithmus, sowie weitere Abstraktionen.

Reproduzierbarkeits-Herausforderung Die Maximum-Likelihood basierte Inferenz Phylo-
genetischer Bdume sucht denjenigen Baum und dasjenige evolutiondre Modell, welche die
beobachteten genomischen Daten am besten erkléren. Die Likelihood-Werte verschiedener
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genomischer Loki/Sites sind unabhéngig voneinander und werden daher oft parallel berechnet
und anschliefend reduziert, um einen einzelnen Baumwert zu erhalten. Jedoch sind grund-
legende arithmetische Operationen auf IEEE 754 FlieSkommazahlen, wie z. B. Addition,
inhdrent mit Rundungsfehlern behaftet. Dies fiihrt dazu, dass die Reihenfolge, in welcher
Rechenoperationen ausgefiihrt werden, den Wert des Endergebnisses beeinflussen. Ubliche
verteilte Reduktionsalgorithmen assoziieren die Reduktionsoperationen je nach Anzahl der
Rechenkerne anders, was wiederum in unterschiedlichen Rundungsfehlern resultiert. Wir
beobachten, dass dieser Effekt Phylogenetische Baumsuchen, welche auf unterschiedlich vielen
Rechenknoten durchgefiithrt wurden in 31 % von 10 130 empirischen Datensatzen divergieren
lasst. Auf 8 % der divergierenden Datensatze werden sogar Baume gefunden, welche signifi-
kant schlechter sind als der beste gefundene Baum (AU-Test, p < 0.05). Als Losungsansatz
entwerfen wir eine Variante von RAxML-NG, welche bitreproduzierbare Ergebnisse unab-
héngig von der Anzahl der Rechenkernen garantiert. Unsere bitreproduzierbare Variante
ist nur 0 bis 6.7 % (Median 0.93 %) langsamer als die nicht-reproduzierbare Referenz auf
bis zu 768 Rechenkernen. Hierfiir stellen wir einen allgemein-anwendbaren und verteilten
Reduktionsalgorithmus namens ReproRed vor, welcher die Reihenfolge der Rechenoperatio-
nen unabhingig vom Kommunikationsmuster konstant hélt. Damit erreicht ReproRed, dass
Reduktionen iiber Variationen in der Anzahl Rechenkerne hinweg bitidentische Ergebnisse
liefern und auf alle assoziativen Reduktionsoperationen anwendbar sind — im Gegensatz
zu Mitbewerbern, welche nur Summierung unterstiitzen. ReproRed tauscht nur das theo-
retische Minimum an Nachrichten aus, iiberlappt Kommunikation mit Berechnung und
setzt einen schnellen Basisfall fiir lokale Reduktionen ein. ReproRed kann (mithilfe eines
anschliefenden Broadcast) 4.1 x 10° Operanden, welche iiber 48 bis 768 Rechenkerne verteilt
sind, in 19.7 bis 48.61 us reduzieren. Damit ist ReproRed nur 13 bis 93 % langsamer als ein
nicht-reproduzierbarer Allreduce-Algorithmus und nur 8 bis 25 % langsamer als ein nicht-
reproduzierbarer Reduce-Bceast Algorithmus. ReproRed ist schneller als der bisher schnellste
reproduzierbare Algorithmus (unterstiitzt nur Summierung) auf mehr als 10000 Elementen
pro Rechenknoten.

Algorithmische-Herausforderung In populationsgenetischen Untersuchungen auf rekombi-
nierenden Organismen (z. B. Menschen) liefert die Verwendung von Mengen genealogischer
Béaume ein umfassenderes Bild der Evolution als die Verwendung eines einzelnen Baumes, wie
es in der Phylogenetik tiblich ist. Hierbei beschreibt jeder dieser (hoch korrelierten) Baume die
Evolutionshistorie einer spezifischen genomischen Region. Die bisher schnellste Datenstruktur
komprimiert diese Menge an Bdumen mithilfe von Edit-Operationen zwischen entlang des
Genoms adjazenten Baumen. Im Gegensatz dazu schlagen wir eine Codierung vor, in welcher
Teilbdume nur einmal gespeichert werden, auch wenn sie mehrmals in den Eingabebdumen
vorkommen. Dies erlaubt die einfache Wiederverwendung von Zwischenergebnissen. Statisti-
sche Anfragen an unsere Datenstruktur sind 2.1 bis 11.2 (Median 4.0) mal schneller als an
die bisher schnellste bekannte Datenstruktur. Dies umfasst die Berechnung von wichtigen
populationsgenetischen Statistiken, wie z. B. Pattersons f, Tahimas D und paarweisen Lowest
Common Ancestor-Anfragen, auf empirischen und simulierten Datensétzen.

Hardwareausfall-Herausforderung Bei der Behandlung von Hardwareausféllen ist es fiir Pro-
gramme sowohl impraktikabel Ersatz fiir die ausgefallenen Rechenkerne anzufragen, als auch
sich diese von Programmstart an in Reserve zu halten. Daher ist es notwendig, dass Algorith-
men die verlorenen Anwendungsdaten auf den verbleibenden Rechenkernen wiederherstellen
und die verbleibende Arbeit auf ebendiese umverteilen. Allerdings unterstiitzen existierende



Checkpointing-Bibliotheken die dafiir notwendige Datenumverteilung nicht. Zudem schreiben
diese ihre Sicherungskopien oft auf das parallele Dateisystem anstatt in den Hauptspeicher
der Rechenknoten, was in langsamen und konkurrierenden Zugriffen auf die entsprechenden
Festplatten resultiert. Wir stellen ReStore vor, eine Checkpointing-Bibliothek, welche im
Vergleich zu Mitbewerbern die fiir diese Wiederherstellung notwendige Umverteilung der
Daten unterstiitzt und die Anwendungsdaten in den Hauptspeicher sichert. In Experimenten
mit bis zu 24 576 Rechenkernen konnte ReStore durch einen Hardwareausfall verlorene Da-
ten in Millisekunden wiederherstellen und beschleunigt damit die Fehlerbehandlung in der
fehlertoleranten Version von RAXML-NG um ein bis zwei Gréflenordnungen.

Software-Komplexitdts-Herausforderung Das Message Passing Interface (MPI) abstrahiert
iiber den Nachrichtenaustausch in Maschinen mit verteiltem Speicher. Obwohl hochabstrakte
Programmiersprachen wie C++ die Softwareentwicklung schneller und weniger fehleranfil-
lig gestalten, umfasst MPI keine C++-Schnittstelle. Wir entwerfen daher eine ebensolche
und stellen mit KaMPIng eine quelloffene und ausgiebig getestete Implementierung zur
Verfiigung. KaMPIng deckt alle Abstraktionsebenen von unmittelbaren MPI-Aufrufen bis
hin zu STL-&hnlichen Funktionsschnittstellen ab. Durch eine konfigurierbare Inferenz von
Standardparametern, feingranularer Speicherallokationskontrolle, verbesserten Sicherheitsga-
rantien und ein flexibles Pluginsystem ermdglicht KaMPIng sowohl die schnelle Entwicklung
von Prototypen als auch die Feineinstellung verteilter Algorithmen. Durch den Einsatz von
Template-Metaprogrammierung erreicht KaMPIng all dies (fast) ohne zusétzliche Laufzeitkos-
ten. Wir demonstrieren die Fahigkeiten von KaMPIng mithilfe mehrerer Beispielanwendungen
und integrieren einen bitreproduzierbaren Reduktionsalgorithmus sowie eine Abstraktion der
MPI-Fehlertoleranzmechanismen in KaMPIng. Verschiedene wissenschaftliche C++-Projekte
verwenden bereits KaMPIng und wir arbeiten derzeit zusammen mit der MPI-Arbeitsgruppe
fiir Programmiersprachenschnittstellen an der Entwicklung neuer C++-Schnittstellen fiir
MPI — mit KaMPIng als Referenzimplementierung.

Bedeutung Unsere Arbeit erlaubt Wissenschaftler:innen die Analyse exponentiell wachsen-
der Phylo- und Populationsgenetischer Datenmengen, neue, arbeitsintensive Analysen, die
Publikation reproduzierbarer Ergebnisse und die Entwicklung komplexer, verteilter Algo-
rithmen durch geeignete Abstraktionen. Wir demonstrieren dies durch die Entwicklung des,
nach unserem besten Wissen, ersten bitreproduzierbaren Programms zur Phylogenetischen
Bauminferenz sowie der substantiellen Beschleunigung der Hardwareausfall-Mitigation in
der fehlertoleranten Version von RAXxML-NG. Unser wissenschaftlicher Beitrag verschiebt
damit die Grenze der Skalierbarkeit in der evolutiondren Bioinformatik im Speziellen und
Hochstleistungsrechnen im Allgemeinen.
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1 Introduction

Attribution: I am the sole author of the text in this chapter. Attributions of the
work referenced herein can be found in the respective chapters.

Charles Darwin famously wrote that all living organisms share a common evolutionary history,
which can be modeled using a tree [Dar59; Dar87]. Since then, hand-drawn trees based on
morphological features [Dar59; Hae66; Hit40] have been replaced by trees that are computed
using mathematical and statistical models. These models take into account variations
among the genomic data of the observed species [Hin+15; Pen04]. The field of evolutionary
bioinformatics models and analyzes the evolutionary history of organisms, either between
species (phylogenetic trees) or between distinct individuals of the same species (genealogy).
For example, a tree depicting how contemporary species of the Rodentia order relate to
each other constitutes a phylogenetic tree, while a tree depicting the evolutionary history of
different Homo sapiens groups alive today constitutes a genealogical tree (Section 2.1).

Both, phylogenetic and genealogical models, advance our understanding of evolutionary
processes such as mutations, genetic drift, gene flow, or natural selection [Lui+18] and help
us infer the tree of life [Fox+80; WKW90]. Their downstream applications include, among
others, medical research [All64; Cas+12; CG14; Oka+20; Som+17; WNO1] for example
during the recent SARS-CoV19 pandemic [Ste+20], forensics [APV18; Ber+07; Ou+92|, and
wildlife conservation [HFR20; Hug+23; Rol+11; SS18] (Section 2.1).

Conceptually, genealogical trees are a magnified version of phylogenetic trees, further
resolving the evolutionary relationships inside a single tip (species) of the phylogenetic
tree down to the level of individuals (Section 2.1). However, this invalidates an important
simplification: Single trees cannot fully describe processes where individuals pass on different
parts of their genome independently [Morl6]. This can be observed, for example, in sexually
reproducing species with multiple genome copies (e.g., two in humans) [Hud83]: Here, a
process called recombination causes the genetic material, which is organized in a DNA
strand, to break and reconnect before being passed on to an offspring. Thus, the closer two
genetic positions are located with each other along the genome, the higher the chance to
have been inherited from the same ancestor becomes [SK06]. Therefore, for recombining
organisms, modeling the (correlated) history of distinct regions along the genome using
different (correlated) trees captures the evolutionary history more accurately than a single
tree [Hud83] (Section 2.1).

1.1 Scalability Challenges in Evolutionary Bioinformatics

Next Generation Sequencing has boosted the rate at which new genomic data is generated.

Molecular data continues to grow exponentially, doubling roughly every 18 months [NHS25;
SRA25] (Figure 1.1). Notably, the growth of available genomic data outpaces that of
computational power and storage capabilities per unit of money [BDY16; GMM16; Li+19;
Sat+23; Sau+19; Sch+18; Ste+15], which doubles every 24 months according to Moore’s
Law [Moo75]. According to Oliva et al. [Oli+24], next to the decreasing sequencing cost, other
factors that contribute to this exponential growth include large-scale population genomics
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1.1 Scalability Challenges in Evolutionary Bioinformatics
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Figure 1.1 Data growth in evolutionary bioinformatics. Left: Amount of sequence data in the
Sequence Read Archive [LSS10] and GenBank [Ben+12]. Data from the US National Library of
Medicine [NHS25; SRA25]. Right: Average cost of sequencing per mega-base (Mb). Data from the
US National Human Genome Research Institute [NHGRI25].

initiatives [Bic+24; Byc+18; FS13; Lei+14; Won+23a|, genetic tests available directly to
consumers [Sto+16], and efforts to integrate genome testing into public health care.

Today, nearly one hundred petabytes of raw sequencing data are publicly available, for
example, in the Sequence Read Archive [LSS10; SRA25]. Half a million human genomes
are available in the UK Biobank [Byc+18]. Analogous government-driven efforts are being
undertaken, for example, in the USA [Bic+24], Estonia [Lei+14], Singapore [Won+23a], or the
European Union [Sau+19]. Other collections — also containing up to hundreds of thousands
of genomes — focus on representing the full diversity of human genetic material [Aut+15;
Kar+20; Mal+16; Reil9; Tal+21]. Overall, Birney et al. [BVG17] estimate, that over 60
million people will have their genome sequenced in a healthcare context by the end of
2025. For non-human species, the Darwin Tree of Life project [Bla+22] aims to sequence
70 000 species from Ireland and Great Britain. Further initiatives focus on the genomes of
plants [BdF24; Che+18], fungi [Gri+13], or eukaryotic species in general [Lew+18].

However, this exponentially growing amount of available data needs to be processed,
necessitating efficient algorithms, implementations yielding bit-wise reproducible results,
increased parallel scalability, and more complex software.

The Algorithmic Challenge As single processor speeds tend to stagnate [TW17], we can
no longer rely on increasing sequential processing speeds to handle huge amounts of data.
Instead, we require algorithms that perform the minimally required work by the problem®
(that is, work-efficient algorithms), and highly optimized implementations, which exploit
modern hardware features and leverage data locality. For example, the current state-of-
the-art data structure used to compute population genetic statistics on the tree sets and
associated sequences of genealogical datasets is tskit (Chapter 3). It compresses the sets
of correlated genealogical trees via edit operations when moving from one tree to the next
along the genome. This prevents tskit from re-using subtrees that are shared between
non-adjacent trees along this tree sequence. As a solution, we propose a data structure, which
compresses these genealogical trees by storing shared subtrees only once, thereby enabling
straight-forward memoization of intermediate results, and yielding a more work-efficient
algorithm as well as a substantial runtime reduction.

Y For some computational problems, the minimum work required might not be known.



The Hardware Failure Mitigation Challenge Next to work-efficient data structures and
algorithms, we also require increased parallelism to handle the data avalanche in evolutionary
bioinformatics. However, with an increasing number of processors, the probability that a
program experiences a hardware failure during its execution increases. Petascale systems
already fail 0.8 to 5.7 times per day (Section 2.7). In fact, future exascale systems are
expected to experience hardware failures every 30 to 60 minutes [Cap+14; DHR15; Sni+14].
Therefore, mitigating these hardware failures constitutes a major challenge for future exascale
systems [SDM10]. During failure-recovery, algorithms have to be able to restore lost data
the failed processors were working on. A common failure-mitigation strategy is to frequently
write out the current state to a so-called checkpoint, which the program can subsequently
reload after a failure to resume execution (Section 2.8). However, current checkpointing
libraries typically write to the parallel file system (PFS), inducing slow recoveries due to
low disk access speeds and disk congestion. Moreover, on modern cluster systems, it is
impractical to request replacement for failed CPU cores, as well as to maintain spares. Thus,
applications must continue working with the remaining cores, which requires redistributing
the workload. However, many currently available checkpointing libraries support neither
such a partial restore operation nor the respective data redistribution.

The Reproducibility Challenge Next to disseminating a result, scientific publications
also serve to convince the reader of the correctness of this result [Mesl0]. Computa-
tional reproducibility is considered a cornerstone for validating scientific claims [IT18§]
(Section 2.10). However, fundamental arithmetic operations such as additions or multiplica-
tions on IEEE 754 [IEEE754] floating-point numbers always induce rounding errors [Gol91].
Among other factors (Section 2.10), the mere number of CPU cores an application utilizes
influences the order by which operations are executed and thus rounded [Li+23; SMR24].
Moreover, the impact of these low-level differences in floating-point values on high-level
results of scientific codes have been reported for various fields [Cle+13; Diel2; DN15; HDO1;
RRA11; Tau+10; Vil+09; Wie+19], including phylogenetics [DFS18; She+20a]. Additionally,
in failure-mitigating algorithms, a hardware failure changes the number of CPU cores a
program is executed on at unpredictable points during its runtime (Section 2.7).
Maximum-Likelihood based phylogenetic inference tools like RAXML-NG search for
the phylogenetic tree and evolutionary model that best explain the observed genomic data
(Section 2.3). Common parallel implementations compute the likelihood scores of the genomic
sites in parallel and then sum over them in order to obtain an overall score for the tree.
However, as parallel reduction algorithms that are highly common in scientific codes re-
associate operations depending on the number of CPU cores used, this induces different
round-off errors and therefore results, depending on the degree of parallelism (Section 2.10).

The Software Complexity Challenge Brooks [Bro87] describes software systems as being
among the most complex human constructs. Requirements for efficiency, parallelism, and bit-
reproducibility further increase their complexity. The fundamental tool for handling software
complexity is abstraction, often in the form of functions that are bundled in software libraries.
Thus, in order to facilitate the development of efficient, parallel, and bit-reproducible software,
software libraries providing high-quality implementations are required. For example, the
Message Passing Interface (MPI) [MPI4.1] offers abstractions over passing messages between
processes in the context of High Performance Computing (HPC; Section 2.6). However, MPI
only provides C and FORTRAN bindings, even though high-level programming languages
such as C++ yield software development quicker and less error-prone.
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1.2 Scientific Contributions

Summary In conclusion, evolutionary bioinformatics faces challenges due to the exponential
growth of genomic data caused by the advent of Next Generation Sequencing. To cope with
this data avalanche and develop scalable codes we require work-efficient algorithms, programs
that are able to mitigate hardware failures and thereby enable us to scale to more CPU cores,
as well as techniques for handling additional sources of non-reproducibility introduced by
parallelism. Moreover, we require abstractions in the form of software libraries to handle
the increased software complexity associated with these changes. While all the challenges
outlined in this section are particularly prominent in evolutionary bioinformatics because of
the exponential data growth, they also apply to other areas of scientific computing.

1.2 Scientific Contributions

In the remainder of this work, we address the four major scalability challenges in evolutionary
bioinformatics outlined in Section 1.1: We design, implement, and evaluate a work-efficient
data structure for statistical queries on population genetics datasets, a novel scalable in-
memory replicated storage for failure-tolerant applications, a distributed-memory reduction
algorithm that guarantees reproducible results irrespective of the core-count, and high-
level C++ bindings for MPI, enabling a faster, less error-prone development of distributed
applications, including access to MPI’s failure-mitigation mechanisms and our reproducible
parallel reduction algorithm. While motivated by challenges in evolutionary bioinformatics,
most of our results are also applicable to other domains of High Performance Computing. Our
work allows researchers to analyze the exponentially growing phylogenetic and population
genetic datasets, to perform novel, work-intensive, analyses, publish reproducible results and
facilitates the development of complex distributed-memory algorithms through abstractions.

In Chapter 3, we address the algorithmic challenge, particularly the question: How
can we design a data structure for sets of genealogical trees and associated genomic
sequences, allowing for the efficient computation of statistical queries commonly
executed on these population genetic datasets?

We propose a novel data structure for storing sets of genealogical trees and their associated
genomic sequences that allows for memoizing intermediate results. We show, that this enables
devising work-efficient statistical queries and yields a substantial runtime reduction over
the state-of-the-art data structure called tree sequences. Tree sequences compress sets of
genealogical trees via edit operations when moving from one tree to the next along the
genome. However, this hinders re-using intermediate results between non-adjacent trees in
numerous cases. Our proposed data structure, genealogical forests, compresses the set of
genealogical trees into a Directed Acyclic Graph (DAG; Chapter 3). In this DAG, identical
subtrees that are shared across the input trees are encoded only once, thereby allowing for
straight-forward memoization of all intermediate results. Additionally, we provide a C++
implementation of our proposed data structure, called gfkit. Our implementation is 2.1 to
11.2 (median 4.0) times faster at computing important population genetics statistics such
as the Allele Frequency Spectrum, Patterson’s f, the Fixation Index, Tajima’s D, pairwise
Lowest Common Ancestor (LCA), and others than the state-of-the-art tool on empirical and
simulated datasets. On LCA queries with more than two samples as input, gfkit scales
asymptotically better than the state-of-the-art implementation, and is therefore up to two
orders of magnitude faster in our experiments. Our improvements will boost the development
of novel analyses and models in the field of population genetics and increases scalability to
the exponentially-growing genomic datasets.



In Chapter 4, we address the hardware failure challenge, particularly the question:
How can we design and implement a data distribution and recovery scheme for failure-
tolerant algorithms that enables rapid recovery as the number of CPUs and thus the
frequency of hardware failures increases?

We advance the field of mitigating hardware failures in HPC by presenting an algorithmic
framework and its C++ library implementation, ReStore, which enables MPI programs to
perform scalable data-recovery when mitigating hardware failure (Chapter 4). By storing
data in memory via an appropriate data distribution and replication scheme, recovery is
substantially faster than for checkpointing approaches that rely on the PFS. Developers can
specify which data to load. ReStore supports both, shrinking recovery and recovery via spare

nodes. We evaluate ReStore in controlled, isolated environments and with real applications.

Our experiments show millisecond loading times for lost input data on up to 24 576 cores. We
also obtain a substantial recovery time speedup for the fault-tolerant version of the widely
used phylogenetic tree search tool RAXML-NG. To the best of our knowledge, ReStore is
the first in-memory checkpointing library that supports shrinking recovery. Therefore, it
enables the development of algorithms that do not need to maintain spare CPU cores as
replacement resources, and thereby avoid wasting computational resources.

In Chapter 5, we address the reproducibility challenge, in particular the following
two questions: How does the number of CPU cores used for a phylogenetic tree inference
impact the inferred tree topology on empirical datasets, and how can we implement
a phylogenetic tree inference that is numerically stable under varying core-counts?
Further, how can we design a distributed-memory reduction algorithm that is agnostic
of the used reduction operator but still yields bit-identical results when executed on a
varying number of CPU cores?

We provide a large-scale analysis of the bit-reproducibility of parallel phylogenetic inference
algorithms under varying degree of parallelism. We find that these tree searches diverge on
31 % of 10130 empirical datasets. More importantly, 8 % of these diverging searches result in
trees that are significantly worse than the best found tree (AU-test, p < 0.05).

To alleviate this issue, we implement a variant of the widely-used phylogenetic tree

inference tool RAXML-NG, which yields bit-reproducible results under varying core counts.

This variant is merely 0 to 6.7 % (median 0.93 %) slower than non-reproducible RAXML-NG
on up to 768 cores.

We also introduce ReproRed, a bit-reproducible reduction algorithm, which specifies the
order of reduction operations independent of the communication pattern. Thus, ReproRed
is applicable to arbitrary associative reduction operators — in contrast to its competitors,
which are confined to summation. This allows us to integrate ReproRed into a open-source
MPI wrapper library, which enables users to pass arbitrary reduction operators, such as
C++ lambdas or function pointers. Furthermore, ReproRed exchanges only the theoretical
minimum number of messages, overlaps communication with computation, and utilizes a fast
base-case for conducting local reduction.

We find that ReproRed is able to all-reduce (via a subsequent broadcast) 4.1 x 10°
operands on 48 to 768 cores in 19.7 to 48.61 ps. Thus, ReproRed exhibits a slowdown of 13 to
93 % over an non-reproducible all-reduce algorithm and 8 to 25 % over an non-reproducible
Reduce-Beast algorithm. ReproRed outperforms the state-of-the-art reproducible all-reduce

algorithm ReproBLAS (summation only) when reducing more than 10000 elements per core.
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1.2 Scientific Contributions

In Chapter 6, we address the software complexity challenge, particularly the
question: How can we design and implement C++ language bindings for the Message
Passing Interface (MPI), covering all abstraction levels, allowing for accelerated
software development with (nearly) zero runtime overhead?

We propose novel C++ language bindings that cover all abstraction levels from low-level
MPT calls to convenient STL-style bindings with automatic inference of missing parameters
where feasible. Further, we provide an open-source implementation of these bindings, called
KaMPIng, which enables rapid prototyping as well as fine-tuning runtime behavior and
memory management. A flexible type system and additional safeness guarantees contribute
to preventing programming errors. Further, we employ template-metaprogramming to ensure
that the compiler generates only those code paths that are required for computing the
missing parameters for a specific function invocation. This results in (near) zero runtime
overhead bindings. We demonstrate that KaMPIng provides a strong foundation for a future
distributed standard library using multiple application benchmarks, from sorting algorithms
to phylogenetic interference using RAXML-NG. Additionally, we re-implement our bit-
reproducible distributed-memory reduction algorithm and integrate MPI’s failure-mitigation
bindings into KaMPIng.

Minor Contributions

My additional scientific contributions that do not form part of this thesis include, among
others, work on accelerating the inference of tree sequences, porting phylogenetic likelihood-
calculations to the GPU, investigating the numerical stability and hyperparameter opti-
mization of phylogenetic inference, and developing a scalable fault-tolerant MapReduce
implementation.

Re-Engineering Genomic Tree Sequence Inference Algorithms As already mentioned, we
model the evolutionary history of recombining organisms via a set of genealogical trees, where
each tree describes the local ancestries of a small genomic region (Section 2.1). When designing
work-efficient statistical queries for these datasets in Chapter 3, we assume that these trees
have already been inferred and are provided as input. Johannes Hengstler investigated
algorithmic approaches for accelerating this inference in his Master’s Thesis [Hen24], which
I supervised. We propose several optimizations over the state-of-the-art tool tsinfer,
improve cache efficiency, and reduce the number of CPU instructions. Further, we identify a
limitation in tsinfer’s parallelization scheme and propose an appropriate novel alternative.
We provide an open-source? Rust implementation of our improved algorithm and show that it
outperforms the state-of-the-art by a factor of 1.9 to 2.4 for inferring ancestries on data from
the Thousand Genomes Project. We also show that our parallelization scheme outperforms
tskit’s from 32 cores upwards. We discussed the algorithmic improvements we achieved
with our proof-of-concept implementation with the authors of tskit, who plan to adapt
these new insights into tsinfer.

Acceleration of Phylogenetic Maximum-Likelihood Computations on GPU Phylogenetic
inference (Section 2.3) on increasingly large datasets is computationally demanding with
likelihood computations dominating the runtimes. I supervised Christoph Stelz’ student

2 https://github.com/Cydhra/libairs
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project, where we present a novel GPU implementation of these likelihood calculations. It
was designed for integration into the commonly used phylogenetic tree inference software
RAxXxML-NG. We find, that for a full tree likelihood evaluation on large, unpartitioned
datasets, our GPU implementation is 9 times faster than the highly-optimized, multithreaded

CPU implementation of RAXML-NG (with site-repeats and patter-compression disabled!).

Further, our implementation was 1.5 times slower than the corresponding BEAGLE GPU
implementation of likelihood evaluation — an existing GPU-enabled and widely used likelihood
computation library. However, during a phylogenetic tree search, the values of only 2 to 3
nodes in the phylogenetic tree typically need to be re-evaluated. When only re-evaluating
the likelihood for a single tree node, both, our and BEAGLE’s, GPU implementations are
slower than RAXML-NG’s CPU implementation for small to medium datasets and only
slightly faster on large datasets (with more than 700000 patterns®). We conclude that
an efficient feature-complete GPU-parallelization requires a substantial amount of further
work, including porting additional necessary functionality for phylogenetic tree inferences to
the GPU. However, this might be unavoidable provided that most HPC systems that are
currently under development rely on GPUs instead of CPUs for their bulk of computational
power.

Numerical Stability of Phylogenetic Datasets At the start of the COVID-19 pandemic,
I contributed to a project that analyses the stability of phylogenetic inference on the
SARS-CoV19 genome data. My contribution consists in assessing the impact of the minimum
branch length threshold on the likelihood of the inferred trees as well as evaluating the
numerical stability of the parameter optimization for the free-rates [Sou+12; Yan95] and
I'-model [Yan94] of rate-heterogeneity. We found that the then-available SARS-CoV19
dataset exhibits a rugged likelihood surface [StalO] (i.e., is numerically unstable), and
therefore analyses on it and conclusion drawn from them are unreliable. We conclude, that
respective publications on SARS-CoV19 phylogenies should be interpreted with extreme
caution. Our work was published in Molecular Biology and Evolution [Mor+20a]. Julia
Haag later generalized our findings to other datasets in her Master’s Thesis [Haa21], which
I supervised. She later developed them into the concept of “difficulty” for a phylogenetic
dataset.*

Optimization of RAXxML-NG’s Hyperparameters Moreover, I contributed to Julia Haag’s
investigation of the impact of numerical thresholds on the time-to-convergence of numerical
optimizations during phylogenetic tree searches. My contributions include supervising her
Master’s Thesis [Haa21] and modifying RAXxML-NG in order to enable the user to explicitly
set these numerical thresholds via command line parameters. By adjusting two of these
thresholds, we accelerate RAXML-NG’s phylogenetic tree inference mode by a factor of
1.9 + 0.8 compared to the previous default settings, depending on the data collection. We
published this work in Bioinformatics Advances [Haa+23], with me being a second author.

Scalable Failure-Tolerant MapReduce Together with Demian Hespe, I supervised Charel
Mercatoris’” Master’s Thesis on developing and implementing a scalable failure-tolerant

3 A pattern is a unique combination of genetic states across the genomic sequences.

4 Note that I supervised Julia Haag’s Master’s Thesis but did not contribute to J. Haag et al. “From Easy
to Hopeless — Predicting the Difficulty of Phylogenetic Analyses”. In: Molecular Biology and Evolution
39.12 (2022). Edited by N. Saitou. 1ssN: 1537-1719. DOI: 10.1093/molbev/msac254.
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1.3 Outline of this Thesis

MapReduce framework for HPC systems. We observe that the full state of a MapReduce
algorithm is described by its network communication and exploit this insight in order to
create a full backup of the program’s state with minimal additional communication. We
published this work as a technical report on arXiv [Hes+24b|, with me being a first author.

Coraxlib I also contributed to the development of a new version of the phylogenetic likelihood
library formally called LibPLL-2 [Flo+14], now named Coraxlib. My main contribution is a
complete re-write of the CMake code used to build the library. Further, minor, contributions
include bug fixes and other maintainability enhancements such as adding unit-tests and
missing parts of the documentation. Currently, Coraxlib is used by RootDigger [BS21],
GeneRax [Mor+20c], AleRax [Mor+24], Asteroid [MWS22], Adaptive-RAXML-NG [Tog+23],
and RAXML-NG v2 (unreleased).

1.3 Outline of this Thesis

The remainder of this thesis is structured as follows: First, we provide an overview of the
concepts and terms used in this thesis (Chapter 2). We then design, implement, and evaluate
an efficient data structure for computing population genetic statistics on genealogical trees
and associated sequences and implement them in gfkit (Chapter 3). In Chapter 4, we
discuss our ReStore C++ software library, which enables the scalable recovery of failure-
mitigating, distributed algorithms. Next, we analyze the numerical reproducibility in
phylogenetic inference algorithms and present our operation-agnostic distributed-memory
reduction algorithm as well as a bit-reproducible version of the phylogenetic inference tool
RAXML-NG (Chapter 5). Moreover, in Chapter 6, we introduce our (near) zero-overhead
C++-abstractions for the Message Passing Interface and finally conclude in Chapter 7.



2 Background

Attribution: I am the sole author of this chapter. However, some formulations,
sentences, and paragraphs have been copied either in modified or verbatim form from
the following publication, where I am a (sometimes shared) first author:

1. L. Hiibner and A. Stamatakis. “Memoization on Shared Subtrees Accelerates
Computations on Genealogical Forests”. In: 24th Workshop on Algorithms in
Bioinformatics (WABI). edited by S. P. Pissis and W. Sung. Volume 312. Leibniz
International Proceedings in Informatics (LIPcs). Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2024, pages 1-22. 1SBN: 978-3-95977-340-9. DoOI: 10.
4230/1lipics.wabi.2024.5

2. L. Hibner et al. “ReStore: In-Memory REplicated STORagE for Rapid Recovery
in Fault-Tolerant Algorithms”. In: 12th IEEE/ACM Fault Tolerance for HPC at
eXtreme Scale (FTXS). IEEE Press, 2022, pages 24-35. DOI: 10.1109/ftxs56515.
2022.00008

3. L. Hiibner et al. “Exploring Parallel MPI Fault Tolerance Mechanisms for Phylo-
genetic Inference with RAXML-NG”. in: Bioinformatics 37.22 (2021). Edited by
R. Schwartz, pages 4056—4063. 1SSN: 1367-4803. DOI: 10.1093/bioinformatics/
btab399

4. T. N. Uhl et al. “KaMPIng: Flexible and (Near) Zero-Overhead C++ Bindings
for MPI”. in: High Performance Computing, Networking, Storage and Analysis
(SC). Los Alamitos, CA, USA: IEEE Computer Society, 2024, pages 689-709. DOI:
10.1109/sc41406.2024.00050

Summary: We provide an overview of the concepts and terms used in the remainder
of this thesis. First (Section 2.1), we introduce trees as a model of evolutionary
relationships, both, for describing the shared evolutionary history between species
(phylogenetics), as well as between individuals of the same species (genealogy). Neat,
we summarize how these trees are inferred on the basis of the differences in the genetic
code of organisms (Section 2.2) using mazimum-likelihood based phylogenetic inference
(Section 2.3). Further, we introduce statistical measures that are commonly used in
population genetics to analyze and describe genealogical trees (Section 2.4). Next, we
describe the machine model we employ to analyze and asses our parallel algorithms and
their parallel efficiency (Section 2.5) as well as the Message Passing Interface (MPI),
which we use in our implementations (Section 2.6). In Section 2.7, we discuss hardware
failures in High Performance Computing (HPC) systems, which represents one of the
major challenges for upcoming exascale systems. We also discuss various strategies
for mitigating these failures. We subsequently introduce a classification system for the
most prevalent failure-handling strategy, checkpoint/restart (Section 2.8) and provide
background information on mechanisms for mitigating failures in the upcoming MPI 5
standard (Section 2.9). We conclude with o discussion about the inherent challenges
of devising bit-reproducible parallel scientific codes given the non-assoctativity of
IEEE 754 floating-point operations (Section 2.10).
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2.1 Trees as a Model of Evolution

2.1 Trees as a Model of Evolution

In the mid 19*" century, Charles Darwin postulated that all living beings share a common
evolutionary history, which can be modeled via a tree [Dar59; Dar87]. Since then, the
hand-drawn trees, which were based on morphological features [Dar59; Hae66; Hit40], have
been replaced by trees computed using mathematical and statistical models that explain the
variation among the genomic data of the species under study [Hin+15; Pen04].
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Figure 2.1 A phylogenetic tree of different species belonging to the order Rodentia, derived from
protein-coding as well as non-coding sequences of rodent genomes [Gos+19]. @ tree root (most
recent hypothetical common ancestor of Rodentia)

In this work, we distinguish between two types of evolutionary trees: phylogenetic trees
describe the evolutionary history of distinct species, while genealogical trees describe the
evolutionary relationships between individuals of the same species. For example, a tree
depicting how contemporary species of the order Rodentia relate to each other constitutes a
phylogenetic tree (Figure 2.1), while a tree depicting the evolutionary history of different
Homo sapiens groups (subpopulations) constitutes a genealogical tree.

In phylogenetic trees, the tips (or leaves, i.e., out-degree 0 nodes) represent sampled
extant species, whose genomic code (encoded in DNA or RNA [Alb+22, ch. 1]; Section 2.2)
is known — which is predominantly the case for non-extinct species. Further, inner nodes
represent hypothetical common ancestors, and edges (or branches), represent lines of descent.
The root node (i.e., in-degree 0) of a phylogenetic tree represents the hypothetical common
ancestor of all species in the tree. We call a tree with a root node rooted!, and assume that
all edges lead away from this root node. We call an inner node or root node of a rooted tree
bifurcating if it has an out-degree of exactly two (Figure 2.2). If all non-leaf nodes of a tree are
bifurcating, we also call the tree bifurcating. In contrast, we denote nodes with an out-degree
exceeding two and trees containing at least one such node as multifurcating.? Multifurcating
nodes can be used to model uncertainty regarding the exact ancestral evolutionary pattern
in the respective part of the tree.

! Unrooted phylogenetic trees with undirected edges can model trees where the actual root is not known
(yet) or exist because of computational reasons. However, this detail is not relevant for this work.
Multifurcations are sometimes modeled using multiple bifurcations with branch lengths of zero. However,
this mapping is not bijective and will influence some population genetic statistics (e.g., Lowest Common
Ancestor (LCA), Section 2.4). We therefore do not use it in this work.
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Figure 2.2 Nomenclature of an evolutionary (phylogenetic or genealogical) tree. Tips represent
sampled genomes or fractions thereof, branches represent lines of descent and inner nodes represent
hypothetical common ancestors. The root represents the hypothetical common ancestor of all tips.
Non-leaf nodes can be bifurcating (out-degree of two) or multifurcating (out-degree exceeding two).
As all edges point away from the root and towards the tips, we sometimes omit the edge arrows that
indicate these edge directions.
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Figure 2.3 For recombining organisms such as humans, modeling the (correlated) evolutionary
history of distinct, consecutive regions along the genome using a set of distinct yet correlated trees
describes the evolutionary history more comprehensively than using a single tree [Hud83].

Phylogenetic research has a plethora of applications: For example, phylogenetics are
applied in cancer research [Bro+17; MHS19; Rie+10; Som+17; SS17] and to study the
spread [BMVO01; Cas+12; CG14; Kor00; Mor+20a; Ste+20] and evolution [Bus+99] of
viral infections. In forensics, phylogenetic methods are, for instance, used to trace the
transmission of HIV [APV18; Ber+07; Gonl4; Ou+92]. Further, phylogenetic methods are
applied to predict the function of enzymes [AAZ19; ZJ12] and to aid drug design [Ash13;
ATD18; BMVO01]. Moreover, phylogenetic tools are employed for wild life conservation [BP94;
Fer17; Hug+23; Rol+11; Vér+19], linguistics [Bowl8; Gre23; Jigl8; RS18], plagiarism
detection [Ryu+08], to increase crop yield [BMVO01], and, of course, to infer the tree of
life [Fox+80; WKW90].

In contrast to phylogenetic trees, genealogical trees depict the shared evolutionary history
among individuals of the same species [Kel+19]. Conceptually, a genealogical tree thus
further resolves the evolutionary relationships under a single tip (species) of a phylogenetic
tree, down to the level of individuals. However, a single tree cannot adequately describe the

processes by which individuals pass on distinct parts of their genome independently [Morl16].

We observe this, for example, in sexually reproducing species with multiple copies of the
genome (e.g., two in humans®) [Hud83]: Here, a process called recombination causes the

3 In this work, human always refers to Homo sapiens.
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genetic material, organized in a DNA strand, to break and reconnect. Thus, the closer two
genetic positions are located to each other along the genome, the higher the chance will
be that they have been inherited from the same parent [SK06]. Therefore, for recombining
organisms, modeling the (correlated) history of distinct regions along the genome via a set
of distinct but correlated trees captures their evolutionary history more comprehensively than
using a single tree [Hud83] (Figure 2.3). Here, each distinct tree among this set of genealogical
trees, describes the evolutionary history of a distinct, consecutive region of the genome and
each genomic region’s evolutionary history is described by exactly one genealogical tree.

Therefore, in genealogical trees, tips represent sampled genomic material. Non-tip nodes,
or inner nodes, represent one or multiple sequence variations inherited by its descendants.
Again, non-tip nodes might be bifurcating (out-degree of two) or multifurcating (out-degree
greater than two). Further, we consider all genealogical trees to be rooted, that is, they have
a so-called root node with an in-degree of 0, and all edges leading away from it. This root
represents the hypothetical set of common ancestral genetic material of all tips in the tree.

Genealogical trees are used to answer the question of how current and ancient individuals
and populations of a single species, such as humans, have emerged, migrated, and how
they relate to each other (genealogy). High-level applications of genealogical methods are
deployed in medical research [All64; LH66; Oka+20; WNO91], wildlife conservation [HFR20;
Lui+18; SS18], and — in conjunction with recent advances in ancient DNA sequencing
technology [Car+13; Mil+08; Par+15; RH09] — for studying human migration patterns over
the past few thousand years [All4-24; Lip+22; Par+15; Reil9].

Next to phylogenetic and genealogical trees, further models of evolution exist: For
example, so-called phylogenetic networks explicitly model biological processes which a
tree can not adequately describe such as horizontal gene transfers, hybridization, or gene
duplication [HB05]. Moreover, consensus trees [BryO1], consensus networks [HMO03], and
trees-of-trees [Nye08] are different approaches aiming to capture the uncertainty associated
with tree inference, summarizing over a set of plausible trees and reconciling differences.

In conclusion, evolutionary relationships between organisms can be modeled by trees.
Phylogenetic trees represent the evolutionary history among distinct species, while genealogi-
cal trees describe the evolutionary relationships within a single species. Both have numerous
applications, such as in disease tracking, drug design, and wildlife conservation. In this thesis,
we design and implement an efficient data structure for storing genealogical trees (Chapter 3)
and employ a phylogenetic tree search tool (Section 2.3) as a real-world benchmark for our
software libraries ReStore (Chapter 4), ReproRed (Chapter 5), and KaMPIng (Chapter 6).

2.2 Differences in The Genetic Code Among Genomes

While the first phylogenetic trees were based on morphological features [Dar59; Hae66; Hit40],
they are nowadays predominately inferred using mathematical and statistical models of
evolution, which explain the genetic variation across the observed species [Hin+415; Pen04].

In this thesis, we describe the genomic code of an organism by a sequence of characters,
which we call the genomic sequence. For instance, a sequence modeling a deoxyribonucleic
acid (DNA) molecule contains four different characters: A(denine), C(ytosine), T(hymine),
and G(uanine) [Alb+22, ch.1]. Further, we describe sequences of amino acids using an
alphabet of 20 characters, each representing a distinct amino acid [Alb+22, ch.1]. Over time,
mutations accumulate on these sequences, that is, characters are being replaced, inserted,
or deleted [Alb+22, ch.5]. As these mutations are inherited and thus accumulate over lines
of descent [Alb+22, ch. 1], we can exploit them to compute phylogenetic and genealogical



trees (Section 2.3). A Multiple Sequence Alignment (MSA) is a collection of multiple genomic
sequences that are arranged as rows of a matrix. One inserts gaps into these sequences such
that the genetic loci (positions in the sequence) which share a common evolutionary history
are located in the same column. We call the different loci of these sequence, that is, the
columns of the MSA, genomic sites.

Genomic sites that are identical across all sampled genomes (invariant sites) are relevant
for inferring phylogenetic trees, as they shorten the branch lengths [Lea+15]. However,
invariant sites are irrelevant for computing the population genomic statistics (Section 2.4)
we consider in Chapter 3, except for normalization. Hence, in this thesis, genomic sequence
or genome refers to either the full genomic sequence or only genomic sites that exhibit
variations across sequences, depending on the context. Further, alleles are concrete instances
of genetic variation among genomes and encompass one or multiple (related) genomic sites.
For instance, a set of genomic sequences of human individuals might have the alleles A and C
at a specific genome position. We call a site with more than one allele polyallelic, or biallelic
if it has exactly two alleles. Most common statistics employed in population genetics are
based upon allele frequencies in a subset of the individuals in a dataset (Section 2.4).

In conclusion, nowadays, phylogenetic trees are predominantly computed on the basis
of genetic variation, employing mathematical and statistical models to explain mutations.
In an MSA, genomic sequences are aligned to each other such that sites with a shared
evolutionary history are located in the same column. These MSAs are used, for instance, to
infer phylogenetic (Section 2.3) or genealogical trees.

2.3 Phylogenetic Tree Search using the Maximum-Likelihood Method

A likelihood is the probability of observing given data provided a specific statistical model,
including its model parameters. In the context of phylogenetic inference, this mathematical
model consists of a phylogenetic tree — including its topology and branch lengths — as well as
a statistical description of the evolutionary forces acting on a genomic sequence [Fel78]. We
denote the latter as evolutionary model. 1t describes the prior frequencies of the genomic
states at the hypothetical ancestor, how probable different mutations are, and also accounts
for the phenomena that different parts of the genetic sequence mutate at different rates. The
observed data in our likelihood evaluation are the aligned sequences in the MSA (Section 2.2).
Given a phylogenetic tree and an evolutionary model, we can compute the likelihood score
for each site in the MSA. For numerical reasons, we compute the logarithm of this score,
which we call the Log-Likelihood (LLH)-score. Summing over the LLH-score of each MSA site
yields a single LLH-score for a given tree and evolutionary model. While optimizing the tree
topology is N'P-hard [CT05], numerically optimizing the branch lengths and evolutionary
model is comparatively fast [Sta04]. Thus, we often refer to the LLH-score of a phylogenetic
tree, assuming that the remaining model parameters have been optimally chosen.*
Mazimum-likelihood based phylogenetic inference aims to infer the most likely tree among
all possible trees [Fel81]. However, Chor and Tuller show this to be an NP-hard prob-
lem [CTO05]. Therefore, algorithms that shall analyze real-world datasets have to employ
heuristics [Koz+19; Ngu+15]. Nonetheless, likelihood-based phylogenetic inference has been
repeatedly shown to be able to recover the true tree on simulated sequence data [GG03;
KF94; WMO03]. For example, the maximum-likelihood based phylogenetic inference program
RAXML-NG [Koz+19] employs a greedy hill-climbing algorithm to search the tree topology

4 Note that branch length optimization can also converge to distinct local maxima.
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Figure 2.4 Simplification of a heuristic maximum-likelihood based tree inference algorithm. The
algorithm iteratively improves upon the currently best known model by proposing changes to the
tree topology, followed by a numerical optimization of the branch lengths and evolutionary model
parameters. If the LLH-score of the new model is higher, it replaces the former best known model
as starting point for further optimization.
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space. That is, the currently best-known tree is iteratively improved by proposing topologi-
cally similar trees, and numerically optimizing the branch lengths and evolutionary model.
It then keeps the new topology if it has a higher LLH-score (Figure 2.4).

In summary, likelihood-based phylogenetic tree inference heuristically searches for the best
phylogenetic tree it can find. We sometimes call this the best known Mazimum-Likelihood
tree. As optimizing the tree topology is NP-hard [CT05], we employ greedy algorithms to
iteratively refine the tree topology by proposing minor changes and adopting them if they
improve the tree’s overall likelihood score.

2.4 Statistics in Population Genetics

In contrast to phylogenetic trees (Section 2.3), the genealogical trees we consider in Chapter 3
are either inferred from empirical data using a hidden Markov-chain [Kel4-19], or simulated
using methods outside the scope of this thesis [Kel+18]. In Chapter 3, we describe a novel data
structure to store sets of genealogical trees which substantially accelerates the computation
of statistics that are commonly used in the field of population genetics (Chapter 3).

When computing statistics on genealogical trees and the sequences associated with these,
we often only select a subset of the samples (tips in the genealogical tree) for a given query.
We call such a selection the selected samples, or sample set. The exponentially large number
of possible sample sets yields pre-computing all statistics of interest infeasible, and therefore
necessitates algorithmic improvements.

Many of the statistics that are commonly used in population genetics are functions of the
allele frequencies [RTK20], that is, how often each allele (Section 2.2) occurs in the sequences
of a sample set. For example, the sequence diversity [NL79] reflects the probability that two
random sequences differ at a random site (both chosen uniformly at random). Segregating
sites exhibit more than one allele (i.e., polyallelic sites, Section 2.2). The Allele Frequency
Spectrum (AFS) [Fis31] is a histogram over the allele frequencies. Some statistics also operate
on multiple sample sets. For example the sequence divergence [NL79] is the probability that
two sequences — each chosen uniformly at random from a distinct sample set — differ at any
given site. We can derive more elaborate statistics from the above basic statistics, using
up to four disjoint sample sets. Examples include Patterson’s f(s 3.4y [Pat+12], Tajima’s
D [Taj89], and the Fization Index Fgr [Wri50]. While we define these statistics on a per-site
basis, we often average them across many or all sites in the input genome or within a sliding
window over all sites of the genome.

Tajima’s D statistic can, for instance, be used to detect genes (parts of the genome
encoding a RNA strand or protein) which did not evolve neutrally. One interpretation of



non-neutral evolution is that the gene in question encodes a protein which is advantageous
for the fitness of the respective organism [EWV18]. Tajima’s D has also been used to study
the interaction of pathogens and the organisms they infect [EWV18; Mon+13]. Additionally,
Tajima’s D can detect genetic bottlenecks, that is, that a sampled population has been
substantially smaller in the past. This can be caused, for example, by an environmental change
or by a small set of individuals spreading to a new habitat [GJB13]. The Fixation Index
Fgr is used, for example, to estimate how many individuals migrate between populations,
identify regions that are under selection, or to provide a null-distribution when matching a
genetic profile in a forensic analysis [HW09]. Patterson’s f statistics are used, for example,
to test whether a population descended from one or multiple ancestral populations, and to
determine their proportions [Pet16; Rei+09]. Further, Patterson’s f is employed to find the
closest relative to a given population [Pet16; Rag+13] and to model complex non-tree like
population structures for sexually reproducing organisms [Pet16; Pet21].

The Lowest Common Ancestor (LCA) [AHU73]| of two or more tips in a genealogical tree
is the lowest (farthest from the root) inner node on all paths from the root to the tips. In
population genetics, the LCA is sometimes also called the Most Recent Common Ancestor
(MRCA). Population geneticist employ LCA queries on genealogical trees, for example, to
answer questions such as “Did the evolutionary history of genomes of group A and B separate
at the time this land bridge vanished?” This involves computing the LCA of all genomes in
A and B and estimating the time of the resulting ancestor using methods beyond the scope
of this thesis [AM20].

In summary, statistics derived from differences between the genomic sequences of sampled
organisms are widely used in population genetics. For example, they can help to identify
genetic bottlenecks, migration between populations, and can be used to uncover close relatives
of a given population. Further, the LCA, which depends on the topology of the genealogical
tree is, for instance, used to date population splitting events.

2.5 Parallel Machine Model

Modern High Performance Computing (HPC) environments have single- or multi-CPU
machines (or compute nodes), with each CPU having multiple cores that all participate
at the computation (Figure 2.5). CPU cores on the same physical machine communicate
with each other via shared memory, while CPU cores on different machines communicate
over an interconnection network, for example, InfiniBand [Las+09], OmniPath [Bir+15], or
TCP/IP [IETF22; NWGYS8]. Further, we often employ the common term Processing Element
(PE) [San+19, ch. 2.4] to abstract over specific hardware setups. Here, one PE maps to a
single CPU core in real hardware.

In this thesis, PEs communicate via messages that are exchanged either via shared
memory — if they reside on the same machine — or over the interconnection network. For
this communication, we employ the MPI interface [MPI4.1], which also offers collective
communication operations in addition to point-to-point messages, as well as synchronous
and asynchronous messages (Section 2.6).

When reasoning about the running time of a parallel algorithm (e.g., in Chapters 4 and 5),
we consider the time spent for communication in addition to the time spent on performing
computations. In this thesis, we assume that messages have exactly one sending and one
receiving PE and that exchanging a message of length [ requires time a+ -1 [San+19, ch. 2.4].
Here, « represents the startup overhead (latency) for establishing a connection associated
with this message. Further, 5 represents the time to transfer a single byte. On common
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Figure 2.5 A distributed-memory machine as typically used in High Performance Computing.
Each machine, or compute node, consists of one or multiple CPUs, each with multiple cores, which we
often refer to as abstract Processing Elements (PEs). PEs on the same physical machine communicate
via shared memory, while PEs on distinct machines communicate via a network.

distributed-memory machines, 8 < « holds. Therefore, when evaluating the running time of
parallel algorithms, we consider two important factors: The bottleneck number of messages
that are being sent and received, and the bottleneck communication volume. The bottleneck
number of messages that are sent and received during a run describes the maximum number
of messages sent or received by a single PE. This influences parallel performance because of
the startup overhead associated with each message. As a result, sending or receiving data
from one PE to another via a single message is typically faster than splitting that data into
many parts and sending each part to a different receiver. The bottleneck communication
volume describes the maximum amount of data sent or received by a single PE and represents
a point on the critical path of the application.

In summary, modern HPC systems consist of compute nodes with single or multi-CPU
architectures, where each CPU has multiple cores, which we abstract as PE. In this work, PEs
communicate via messages they pass over the shared memory inside a machine or over a fast
interconnection network between machines. When analyzing the runtime of our algorithms,
we consider the communication overhead next to the amount of work. Here, we distinguish
between the startup overhead associated with each message and the time for transferring the
actual data.

2.6 The Message Passing Interface (MPI)

The Message Passing Interface (MPI) [MPI4.1] is the message passing standard used in dis-
tributed scientific computing. In addition to point-to-point messages, MPI includes [MPI4.1]
directives for synchronization and collective operations [San+19, ch.13]. For example
MPI_Allreduce takes as input one value per PE as well as a reduction operator [MPI4.1,
ch.6.9.1]. RAXML-NG then returns the result of the reduction over all input values at all PEs.
Major contemporary implementations of MPI include OpenMPI [Gra+4-06], MPICH [MPICH],
and Intel MPI [Int25].

Moreover, MPI offers synchronous and asynchronous communication directives [MPI4.1,
ch.3.4]. A synchronous send operation does not return until the corresponding receive
operation on the remote PE has been completed, and the respective data have been sent.
In contrast, an asynchronous send operation does not wait for the sender to complete the
data-transfer, allowing the message exchange to occur in the background and thereby overlaps
computation with communication. We employ asynchronous communication, for example, in
the implementation of our reproducible reduction algorithm (Chapter 5) in order to receive
messages in the background while performing the reduction on locally available data.



In conclusion, MPI offers point-to-point messages as well as abstract collectives, such
as all-to-all. Next to synchronous send operations, which block until the respective receive
operation has been completed, MPI also offers asynchronous operations, which allow programs
to overlap communication with computation.

2.7 Hardware Failures and Failure-Tolerant Algorithms

Machines in HPC systems experience failures, for example, due to core hangs, kernel panics,
file system errors, file server failures, memory corruption, network outages, air conditioning
failures, or power halts [Gup+17; Lul3]. Cwrrent petascale systems fail about 0.8 to 5.7
times per day: For example Martino et al. [Mar+14; Mar+15] report 2.8 to 5.7 failures/day
on the Blue Waters Cray XK7 supercomputer that comprises 22 640 compute nodes. Further,
Gamell et al. [Gam+14] found that the ORNL’s Jaguar Titan Cray XK7 system experiences
on average 2.3 failures/day. Moreover, Gupta et al. [Gup+17] report on four petascale
systems (Cray and Intel) containing up to 18 688 nodes (560640 cores), each failing on
average 1 to 3.4 times/day. More recently, Rojas et al. [Roj+21] report 3.1 failures/day over
a period of five years on a Cray XK7 machine comprising 18 688 nodes [Roj+21] while Di
et al. [Di4+19] observe an average failure rate of 1.3 days on a 49151 node (786 432 core) IBM
Blue Gene/Q PowerPC system. Further investigations into the failure rates of HPC systems
were performed by Hacker et al. [HRC09], El-Sayed and Schroeder [ES13], Schroeder [SG10],
Sahoo et al. [Sah404], Oliner and Stearley [OS07], Bhagwan et al. [BSV03], Chen and
Sun [CS17], and Liang et al. [Lia406]. In upcoming systems, we expect a hardware failure
to occur every 30 to 60 minutes [Cap+14; DHR15; Sni+14]. Thus, handling such failures
constitutes a major challenge for future exascale systems [SDM10].

In this thesis, we consider fail-stop failures, that is, the respective hardware and processes
running on them either communicate their failure state or simply stop responding. We
consider these processes as failed for the remainder of the program execution. We call
the remaining nodes, which can continue with the computation, surviving nodes. Other
types of failures not considered in this thesis include transient failures and silent data
corruption [DHR15]

Various scientific applications have been made failure-tolerant, for example, a linear
and partial equation solver [Ali+16], a plasma simulation [Obe+17], a molecular dynamics
simulation [EG03], and a Fast Fourier Transformation [Koh+17]. In previous work, we in-
creased the checkpointing frequency of RAXML-NG, a widely used phylogenetic inference tool
(Section 2.3), in order to yield it more resilient with respect to hardware failures [Hiib+21b).

Four of the main techniques for yielding programs failure-tolerant are: Algorithm-Based
Failure-Tolerance (ABFT), restarting failed sub-jobs, redundant computations, and check-
point /restart. ABFT requires the algorithm in question to be extensible such as to include
redundancy, for example, by adding additional rows to a matrix when solving a linear equa-
tion, and is thus used predominantly in numerical applications [Bos+08; VM97]. Restarting
failed sub-jobs is feasible as a failure mitigation strategy when the program at hand can be
split up into separate small, short, and well-defined work packages that can easily be redis-
tributed among nodes and managed via a (possibly distributed) work queue. For instance,
some MapReduce frameworks implement this approach [Mem+16]. Another failure-tolerance
strategy is to schedule each computation multiple times on different hardware [HZ15]. While
this is easy to implement and induces nearly no runtime overhead, it requires, however,
substantial additional computational resources. Finally, failure-tolerance using the check-
point/restart strategy involves to frequently write the program’s state to checkpoint files or
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system memory. Thus, after a failure, the program can subsequently restore this previous
state from the most recent checkpoint and restart the computation from there.

Following a failure, an application has to redistribute the work previously performed by a
failed PE using either the shrink or the substitute strategy [AHE18]. Under the substitute
strategy, a replacement PE takes over the work previously performed by the failed PE.
This circumvents the need for re-balancing the workload and simplifies (re-)loading the
required data. However, reserving idle processors for this purpose constitutes a waste of
resources. In contrast, when employing the shrink strategy, the program’s load balancer
(re)distributes the work performed by the failed PE among the remaining, or surviving, PEs.
The shrink strategy does therefore not require spare PEs but reloads fractions of the data
on many or even all PEs. While the number of failures an algorithm can tolerate using the
substitute strategy is limited to the number of spare PEs; this limitation does not apply to
the shrink strategy [AHE18]. While many checkpointing libraries target the substitution
strategy [Aga+04; Bar+17; Bau+11; BH14; Gam+14; Lu05; Moo+10; Nic+19; Sha+19;
TH14], we argue for using the shrinking strategy as it does not waste computational resources
and avoids the communication bottleneck of one PE receiving all data previously held by a
single failed PE (Chapter 4).

In summary, petascale HPC systems experience about 0.8 to 5.7 failure/day for a plethora
of reasons, including hardware and software causes, of which we consider those inducing
fail-stop failures. As upcoming HPC systems are predicted to fail approximately once an hour,
various scientific applications have been made failure-tolerant using strategies such as ABFT,
re-scheduling failed sub-jobs, or checkpoint/restart. During failure-recovery, the program
can either acquire replacement for the failed PEs or shrink to the surviving PEs, avoiding
wasted computation resources but necessitating fine-grained data recovery mechanisms.

2.8 Checkpoint/Restart

Checkpoint /restart approaches are the de-facto standard failure-mitigation strategy in
scientific codes [DHR15]. They can be classified into system-level and application-level
approaches. System-level approaches, for example the Berkeley Lab Checkpoint/Restart
(BLCR) library, work at the level of the operating system and create a backup copy of the
full memory footprint, register content, call stack, and other properties of the application
process [DHR15]. Thus, system-level approaches are (almost) transparent to the application,
but are also agnostic to which subset of the program’s memory is crucial and which subset can
be recomputed at low computational cost [HD06; Rom02]. For instance, in any tree inference
program that conducts phylogenetic likelihood calculations (Section 2.3), the intermediate
results of these likelihood computations dominate the memory requirement of the program
and can require terabytes of memory in large-scale analyses [Jar+14; Mis+14]. However,
as these intermediate results can be efficiently recomputed, they should not be saved in a
checkpoint [Hiib+21b]. Conversely, application-level checkpoints allow the application to
specify which sections of its memory shall be backed-up, reducing the amount of data that
has to be backed-up drastically [Hiib+21b].

Checkpoint/restart strategies can also be divided into coordinated and uncoordinated
checkpointing approaches [DHR15]. In coordinated checkpointing strategies, all PEs write
their checkpoints at the same time. While this comes at the cost of additional synchronization,
it also simplifies implementation. In uncoordinated checkpointing, PEs do not synchronize
when creating checkpoints, implying increased software complexity for ensuring that con-
sistent checkpoints are created. As synchronization is cheap in modern HPC systems with



high-bandwidth, low-latency interconnections, Gavaskar and Subbarao [GS13] recommend
coordinated checkpointing when developing applications for these systems.

Further, checkpointing libraries usually write their checkpoints to a parallel file system
(PFS) [Aga+04; Bau+11; Nic+19; Sha+19], implying slow recovery due to low disk access
speeds and high congestion as many processors simultaneously access the same resources.
In contrast, in-memory checkpointing libraries keep all of their checkpointing data in the
main memory of the PEs. To the best of our knowledge, there exists no general purpose
checkpointing solution allowing for in-memory recovery without requiring spare cores.

In summary, the prevalent [DHR15] failure-mitigation strategy in scientific computing
on HPC system is checkpoint/restart, which can be further classified into application-
level /system-level libraries, if checkpoints are coordinated /uncoordinated among the PEs,
and if checkpoints are created in-memory or written to the PFS.

2.9 Failure-Tolerance in the MPI Standard

The upcoming MPI standard 5.0 will support mechanisms to mitigate failures of compute
nodes and/or network components. Currently, there exist two actively developed MPI
implementations which already support MPT’s failure-mitigation mechanisms: MPICH [Gro02]
as of version 3.1 and User Level Failure Mitigation (ULFM) [Bla+13], which has now been
merged into OpenMPI 5. Various failure-tolerant scientific software have already been
developed using these MPI implementations [Ali+16; EG03; Koh+17; Lag+16; Obe+17].

The exact mechanism used to detect a hardware failure depends on the type of the
interconnection network. One example are heartbeat signals: PEs send messages, so-called
heartbeat signals, at regular intervals to each other in order to indicate that they are still
alive [Hitb4-21b]. If a PE has not sent any heartbeat signal for a specified amount of time
— the heartbeat timeout — its observer will report its failure. The failure is subsequently
reported to the application when it tries to communicate with the failed PE [ULFM]. The
application can subsequently handle the failure, for example, by asking MPI to create a
new communicator without the failed PE(s), recovering lost application data, re-distributing
the work formerly assigned to the failed PE(s), and finally rolling-back its state to the last
checkpoint, restarting from there.

We design and implement our checkpointing library ReStore (Chapter 4) for these MPI
failure-mitigation mechanisms. Additionally, we verify the correctness of our implementation
using ULFM as failure-tolerant MPI implementation and introduce an abstraction over this
failure-mitigation interface to our C++ MPI wrapper KaMPIng (Chapter 6).

2.10 Computational Reproducibility

Next to disseminating results, scientific publications also serve the purpose to convince the
reader of the correctness of this result [Mes10]. However, even though reproducibility is
considered to be an essential requirement for validating scientific claims [IT18], efforts to
reproduce findings in psychology [Aar+15], cancer research [BE12], or pharmaceutics [PSA11]
succeeded in only 11 to 39 % of studies.

In computer science, common reproducibility practices include documenting and archiving
the source code and input data. Further, either automation or detailed instructions on how
to perform the experiments are necessary. This documentation should, for instance, include
the software environment (e.g., compiler settings, operating system, and random seeds) as
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2.10 Computational Reproducibility
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Figure 2.6 Common implementations of distributed-memory parallel reduction algorithms are not
reproducible if the number of PEs changes between runs. First, each PE reduces its local elements,
arriving at a single intermediate result per PE. Next, these intermediate results are exchanged via
messages over the network and further reduced into a single element. Note that the number of PEs
influences the order of reduction operations and thus how results are being rounded.

well as the hardware being used [CK18; IT18]. In practice, however, Collberg et al. [CPW15]
were unable to even obtain and build the source code of nearly half of 402 ACM papers.

Even if we are able to obtain and build the source code and data, the program might
arrive at slightly different results for floating-point calculations on different CPU archi-
tectures [GL99], or when using a different number of PEs [She+20a]. For instance, in
phylogenetics, Darriba et al. [DFS18] and Shen et al. [She+20a] report, that the CPU type
and number of PEs used to perform a phylogenetic inference can influence the final result,
even if all other parameters (e.g., the random seed) are identical. In this work, we are
concerned with this bit-reproducibility, which we define as a program producing bit-wise
identical results when run twice on the same input data and under the same settings.

Next to the software and hardware environment, some codes experience timing effects as
an additional source of irreproducible behavior [GH22; SS24]. Here, the point of time when
a given message arrives at a specific PE influences the exact search path a heuristic takes.
However, many codes, for example RAxMIL-NG, which we consider in Chapter 5, do not
exhibit this behavior.

Tools such as containerization exists to archive the software environment and settings used
for experiments [Boel5]. In contrast, hardware is substantially more difficult to archive [IT18].
However, scientific codes which yield bit-reproducible results in a multitude of hardware
environments, including different CPU types and varying core-count, allow us to reproduce
scientific findings without access to the exact hardware originally used.

The root cause for non-reproducible floating-point results is that fundamental arithmetic
operations such as additions or multiplications on IEEE 754 [IEEE754] floating-point numbers
induce rounding errors [Gol91]. On petascale supercomputers, this implies up to 10'® rounding
operations per second. One factor determining the rounding of intermediate results are the
specific CPU instructions which the compiler decides to use. For example, Fused Multiply-and-
Add (FMA) instructions perform one multiplication and one addition, rounding the result only
once, instead of twice: Once after the multiplication and once more after the addition [Int24,
ch. 14.5.2]. Further, as different Single Instruction Multiple Data Stream (SIMD) variants
(e.g., AVX, SSE3, etc.) offer different instructions and vector widths, respective math-kernels
often yield non-identical results, with examples including the Intel math kernel library
oneMKL [Int25a], the math functions included in the Intel compiler [Int25b], and likelihood



computation in phylogenetics [She+20a]. In this thesis, we assume that the same instructions
are carried out in each program execution. This can be achieved by, for example, archiving
the compiled application binary or by passing the respective reproducibility flags to the
compiler in addition to avoiding run-time discernment of detected hardware [CK18].

In addition to executing identical CPU instructions, we also need to ensure that floating-
point related CPU settings are consistent between runs: For example, the IEEE 754 rounding
mode [Int24, ch.4.8.4] could be set to always round to the nearest even number at each
program launch. Further, denormalization of floating-point numbers — a special representation
for values close to zero [Int24, ch. 4.8.3.2] — has to be consistently enabled or disabled [Int24,
ch.10.2.3.4]. Additionally, as speculative execution might inconsistently throw floating-point
exceptions that occur in miss-predicted paths because of timing effects, the floating-point
exceptions have to be masked [CK18]. If we use the 80bit wide x87 registers®, we have
to ensure that their precision setting [Int24, ch. 8] is set to using 64 bit precision, thereby
keeping it consistent and avoiding truncation when flushed on a context switch.

By using the same application binary (identical CPU instructions) and ensuring that the
floating-point settings of the CPU are consistent between runs, we can therefore (nearly) en-
sure bit-identical results. However, in common distributed-memory parallel implementations
of the reduction algorithm, the number of involved PEs will also influence the operation
order and thus, the end-result [Li+23; SMR24] (Figure 2.6). This is due to the fact that in
parallel algorithms, a large number of values is often distributed across all PEs, with each
contributing a part of the data to the reduction. Changing the parallelization level often
induces a different data distribution across the PEs as well as a different communication
pattern, thereby changing the order in which operations are computed.

Reports of these low-level discrepancies in floating-point values affecting high-level results
of scientific codes exists in the fields of phylogenetics [DFS18], sheet metal forming [Diel2],
fluid simulations [Wie+19], climate and weather modeling [DN15; HD01], power grid anal-
ysis [Vil+09], atomic and molecular dynamics [Cle+13; Tau+10], as well as fluid dynam-
ics [RRA11]. In these examples, the high-level differences were caused by iterative algorithms
that converge to different local optima. In Chapter 5, we analyze the reproducibility of the
phylogenetic tree inference (Section 2.3) tool RAXML-NG on ten thousand datasets, develop
a bit-reproducible distributed-memory reduction algorithm and integrate it into the C++
MPI wrapper KaMPIng (Chapter 6). We also create a bit-reproducible fork of RAxXML-NG.

In conclusion, reproducibility of scientific results constitutes an important pillar of
scientific publications. However, efforts to reproduce results often exhibit low success
rates. In computer science, computational reproducibility can be substantially improved by
archiving the software environment, application settings, compiled binary, and datasets used.
However, the CPU type and core-count induces floating-point rounding errors, which can
cause discrepancies in high-level results. Therefore, reproducibility requires consistency of
CPU floating-point settings across runs as well as bit-reproducible reduction algorithms for
parallel codes.

® As the Linux [Lu+24, ch.3.2.3] as well as the Microsoft [Mic22] x64 calling conventions both do not
employ the x87 registers to pass parameters anymore, they are no longer commonly used by compilers.
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3 Memoization on Shared Subtrees
Accelerates Computations on
Genealogical Forests

Attribution: This chapter is based on the peer-reviewed publication “Memoization
on Shared Subtrees Accelerates Computations on Genealogical Forests” [HS24b], by
Alexandros Stamatakis and myself. Large parts of this chapter have been copied
either in modified or verbatim form from this publication, where I am the first author.

Summary: The field of population genetics attempts to advance our understanding of
evolutionary processes. It has applications, for example, in medical research, wildlife
conservation, and — in conjunction with recent advances in ancient DNA sequencing
technology — studying human migration patterns over the past few thousand years.
The basic toolbox of population genetics includes genealogical trees, which describe the
shared evolutionary history among individuals of the same species. They are calculated
on the basis of genetic variations. However, in recombining organisms, a single tree
1s insufficient to describe the evolutionary history along the entire genome. Instead,
a collection of correlated trees can be used, where each describes the evolutionary
history of a distinct consecutive region of the genome. The current state of-the-art
data structure for modeling this, tree sequences, compresses these genealogical trees
via edit operations when moving from one tree to the next along the genome — instead
of storing the full, often redundant, description for each tree. We propose a new
data structure, genealogical forests, which compresses the set of genealogical trees into
a Directed Acyclic Graph (DAG). In this DAG, identical subtrees that are shared
across the input trees are encoded only once, thereby allowing for a straight-forward
memoization of intermediate results during the computation of population genetic
statistics. Additionally, we provide a C++ implementation of our proposed data
structure, called gfkit, which is 2.1 to 11.2 (median 4.0) times faster than the state-
of-the-art tool (tskit) on empirical and simulated datasets when computing important
population genetic statistics such as the Allele Frequency Spectrum, Patterson’s f,
the Fization Index, Tajima’s D, pairwise Lowest Common Ancestors, and others.
On Lowest Common Ancestor queries with more than two samples as input, gfkit
scales asymptotically better than the state-of-the-art, and is therefore up to three
orders of magnitude faster. In conclusion, our proposed data structure compresses
genealogical trees by storing shared subtrees only once, thereby enabling straight-forward
memoization of intermediate results, yielding a substantial runtime reduction and a
potentially more intuitive data representation with respect to the state-of-the-art. Our
improvements will boost the development of novel analyses and models in the field of
population genetics and increase scalability to ever-growing genomic datasets.
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3.1 Introduction

3.1 Introduction

The evolutionary history of living beings can be modeled using a tree [Dar59; Dar87], which
is nowadays commonly computed using mathematical and statistical models that account for
variations among the genomic data of the observed species [Hin+15; Pen04] (Section 2.1).
Next to analyzing the evolutionary history among distinct species (phylogenetics), the question
of how living and past individuals and populations of a single species, for example humans,’
have emerged, migrated, and how they relate to each other (genealogy) is also of interest.
Population genetics is the sub-field of evolutionary biology that addresses these questions.
It advances our understanding of evolutionary processes such as mutations, genetic drift,
gene flow, and natural selection [Lui+18]. Its downstream applications include for example
medical research [All64; LH66; Oka+20; WN91], wildlife conservation [HFR20; Lui+18; SS18],
and — in conjunction with recent advances in ancient DNA sequencing technology [Car+13;
Mil408; Par+15; RH09] — the study of human migration patterns over the past few thousand
years [All424; Lip+22; Par+15; Reil9] (Section 2.1).

3.1.1 Genealogical Trees, Tree Sequences, and Forests

()
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\
genome Gy
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. ¥ ' lca(Go, G1, Gs)

~ -7

Go e Gy Go G TG, Gy Go Gi Gy Gy

genomes{-gj gCllOHlCS({-} genomes ,4})

Figure 3.1 (a) Different, but correlated, trees each describe distinct regions of aligned genomes
from distinct individuals. The subtree (G1,G2) (red) appears in all displayed trees, whereas the
subtree (Go, ((G1,G2),G3)) (blue) appears only in Ty and 7%, but not in 7;. (b) A tree can be
annotated to describe the genetic states of the genomes at its tips by storing ancestral states and
corresponding mutations annotated at the tree edges (we show only a single genomic site). (c) tskit
encoding of the three trees from (a). tskit re-uses (G1,G2) but not (Go, ((G1,G2),G3)), as the
latter does not re-occur in consecutive trees. (d) Our proposed encoding (gfkit) of the trees from
(a). gfkit re-uses both, (Go,G1) when describing 71, and (Go, ((G1,G2) ,G3)) when describing
T5. (e) Lowest Common Ancestor of two (Ica(G1,G3)) or more (Ica(Go, G1, G3)) selected samples.

Genealogical trees depict the shared evolutionary history among genomes of distinct in-
dividuals from the same species and are based on the genetic variation across sampled

! In this work, human always refers to Homo sapiens.



3.1.2 State of the Art and Contribution

individuals [Kel4+19] (Section 2.1). As single trees cannot adequately describe the evolution-
ary history of recombining organisms [Hud83; Mor16], we model the (correlated) history of
distinct regions along the genome using distinct (correlated) trees [Hud83] (Section 2.1).

Kelleher et al. [Kel+19; KEM16; RTK20] describe tree sequences (Figure 3.1.a; imple-
mented in tskit), which are collections of correlated genealogical trees, each describing the
evolutionary history of a window of adjacent sites along the genome. In the genealogical
trees that are stored in tree sequences, tips represent biological samples, edges represent lines
of descent, and mutations are meta-data associated with these edges (Figure 3.1.b-c). In tree
sequences, the edges are valid only for a specified region of the genome, and describe the
evolutionary history of this region. Statistics over the topologies of genealogical trees and
differences between the genomic code associated with the tips of the genealogical trees are
frequently deployed in population genetic studies to conduct quantitative assessments, for
instance, how genetically diverse a population is (Section 2.4).

3.1.2 State of the Art and Contribution

Tree sequences model the shared evolutionary history of the genomic samples associated
with their tips. They allow for reducing the storage space required for storing the set of
genomes associated with their samples as well as to reuse some computations in statistical
queries [Kel+19; KEM16; RTK20]. For instance, the human chromosome 20 in the Thousand
Genomes Project (TGP) collection (Section 3.5) contains 5008 sequences with 860 thousand
variant sites; each sequence being in one of four potential states (A, C, T, or G) at each
site [Kel+19]. This results in a theoretical space requirement of 1 GiB if stored on a base-by-
base basis using 2 bit per sequence and site — compared to a corresponding tree sequence file
size of 283 MiB [Kel+19].

Tree sequences store the evolutionary history of each part of the genome via the correspond-
ing genealogical trees and allow reusing partial results between correlated, yet topologically
distinct trees. They thus avoid some — yet not all possible — redundant computations [KEM16;
RTK20]: Tree sequences can reuse only intermediate results for shared subtrees among adja-
cent trees along the genome [KEM16; RTK20]. They do not allow reusing intermediate results
across trees that are further apart, if the respective subtree is not part of all intermediate
trees (Figure 3.1.c). Tree sequences use edit operations (edge insertions and removals) in
order to describe changes/differences in the tree topology when moving from one tree to the
next along the genome; and thus across recombination events. Therefore, determining if a
given subtree was already present in an earlier tree, is not trivial. For example, if an edge
from node a to node b (a — b) is removed and a (sans meta-data) identical edge a — b is
added back a few trees further down the genome, other edges might have changed in the
subtree below node b, thereby invalidating the intermediate results for b.

In contrast, the core concept of our novel data structure is to encode and store shared
subtree across all (not just adjacent) trees exactly once. This enables queries on the trees’
topologies (Section 3.3.3) and genomic sequences (Section 3.3.4) to reuse intermediate results
across all trees (memoization).

3.1.3 Outline of this Chapter

After providing an overview of related work (Section 3.2), we describe the core idea of our
proposed data structure gfkit (Section 3.3), as well as the implications of our design decisions.
Further, we describe gfkit’s query algorithm for computing the Lowest Common Ancestor
(Section 3.3.3) and other common statistics used in population genetics (Section 3.3.4). We
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3.2 Related Work

also describe the conversion of the tskit to the gfkit data structure (Section 3.3.6) as well
as two variants of our data structure (Section 3.3.5 and Section 3.3.7). Further, we evaluate
the performance of gfkit (Section 3.6): We report speedups (Section 3.6.1 and Section 3.6.2)
and analyze the created Directed Acyclic Graphs (Section 3.6.3 and Section 3.6.4). Next,
we discuss the space usage of gfkit vs. tskit (Section 3.6.6) and describe our qualitative
observations concerning the numerical stability of the computed statistics (Section 3.7). We
conclude, and highlight possible directions of future work in Section 3.8.

3.2 Related Work

The genomic code of related species or individuals of the same species is highly redundant,
even when only considering variant sites [RTK20]. Ané and Sanderson [AS05] thus propose
to compress related genomic sequences using a phylogenetic tree. Here, the tips of the
tree represent the genomic sequences, which are fully described by storing the ancestral
state for each site at the tree root and the respective mutations along the edges of the tree
(Figure 3.1.b). Ané and Sanderson primarily use a biologically reasonable evolutionary tree
with an optimized parsimony score in order to attain a good compression ratio; they do not
consider the tree to explicitly model the evolutionary history.

Kelleher et al. [Kel4+19; KEM16; RTK20] introduce tree sequences, which model the
evolutionary history of a set of related genomes, allow reusing some intermediate results
when computing statistics on them, and enable space-efficient storage of these sequences
(Section 3.1.2) by also storing them implicitly using ancestral states and mutations.

Matthews and Williams [MSW10] compress a collection of trees by encoding each bi-
partition exactly once. Here, a bipartition is a split of a tree’s tips into two disjoint sets.
Note that each edge of a tree induces a bipartition and thus the set of all bipartitions fully
describes a tree. However, this does not allow for direct access to the tree topologies, which
we require to compute the Lowest Common Ancestor (LCA, Sections 2.4 and 3.3.3).

Directed Acyclic Graphs (DAGs) only contain directed edges and no path of length > 0
from a node to itself. The tree terminology introduced in Section 3.1.1 generalizes to DAGs:
We call out-degree 0 nodes tips, which represent samples and their associated genomes. In
contrast to trees, DAGs may have multiple root nodes, that is, nodes with an in-degree of 0.

Theoretical computer science has studied the compression of single trees via DAG-
compression [Bil4+11; Sak09], tree grammars [DST80], and top-trees [Bil4+15]. DAG-based
compression reuses identical (topology and label) subtrees, when they occur multiple times in
the same tree. In a tree, each node also induces/represents the subtree containing it and all
of its descendants. Thus, instead of encoding a subtree a second time, we add an edge to the
node representing the already encoded subtree, resulting in a DAG. In a single genealogical
tree, all tips (representing samples) are distinct and thus not compressible via DAG-based
compression. However, one can extend the idea of representing each unique subtree only once
to sets of trees (forests), by reusing subtrees that form part of multiple trees (Section 3.3).
Ingels [IA20; Ing22] implements this idea by encoding a forest as a DAG. However, they focus
on the enumeration of trees instead of on reusing intermediate results during computations.
Tree grammars and top-tree based compression reuse tree patterns, that is, any identically-
connected subgraph (not necessarily including all descendants) [Bil+15]. It remains an open
question if top-trees? can encode the set of related genealogical trees while supporting the
required queries efficiently.

2 Minimal tree grammars are A"P-hard to construct and do not support efficient navigation [Bil+15].



Trefzer and Stamatakis [TS18] use the balanced parenthesis notation [Jac89] to succinctly
encode a single phylogenetic tree. They then encode further trees via edit operations (con-
traction and expansion of edges/bipartitions) based on the Robinson-Foulds distance [RF81].
This approach only allows for sequential access to the trees. However, we argue that random
accesses are necessary to efficiently compute statistics for specific genomic regions of interest.
Their approach also does not allow for a straight-forward memoization of recurring subtrees.

To the best of our knowledge, two existing phylogenetic tools use DAGs to memoize
intermediate results: ASTRAL-III, a tool for inferring a species tree from a set of topologically
distinct gene trees, represents and processes unique tip bipartitions only once [Zha+18].
Further, Larget [Larl3] employs memoization to compute the conditional clade probability
only once per unique subtree. Gene Recombination Graphs (GRGs) [DPW24] encode the
mutations of a collection of related genomes as a DAG in order to reuse computations. GRGs
are conceptually similar to our bipartition-based DAG (Section 3.3.5) in that they partition
the mutations of a set of genomes but model neither the evolutionary tree of the described
genomes nor where on the evolutionary tree these mutations happened. Hence, GRGs do not
support LCA queries and cannot encode mutations back to the ancestral state or multiple
mutations along a single path from the root to a tip.

3.3 Design of the Genealogical Forest Data Structure

In recombining organisms such as humans (Section 2.1), the set of genealogical trees used to
describe the evolutionary histories of different parts of the genome share common subtrees
(a node including all of its descendants). Thus, we propose a data structure that encodes
each subtree present in the input tree set exactly once, even if shared by multiple input trees
(Figure 3.1.d). As tree branch lengths are irrelevant for the genetic variation based statistics
and the LCA, we omit storing them.

We construct our data structure by contracting the set of unconnected trees into a DAG,
where each root node represents a tree of the input tree set and each non-root node represents
a unique subtree that is present in one or multiple tree(s) of the input tree set. Here, we
consider each sample to be a subtree containing only itself. If two or more input trees share
an identical subtree, the associated node in the DAG has multiple incoming edges; see for
example (B,C) in Figure 3.1.d. These resulting DAGs are called multitrees [FZ94]. In them,
each node, including all its direct and indirect descendants, induces a tree. Additionally, there
is exactly one path from each root to each tip. In analogy to tree sequences (implemented
in tskit), we call this data structure a genealogical forest and provide an open-source
implementation called gfkit.®> We choose this naming to highlight that the trees describe
genealogies and use the established term “forest” to describe a collection of trees.

Moreover, we encode the (closely related) genomic sequences represented by the tips of
the genealogical forest analogously to tskit (Figure 3.1.b). For this, we make the biologically
realistic assumption that the evolutionary history of each genomic position is described
by exactly one genealogical tree. However, note that several adjacent positions along the
genome can and will often share the same tree. This assumption can potentially be relaxed —
see future work (Section 3.8). For each site exhibiting genetic variation (Section 2.2), we
store the ancestral state at the root and the respective mutations along the edges of the
associated tree (Section 3.2). Note that each edge in a genealogical tree can be annotated
by multiple mutations, as it describes the evolutionary history of multiple genomic sites.

8 https://github.com/lukashuebner/gfkit; LGPL
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3.3 Design of the Genealogical Forest Data Structure

Moreover, note that there might be multiple mutations per genomic site, including mutations
back to the ancestral state and multiple mutations along a single path from the root to a tip
(Figure 3.1.b).

3.3.1 Implications of Our Design

Each node in a genealogical forest represents a unique subtree present in one or more trees of
the input set (Section 3.3). This allows queries using these trees’ topologies or the associated
genetic sequences to seamlessly reuse intermediate results on subtrees shared by any trees
(memoization). In contrast, tree sequences allow for reusing intermediate results only among
adjacent trees along the genome (Section 3.1.2). We implement this memoization by storing
the query’s intermediate results in a lookup table; using the ID of the respective DAG node
as the key. We employ this memoization to accelerate the DAG post-order traversals that
we utilize to compute the LCAs (Section 3.3.3) and allele frequencies (Section 3.3.4). From
the allele frequencies we subsequently derive numerous statistics that are commonly used in
population genetics (Section 2.4).

3.3.2 Computing the Number of Selected Samples in a Subtree
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Figure 3.2 (a) Encoding a set of four sequences (here: one site) via a tree, an ancestral state,
and mutations along the edges. (b) Queries take as input a subset of all samples, the sample set.
We compute the number of samples in this sample set below each node using a post-order traversal.
We need this information to (¢) compute the allele frequencies (number of samples per genomic
state) of each site by iterating over its mutations.

For each query to the genealogical forest data structure, the user selects a subset of the
forest’s samples to be considered (Section 2.4). Counting the number of selected samples
which form part of each subtree of the genealogical forest (represented by a node in the
DAG) is an important building block for computing allele frequencies and the LCA. For this,
we define a post-order traversal on a DAG as iterating over all the tree’s nodes such that
all children of a given node are processed before the node itself. This allows us to reuse the
intermediate result associated with these children using memoization (Section 3.3.1). Thus,
to count the number of selected samples in each subtree, we assign v(t) = 1 for all tips ¢ that
represent samples selected in the user query and v(t) = 0 to all other tips. Next, we perform
a post-order traversal on the DAG by assigning to each node nj the sum over the values
assigned to its children C(ny), that is v(ng) = Z v(n.) (Figure 3.2.a-b).
ne€C(nk)

We store the edges E of this DAG sorted in an order that is compatible to a post-order
traversal where we update the value of a node based on the values of its children. Thus, we
can consider the value v(n) of a node n as being finalized, once we processed all outgoing
edges E,, of n. We ensure that the value associated with a node does not change anymore



3.3.3 Computing the Lowest Common Ancestor

after having been used by one of its parent nodes. For this, we sort all incoming edges of a
node after its outgoing edges. That is, e; > e, for all e; € El} and e, € E_, .. Further, let

out*

C(n) be the children of n and Eg?) the outgoing edges of all children of node n. We sort all
edges in Efé?) before the first incoming edge of n. That is, e, . < €;,, for all e, € Efétn)
and e;,, € Ej}. This ensures that all values associated with a node’s children have been
finalized before we read them. Note that the construction algorithm outlined in Section 3.3.6
automatically outputs the genealogical forest’s edges in this order.

We can thus perform a post-order traversal on the genealogical forest DAG via a single-
pass linear scan over this edge list, keeping the values associated with each node in a hash

map with the node ID as the key.

3.3.3 Computing the Lowest Common Ancestor

We compute the LCA (Section 2.4) of two or more tips in all trees represented by a genealogical
forest using a variation of the algorithm described in Section 3.3.2. For this, we exploit the
property that in a genealogical forest DAG, there exists exactly one path from each root to
each tip. We chose this approach, as unrolling the DAG into a set of trees and answering LCA
queries using the well-studied techniques for trees (e.g., Schieber and Vishkin [SV88]) would
require memory linear in the number of nodes per tree times the number of trees. Further,
using an LCA algorithm developed for general DAGs (e.g., Kowaluk and Lingas [KLO05]) is
asymptotically slower as it cannot exploit the above property.

First, we assign each tip ¢ that was selected as part of the query the tuple v(t) = (1, @)
and each tip not selected the tuple v(t) = (0, ). Here, the first element of the tuple counts
the number of selected samples that form part of the subtree represented by the node. We
accumulate this counter up the trees (bottom up from the tips) via a post-order traversal on
the DAG. Moreover, if, for any node, this sample counter is equal to the number of selected
samples for the first time, this node must be the LCA of this subtree. Thus, we store the 1D
of this node in the second element of the tuple and propagate this value up the tree, instead
of the sample count. Note that we might select multiple nodes in the DAG as LCAs in a
single query. However, as noted above, there exists exactly one path from each root to each
tip. This ensures that for each root in the DAG (representing a genealogical tree), we pick
ezactly one node that is reachable from this root as the LCA.

As detailed in Section 3.3.2, we can perform a post-order traversal on the genealogical
forest DAG in time linear in the number of edges in the DAG. In particular, the runtime
does not depend on the number of samples in the input sample set. Therefore, computing
the LCA for a large subset of the samples does not require more time than computing the
LCA for two samples only (Section 3.6.2).

This algorithm could be extended to locate an almost-LCA — the lowest node under
which “almost all” samples are located. This might increase the robustness of the biological
interpretation against single “rogue” samples which have been erroneously included in the
input sample set and cause the LCA to be substantially closer to the root than it would be
without them.

3.3.4 Computing the Allele Frequencies and Derived Statistics

Most population genetic statistics depend on the allele frequencies [RTK20], that is, how
many As, Cs, Ts, and Gs we observe at a given genomic site (Section 2.4). Therefore, we
are only interested in variant sites, where at least two of these counts are greater than 0.
Moreover, the computation of allele frequencies at different genomic sites are mathematically
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3.3 Design of the Genealogical Forest Data Structure

independent of one another.? Given a query, including a selected subset of samples, we first
count the number of these selected samples that are contained in each subtree (represented
by the nodes in the genealogical forest DAG (Section 3.3.2)). Let S = {A,C,T,G} be the set
of alleles (here: possible genomic states) and n(x) be the number of selected samples. For
each site, we intend to compute the number of selected samples n(z) which exhibit allele
x € S. First, we set all samples to be in the ancestral state, that is n(Zancestra1) = n(*) and
n(z) = 0 for all remaining 2 (Figure 3.2.c). Next, we iterate over the mutations at this site:
Each mutation is associated with a subtree in the DAG and changes the state x; € S of all
samples contained in this subtree to the state 2; € S. Thus, we successively decrement n(z;)
and increment n(z;) by the number of selected samples contained in the respective subtree.
From these allele frequencies, we can subsequently derive numerous common population
genetics statistics (Section 2.4).

3.3.5 Memoizing on Shared Bipartitions

In contrast to computing the LCA, computing the allele frequencies is independent of the
actual tree topologies as it only requires the sample bipartitions induced by the subtrees
associated with the mutations. Remember, that these bipartitions separate all tips of a tree
into two disjoint sets (Section 3.2). For example, two identical mutations in two distinct
subtrees ((Gg,G1),G2) and (Gg, (G1,G2)) will identically affect the respective allele
frequencies. Memoizing on shared bipartitions allows reusing (slightly) more intermediate
results than memoizing on shared subtrees (Section 3.6.5). Next, we detail the construction
of the regular (unique subtrees) genealogical forest and this variant (unique bipartitions).

3.3.6 Constructing the Genealogical Forest DAG

In order to construct the genealogical forest DAG, we assign unique IDs to all subtrees
of the genealogical trees that form the input. For this, let h be a pseudorandom hash-
function. First, we assign unique subtree IDs to the tips T' = {to, t1,. .. ,t|T|_1} of the tree:
id(to) = h(0),id(t1) = h(1),...,id(tjr|—1) = h(tjp|—1). Next, we compute the unique subtree
ID of each non-tip node by applying the bit-wise exclusive or (@) over all of its children
(direct descendants), followed by hashing the result using h (Figure 3.3.a). That is, for a
node n with children C(n), we compute id(n) = h(®jec(m)id(j)). By using a symmetric
function — that is, id(j) ®id(¢) = id(¢) ®1id(j) — we ensure that the order by which we process
the children does not affect the resulting subtree ID. In order for the actual topology of the
subtree to influence its ID, we break the linearity of the @ operator via a hash function.
Otherwise, the ID would solely be determined by the bipartition induced by the respective
subtree. For example, the subtrees ((A,B)C) and (A(B,C)) would have the same subtree ID.

By using a 128 bit hash function, we ensure a collision probability of merely 107*¢ when
computing ~3.8 x 10'" hashes [BR05]. This corresponds approximately to the probability of
a single bit-flip to occur at any given second in the 128 bit needed to output a single subtree
ID [SPW09]. As this is negligible, we do not need to handle hash collisions.

As noted in Section 3.3.5, the allele frequencies are invariant w.r.t. the actual topology of
a subtree, and solely determined by the samples selected for the query. For computing a
unique bipartition ID, we therefore remove the linearity-breaking hash function h from the
computation of the non-tip IDs, that is, id(n;) = ©;jcc(n)id(j) for any non-tip node n.

4 Note that biological forces exists which cause the allele frequencies of adjacent sites to be correlated
(linkage) [Coo+10].
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(a) h(R(h(h(1) ® h(2)) & h(3)) & h(0)) (b) h(1) ® h(2) ® h(3) ® h(0)
h(h(h(1) ® h(2)) ® h(3)) h(1) ® h(2) ® h(3)
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Figure 3.3 (a) Four sample genomes mapped to ¢; € {0,1,2,3}. The unique subtree IDs of the
tree’s tips (i.e., samples) are h(t;), where h is a pseudorandom hash function. For each non-tip
node, we compute the unique subtree IDs by applying h to the bit-wise exclusive or (@) of all of
its children. Thus, the resulting ID uniquely identifies a subtree including its topology. (b) Not
breaking the linearity of the bit-wise @ results in a unique ID per set of samples in a subtree (that
is, not including its topology; called bipartition).

Construction Algorithm We construct the genealogical forest DAG from a given tree set by
iterating over the input trees® and processing the nodes of each tree in post-order. For each
tree node (representing the subtree induced by it and its descendants) encountered during
this post-order traversal, we compute the unique subtree ID and add the subtree to the DAG
if it is not already present. For the sake of simplicity, we make one exception to this rule
and ensure that there exists exactly one distinct root in the DAG for each tree in the input
tree set. That is, even if two trees are topologically exactly identical, each is represented by
a separate root node in the DAG and has thus a unique tree ID. The trees evidently still
share all subtrees below their respective, distinct, root node.

Recent versions of tskit provide information on which edges have been inserted or
removed when moving from one tree to the next along the genome. We exploit this information
in order to only recompute those subtree IDs that might have changed, that is, all subtrees
induced by nodes that are on the path from a changed edge to the tree root. Utilizing this
information yields speedups between 2 to 5, depending on the dataset (data not shown).

Analogously to tskit, we encode the genomic sequence by storing the ancestral state as
well as the respective mutations annotated at nodes of the DAG for each genomic site.

3.3.7 Balanced-Parenthesis Encoding of a Forest

Instead of encoding a genealogical forest as a DAG by means of explicit nodes and edges,
a representative extending the balanced parenthesis encoding for trees [Jac89] with back-
references is possible. This encoding is space-efficient and a post-order traversal over a
balanced parenthesis encoded tree is a simple linear scan. Exploring the full design space of
this approach and providing an efficient implementation represents an interesting challenge.
However, initial experiments did not yield substantial speedups, and hence we do not include
them here.

3.4 Experimental Setup

We implement our algorithms in C++20 and build our tool using CMake 3.25.1, GCC 12.1,
and 1d 2.38. We execute our experiments on an AMD EPYC 7551P processor running at

5 The order of trees in not relevant.
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Table 3.1 Tree sequence datasets used in benchmarks.
Collection Chr. Format Authors  Link

SGDP all tskit  [Woh+22] https://doi.org/10.5281/zenodo.3052359
SGDP all gfkit us https://doi.org/10.5281/zenodo.11241730
TGP all tskit  [Woh+22] https://doi.org/10.5281/zenodo.3051855
TGP all gfkit us https://doi.org/10.5281/zenodo.11241619
Unified all tskit  [Woh+22] https://doi.org/10.5281/zenodo.5495535
Unified all gfkit us https://doi.org/10.5281/zenodo.11241788
Sim. 640k 20 tskit us https://doi.org/10.5281/zenodo.11241938
Sim. 640k 20 gfkit us https://doi.org/10.5281/zenodo.11241938

2 GHz with 64 MiB of shared L3, 512 KiB of core-local L2, 32 KiB of core-local L1 data, and
64 KiB core-local L1 instruction cache. We use 8 banks of 32 GiB DDR4 RAM running at
2667 MTs™'. As our experiments are single threaded, only a single socket is being used.
Further, we disable the CPU’s frequency scaling and employ thread pinning. We compare
tskit git rev 77faadeb and gfkit version £bd2740.5 The tree sequence datasets (Table 3.1)
were inferred using tsinfer [Kel+19] version 0.2.1 and dated using tsdate [Woh+22]
version 0.1.4.7

3.5 Datasets

We evaluate our method on three freely-available empirical human (Homo sapiens; GRCh38)
tree sequence collections (Table 3.1): Thousand Genomes Project (TGP) [Aut+15] phase 3
autosomes, Simons Genome Diversity Project (SGDP) [Mal+16] autosomes, and the collection
inferred by Wohns et al. [Woh+22] (“Unified”). We use all 22 autosomes for each of these
collections in our experiments. We choose these specific tree sequence collections because to
the best of our knowledge, they constitute the sole publicly-available empirical collections.

In addition, we simulate a human dataset containing 640000 samples. As we do not
observe substantial runtime differences between distinct chromosomes of the empirical genomic
data collections, we limit our simulated data benchmarks to chromosome 20 to conserve
computational resources and reduce our CO5 footprint. We choose this approach analogously
to Wohns et al. [Woh+22], who use chromosome 20, as they consider it as being representative
of genome-wide patterns. We simulate the “Sim. 640k” dataset (Table 3.1) containing 640 000
samples using stdpopsim 0.2.0% and the HapMapII_GRCh38 genetic map. We convert the
respective tree sequences to genealogical forest files via gfkit version £bd2740.

3.6 Evaluation

We compare our proposed data structure genealogical forests (implemented in gfkit) regard-
ing query speed (Sections 3.6.1 and 3.6.2) and storage space used (Section 3.6.6) against the
state-of-the-art implementation tree sequences (tskit). Moreover, we assess the algorithmic

6 https://github.com/tskit-dev/tskit and https://github.com/lukashuebner/gfkit

" The description on Zenodo is incorrect; see: https://tskit-dev.slack.com/archives/C010834D669/
p1713340040404519

8 https://github.com/popsim-consortium/stdpopsim
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3.6.1 Speedup for Computing Statistics Based on the Allele Frequencies

reasons for the obtained speedups (Sections 3.6.3 and 3.6.4) and report the time required to
convert the tskit tree sequence format into the gfkit data structure (Section 3.6.7).

3.6.1 Speedup for Computing Statistics Based on the Allele Frequencies

We evaluate the runtime of our proposed genealogical forest data structure and its associated
implementation gfkit by comparing it to the state-of-the-art reference implementation,
tskit. We benchmark the runtimes of various important statistics in population genetics
(Section 2.4), including statistics that are based on the allele frequencies (e.g., sequence
diversity) as well as on the topology (e.g., LCA). We use 10 repeats for each runtime
measurement on each of the 22 autosomal chromosomes of each empirical collection (TGP,
SGDP, and Unified) and on chromosome 20 of the simulated dataset with 640000 samples
(Section 3.5). The mean standard deviation of runtimes across the 10 repeats of each statistic,
collection, and chromosome is below 1.3 %. We report a median speedup of 4.0 of gfkit
(ours) over tskit (state-of-the-art) for computing various allele frequency-based statistics
(Figure 3.4) and pairwise LCA queries. The absolute runtimes range from 775 to 1770 ms for
tskit and 152 to 340 ms for gfkit.
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Figure 3.4 Speedup of gfkit (ours) over tskit (state-of-the-art) for computing statistics on three
empirical and one simulated dataset (human). Bars indicate the speedup range and dots the median
speedup across all chromosomes of the respective collection. We use all 22 autosomal chromosomes
from the Thousand Genomes Project (TGP), Simons Genome Diversity Project (SGDP), and the
Unified collection. We use chromosome 20 of a simulated human collection containing 640 000
samples. AFS: Allele Frequency Spectrum. f{2,3,4}: Patterson’s f. Fst: Fixation Index.

Profiling via the Intel VTune tool shows that gfkit spends over 90 % of its runtime in the
post-order traversal during computation of the allele frequencies. The numerical computations
for the actual statistics thus account for less than 10 % of the runtime. Therefore, the number
of nodes in the genealogical forest DAG, as well as the in-degree of those nodes, appear to
constitute the dominating runtime factors. These values correspond to the number of unique
subtrees in the genealogical trees used to construct the genealogical forest, and the number of
times that an intermediate result can be reused during the post-order traversal, respectively.
Thus, we provide more details on these measurements in Sections 3.6.3 and 3.6.4.

3.6.2 Speedup for Computing the Lowest Common Ancestor

We compare gfkit’s and tskit’s runtimes for computing the LCA of two (“pairwise”) or
more samples. The asymptotic runtime of gfkit’s LCA-algorithm does not depend on the
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number of selected samples (Section 3.3.3). In contrast, given three or more samples, tskit
performs an analogous number of pair-wise LCA-queries: First, tskit computes the LCA of
two arbitrary samples, which it subsequently uses as input for the next LCA query; together
with another sample from the input. Thereby, after processing all samples, tskit obtains
the LCA over all samples that were selected in the input. Hence, tskit’s LCA-algorithm
scales linearly with the number of samples in the input as well as tree count and size.

1500 -

1000 -

500 =

speedup over tskit

10 % 12 % 17% 20% 25 % 33 % 50 %
fraction of samples selected
SGDP = TGP - Unified

Figure 3.5 Speedup of gfkit (ours) over tskit (state-of-the-art) for computing the Lowest
Common Ancestor (LCA) of every n-th sample in the dataset. The runtime of gfkit’s LCA-
algorithm does not depend on the number of samples in the sample set. In contrast, the runtime
of tskit’s LCA-algorithm depends linearly on the number samples in the sample set. Note the
log-scaling of the y-axis. Experiments on the simulated dataset took 64 min for gfkit (median
155 ms per query) but did not finish for tskit within a week.

We report the speedups of gfkit over tskit when computing the LCA (Figures 3.4
and 3.5). In order to save computational resources and reduce our environmental footprint,
we perform only 3 repeats when computing the LCA of more than two samples using tskit
(runtime up to 34min). We observe speedups of gfkit over tskit of 5.5 (median) for
pairwise queries, 208 (median) when selecting 10 % of the samples, and 990 (median) when
selecting 50 % of the samples as input sample set. All samples were selected uniformly at
random.

3.6.3 Proportion of Subtrees that are Unique

Each query spends the majority of its time performing the post-order traversal. Thus, the
number of edges and nodes in the gfkit DAG is the determining runtime factor, with the
number of nodes in the DAG being (nearly”) equal to number of unique subtrees in the input
tree set. We report on the number of overall subtrees in the input as well as the absolute
and relative number of unique subtrees (Table 3.2). For example, in the TGP collection,
0.48 % (mean) of the subtrees are unique per chromosome. Additionally, we report that
the absolute number of unique subtrees in a simulated dataset (human, chromosome 20)
with 640000 samples is not substantially higher than for the shown empirical collections
containing 554 to 7508 samples, respectively. Overall, only 0.002 to 2% of the subtrees in
the tested collections are unique. This proportion decreases as we include more samples (and

9 If multiple trees are exactly identical, we add a distinct root for each of them (Section 3.3.6).
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thus subtrees) from the same species. This is because the absolute number of unique subtrees
does not increase substantially for larger collections, thus, neither does the runtime of the
queries. The number of mutations per subtree is 3 to 4 orders of magnitude smaller'® for the
640 000-sample dataset compared to the collections with < 7508 samples. Therefore, there is
less evolutionary signal to resolve the evolutionary history of the samples, possibly inducing
larger unresolved subtrees. It remains an open question how other data characteristics, for
example the species when not considering human populations, influence the number of unique
subtrees.

Table 3.2 Number of overall and unique (i.e, distinct) subtrees and the proportion of subtrees
that are unique. The ranges given cover all 22 autosomal chromosomes of the respective collection.
We report the arithmetic mean and standard deviation across all chromosomes of a collection.

. Trees Subtrees Uniq. Subtrees  Uniq. Subtrees
Collection Chr. Samples <10° < 10° < 10° / Subtrees
SGDP all 554 0.1 to 0.7 84 to 587 1.8 to 11 0.020 £ 0.001
TGP all 5008 0.3 to 2.1 2150 to 14916 11 to 69 0.0048 £ 0.0003
Unified all 7508 0.04 to 0.2 698 to 2708 3.2 to 18 0.006 £ 0.002
Sim. 640k 20 640 000 0.5 695 185 14 0.00002

3.6.4 Reusing Shared Subtrees and Intermediate Results

Apart from the number of nodes in the gfkit DAG, the number of edges also influences the
runtime of the post-order traversal. Moreover, the proportion of edges to nodes can also
serve as an indicator for memoization performance. This is because, during the post-order
traversal, the in-degree of a node is equal to the number of times its result is used (and
reused). We report that each intermediate result on a unique subtree is being reused on
average 4.12 (SGDP), 5.49 (TGP), 5.10 (Unified), or 1.99 (Simulated 640k) times.

Table 3.3 Average in-degree of non-root nodes in the gfkit DAG. The in-degree of a node in the
DAG is equal to the number of times its intermediate result is reused during the post-order traversal.

Datasot Chr. Mean In-degree  Mean In-degree

Bipartition Subtree
SGDP all 4.44 4.12
TGP all 5.89 5.49
Unified all 5.20 5.10
Sim. 640k 20 — 1.99

3.6.5 Speedups when Memoizing on Shared Bipartitions

We also benchmark queries on the bipartition-DAG described in Section 3.3.5. Here, we
observe a median speedup of 4.7 over tskit across all empirical collections (Figure 3.6).
Queries on the bipartition-DAG are on average 1.14 + 0.09 (mean + standard deviation)

Y0 Mutations per subtree: ~ Sim. 640k: 0.000 0007, SGDP: 0.002, TGP: 0.0002, and Unified: 0.003
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Figure 3.6 Speedup of gfkit (ours) using a bipartition-DAG over tskit (state-of-the-art) when
computing allele frequency based statistics on three empirical and one simulated dataset (human).
The bars indicate the speedup range and the dot the median speedup across all chromosomes of
the respective collection. We use all 22 autosomal chromosomes for TGP, SGDP, and the Unified
collection. We omit the simulated human dataset with 640000 samples to save on computational
resources.

times faster than on the subtree-DAG. There are 5 to 20 % fewer unique bipartitions than
there are unique subtrees; corresponding to fewer nodes in the bipartition-DAG. The average
in-degree in the bipartition-DAG, and thus number of times we reuse an intermediate result,
ranges from 4.44 to 5.89, compared to 4.12 to 5.49 on the subtree-DAG (Table 3.3). These
two measurements explain the (moderately) faster runtimes of the bipartition-DAG compared
to the subtree-DAG. However, as the bipartition-DAG does not support topology-aware
queries (e.g., LCA), we do not consider this tradeoff worthwhile, taking into account the
increased code complexity and storage, unless additional optimizations further reduce these
runtimes.

3.6.6 Storage Space Needed for Encoding the Forest

Conceptually, a genealogical forest DAG factors-out all unique subtrees that a tree sequence
describes using its edge insertions and removals. Concerning the space usage, there are two
contrary effects: On the one hand, tree sequences store some identical subtrees multiple
times, but using distinct edges and/or nodes. Here, a genealogical forest constitutes the
more space efficient representation. On the other hand, a single edge insertion or removal
can induce multiple new subtrees along the path from the insertion or removal point up to
the tree root. Here, tree sequences are the more space efficient representation.

In order to quantify the trade-off between the two effects, we compare the size of the
genealogical forest DAG against the size of the respective tree sequence. However, the
tree sequence implementation tskit stores a variety of additional meta-data, to support
operations which we currently do not implement in gfkit. We thus perform a theoretical,
instead of an empirical space requirement comparison.

Both, tree sequences and genealogical forests could minimally be described using their
(directed) edges and sequence information. Let ¢ be the number of bits required to encode a
node ID and let ¢ be the number of bits required to encode a position in the genome. Thus,
choosing an edge list (see below) we require 2 - ¢ bit for storing each edge in a genealogical
forest. In a tree sequence, an edge is valid only for a specified region of the genome, requiring
2 - ¢ additional bits per edge in order to store this information. Note, however, that the
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number of nodes and edges differs between tskit and gfkit and these numbers are thus
not directly comparable. Additionally, we cannot arbitrarily sort tskit’s edges without
incurring a performance penalty, as we require the insertion order to be able to efficiently
move from one tree to the next along the genome.!' In gfkit, all outgoing edges of a node
could be stored consecutively in an edge list, which would allow omitting some from-node
IDs, conceptually creating an adjacency array.

Both, tskit and gfkit, describe the genomic sequences using one ancestral state and a
set of mutations per genome site. We can encode each mutation using a site ID, the node
ID at which the mutation occurs, and the derived state. Let s be the number of sites, o
be the number of bits per site ID, v be the number of bits per genomic state, and m be
the overall number of mutations. The sequence information thus (theoretically) requires
s-v+m- (o + ¢+ v)bit. In practice, tskit and gfkit store additional information: For
example, in order to avoid traversing up the tree to the parent mutation (or root node),
tskit stores a pointer to the parent mutation (64 bit) and gfkit stores the parent mutation’s
state (2bit). However, we omit these and other implementation-specific constants here.

Table 3.4 Theoretical space usage of tskit vs gfkit. The description of the trees is substantially
larger than the description of the sequence (ancestral states and mutations). tskit encodes trees as
a tree sequence (Section 3.1.2), whereas gfkit encodes them via a genealogical forest (Section 3.3).

Collection ~ Chr. tskit gfkit Sequence
SGDP all 1076 MiB 3891 MiB 123 MiB
TGP all  4577MiB 32134MiB  310MiB
Unified all 1684 MiB 7843MiB 874 MiB
Sim. 640k 20 53 MiB 198 MiB  3.74 MiB

For our calculations (Table 3.4), we assume ¢ = ¢ = o = 32bit integers for node IDs,
site IDs, and genomic positions'?, and four possible genomic states, thus v = 2bit. We
conclude that the edge removals and insertions used to store the set of genealogical trees
by tskit are more-space efficient than gfkit’s method of storing a node for each unique
subtree. However, we argue that, as the differences are in the same order of magnitude as
implementation-specific constants (e.g., choice of data-types or explicitly storing IDs), one
could mitigate this effect. Therefore, it remains a tradeoff between query-speed and space
usage. It is subject of future work to evaluate the genealogical forest variants using the
compressed edge list (above) and the balanced parenthesis representation (Section 3.3.7).

3.6.7 Converting Tree Sequences to Genealogical Forests

To the best of our knowledge, there is no fundamental reason why tools could not output
genealogical forests instead of tree sequences once we include support for storing coalescent
times (Section 3.8). Currently, however, existing tools output the established tskit format —
and will probably continue doing so for a while, since the current implementation of our data
structure, gfkit, does not support all features of tskit yet. While we provide corresponding
gfkit files (Section 3.5) for the openly available tskit collections (Section 3.5), the time

"'We could determine the deletion order on the fly by using a priority queue containing only the currently
active edges.

12This is true for gfkit. However, tskit uses ¢ = 64 bit IEEE 754 floating-point values for genomic
positions.
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required to convert tskit to gfkit input files is not negligible. Kelleher et al. [Kel+19] report
tree sequence inference times of 5 min for chromosome 20 of SGDP and 2h for chromosome
20 of TGP using 40 cores. Hengstler [Hen24| reports reducing these times by half using a
highly-tuned non-feature-complete implementation. However, we are able to convert output
files from the tskit to the gfkit format on a single core in 6.5s and 123 s respectively. We
thus argue that one can convert empirical collections in a negligible amount of time compared
to the time required for inferring them.

3.7 Numerical Stability

Basic arithmetic operations on IEEE 754 [IEEE754] floating-point numbers, such as additions
or multiplications, always induce rounding errors [Gol91] (Section 2.10). The magnitude
of these errors directly depends on the difference in the order of magnitude between the
two operands. Thus, computing running sums, where we sum over many small values to
an ever-growing sum, is particular rounding-error prone. We often compute statistics in
population genetics on a per-site basis (Section 2.4) and then average these over all sites.
Using a running sum, as currently implemented in tskit and gfkit, leads to increasing
round-off errors, the more variant genetic sites there are. Some statistics, like Patterson’s
f4 entail multiplying the number of samples in four different sample sets. With more than
262 143 samples,'® the product might exceed the size of a 64 bit integer. We (for the sake
of result verification), as well as tskit, thus choose to represent these products as 64 bit
IEEE 754 floating-point numbers, potentially introducing substantial numerical errors.

It is currently unknown if the errors introduced by these simplifications influence the
biological interpretation of the results. Further, the existence of rounding errors in the
intermediate and end result implies that the operation order influences their exact value, even
though the input operands are bit-identical, thus impacting reproducibility. Even when the
software version and the random seeds are fixed, different algorithms, compiler optimizations,
or degrees of parallelism influence the order of operations (Section 2.10). Reports on these
effects influencing the results of scientific computations exist for example in the fields of
phylogenetics [DFS18], sheet metal forming [Diel2], and fluid simulations [Wie+19].

An analysis of the impact of numerical errors on population genetics statistics, their
downstream analyses, and result reproducibility is urgently required. Ideally, a standardized
order of calculations would lead to all software in the field outputting comparable and
reproducible results with well-understood numerical inaccuracies. Further, results should
be invariant under addition of further — but ignored in the query at hand — genomes and
mutations to the dataset. In our case, the numerical calculations require less than 10 % of
overall runtime. Hence, we are optimistic that introducing arbitrary precision calculations
might have negligible runtime overhead.

3.8 Conclusion and Future Work

In recombining organisms, a set of genealogical trees is often used to describe the evolutionary
history of the studied samples. While tree sequences (tskit) compress these trees using edit
operations from one tree to the next along the genome, genealogical forest (gfkit) compresses
them into a DAG where each node represents a unique subtree of the input (Section 3.3).
While the genealogical forest encoding (theoretically) requires a factor 3.6 to 7.0 more space

13 When the four sample sets have the same size: (262144/4)4 =%



than tree sequences (Section 3.6.6), it also yields speedups by a factor of 2.1 to 11.2 (median
4.0) when computing pairwise LCA queries and important statistics in population genetics
(e.g., sequence diversity). In contrast to tskit’s LCA-algorithm, the runtime of gfkit’s
LCA-algorithm does not depend on the number of samples selected in the query. Thus,
gfkit’s LCA queries are substantially faster, for instance, a speedup of 208 (median) when

querying 10 % of samples and a speedup of 990 (median) when querying 50 % of samples.

Additionally, we describe, implement, and benchmark an alternative data structure, which
represents the set of genealogical trees as a DAG in which each node represents a unique
bipartition in the input. This variant is slightly faster but does not support topology-aware
queries (e.g., LCA). To explain this, we show, that subtrees containing the same samples but
having a different topology are indeed infrequent in the analyzed datasets.

As more genomes are being sequenced, future datasets will contain a multiple of today’s
samples. However, we observe speedups (and runtimes) comparable to the largest existing
empirical datasets for a simulated human dataset with 640000 samples (Section 3.6.1). We
show, that this might be due to the number of unique subtrees being comparable to those
of current empirical datasets with at most 7508 samples, thus resulting in a DAG of about
the same size. As the post-order traversal on the genealogical forest DAG consumes over
90 % of a query’s runtime, the size of this DAG is the determining runtime factor. Which

characteristics of the input influence the number of unique subtrees remains an open question.

Tskit was not build in a day and neither was gfkit. Currently, gfkit does not support
all of tskit’s features, yet most of these should be straight-forward to implement. For
example, gfkit currently only supports sample weights of 0 and 1 (a sample is in the sample
set, or it is not), as these are sufficient for implementing the allele frequencies and derived
statistics as well as LCA queries. Further, gfkit currently only supports site statistics on
the entire genome, that is, neither branch- nor node-based statistics as well as no sliding
windows over the genomic sites. We plan on adding support for storing coalescent times at
inner nodes, enabling branch-length based statistics and the application of LCAs described
in Section 2.4. Additionally, gfkit assumes that for each genomic site, a single tree describes
the evolutionary history of all tips, while tskit allows for multiple (partial) trees.

Tree sequences are an instantiation of Ancestral Recombination Graphs and can be

augmented with nodes representing recombination events between two individuals [Won+23b].
In a genealogical forest, each tree describes the evolutionary history of a part of the genome.

Thus, the full genetic code of an individual is described by a subset of nodes. We can annotate
a recombination event between these subsets. However, this is not implemented yet.

Next to lifting these limitations, additional improvements include evaluating a top-tree
based genealogical forest (Section 3.2) and extending LCA queries with more than two
samples to also report ancestors which are common to “almost all” selected samples. This
will yield the query robust against single samples that have been erroneously included in the
query (Section 3.3.3).

Tree sequences opened up new possibilities for storing and processing large sets of
genealogical trees and sequences in population genetics. Genealogical forests provide a
substantial reduction in runtime for site-based statistics and LCA calculations over the
state-of-the-art. Additionally, they render developing efficient algorithms more intuitive as
these algorithms can be implemented, for example, via post-order traversals that allow to
automatically reuse intermediate results. We believe that these improvements will boost
the development of new analyses in the field of population genetics. For instance, they
might be used to develop appropriate optimization criteria and techniques for automatically
determining subpopulations.
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4 ReStore: In-Memory REplicated

STORagE for Rapid Recovery in
Fault-Tolerant Algorithms

Attribution: This chapter is based on the peer-reviewed publication “ReStore:
In-Memory REplicated STORagE for Rapid Recovery in Fault-Tolerant Algorithms”
[Hiib+22a], on which I share first authorship with Demian Hespe. Peter Sanders
and Alexandros Stamatakis contributed as advisors. Large parts of this chapter have
been copied either in modified or verbatim form from this publication [Hiib422a] or
the corresponding technical report [Hitb+22b]. I designed the core of ReStore’s data
distribution and algorithms in close collaboration with Demian Hespe. During the
implementation, I focused on the data distribution (“creating a checkpoint”) while
Demian Hespe focused on data recovery after a failure. Moreover, I conducted and
evaluated all experiments, designed the method to recover lost replicas, provided
the theoretical analysis of the irrecoverable-data-loss probability, implemented the
serialization interface, and conducted the related-work reproducibility study.

Summary:  The number of CPU cores in High Performance Computing (HPC)
systems increases, and existing petascale systems already fail 0.8 to 5.7 times per day.
As future exascale systems are expected to experience hardware failures every 30 to 60
minutes, mitigating hardware failures constitutes a major challenge in HPC.

It is impractical for applications to either, request replacement for failed CPU cores
after a failure, or to maintain spares. Applications must thus continue with the remain-
ing cores. During failure-recovery, algorithms have to restore lost data that resided on
the failed cores, as well as re-distribute the workload and respective parts of the input
data to the remaining cores (shrinking recovery). However, current checkpointing
libraries often do not support the data redistribution required for shrinking recovery
and thus necessitates replacement cores. Further, they typically write checkpoints to
the parallel file system instead of the main memory, which incurs slow recoveries due
to low disk access speeds and disk congestion.

We present an algorithmic framework and its C++ library implementation ReStore,
which enables scalable, shrinking data-recovery to mitigate hardware failures in MPI
programs. We store all required data in memory via an appropriate data distribution
and replication strategy, yielding substantially faster recovery than under standard
checkpointing schemes, which rely on a parallel file system. ReStore allows the applica-
tion developer to specify which data to load on which core, and thus supports the data
redistribution required by shrinking recovery as well as recovery using spare compute
nodes. We evaluate ReStore in both controlled, isolated environments and real-world
applications.

Our experiments show loading times of lost data in the range of milliseconds on
up to 24576 cores and a substantial speedup of the recovery time for the failure-
tolerant version of the widely used bioinformatics tool RAxML-NG. To the best of our
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knowledge, ReStore is the first in-memory checkpointing library that supports shrinking
recovery. Therefore, ReStore enables scientific applications to mitigate from hardware
failures in milliseconds, requiring neither replacement nor spare resources.

4.1 Introduction

Next to work-efficient data structures and algorithms (Chapter 3), the data avalanche
in evolutionary bioinformatics also necessitates increased parallelism in our applications.
However, with an increasing number of CPU cores (here, Processing Elements (PEs)), the
probability that a program experiences a hardware failure during its execution increases.
Current petascale systems already fail 0.8 to 5.7 times per day, while future exascale systems
are expected to experience hardware failures every 30 to 60 minutes [Cap+14; DHRI15;
Sni+14] (Section 2.7). Therefore, mitigating these hardware failures constitutes a major
challenge for future exascale systems [SDM10].

As discussed in Section 2.8, the prevalent [Her+15, ch. 1] failure-mitigation strategy in
scientific computing on High Performance Computing (HPC) system is checkpoint/restart.
Checkpoint/restart strategies can be further classified into application-level versus system-
level libraries, if checkpoints are coordinated /uncoordinated among the PE, and if checkpoints
are created in-memory or written to the parallel file system (PFS; Section 2.7). As discussed
in Section 2.7, application-level checkpoints allow the application to specify which sections
of its memory shall be backed-up, drastically reducing the amount of backed-up data over
system-level checkpoints [Hiib421b]. In coordinated checkpointing strategies, all PEs write
their checkpoints at the same time, and are thus easier to implement than uncoordinated
checkpointing schemes (Section 2.8). As synchronization is cheap in modern HPC systems with
high-bandwidth, low-latency interconnections, Gavaskar and Subbarao [GS13] recommend
coordinated checkpointing when developing applications for these systems. Hence, we focus
on coordinated, application-level checkpointing schemes in this chapter.

Many existing checkpointing libraries [Aga404; Bar+17; Bau+11; BH14; Gam+14; Lu05;
Moo+10; Nic+19; Sha+19; TH14] only target recovery using the substitute strategy, where a
replacement PE takes over the work previously performed by the failed PEs (Section 2.7).
While this circumvents the need for re-balancing the workload and simplifies (re-)loading
the required data, reserving idle PE for this purpose constitutes a waste of resources. In
contrast, when employing the shrink strategy, the program’s load balancer (re-)distributes
the work performed by the failed PE among the remaining, or surviving, PEs (Section 2.7).
This often causes all PEs that where assigned a new work package to load the respective
parts of the static (input) data; often from the PFS, thus causing congestion. In previous
work [Hiib421b], we observe this bottleneck during recovery in a fault-tolerant phylogenetic
tree search (Section 2.3). Note that this partial loading of data requires the data fractions
stored in a checkpoint to be individually addressable, using, for example, explicit IDs.

In summary, while shrinking recovery does not necessitate spare PEs, it reloads fractions
of the data on many or even all PEs during recovery. Thus, the respective checkpointing
library has to support this operation without inducing congestion on the storage medium.

4.1.1 Contribution

We introduce ReStore, an in-memory checkpointing library, which supports recovery using
both, the substitute, and the shrink strategy. This allows all available PEs to participate
in the computation at all times, instead of reserving some as spares to replace failed PEs.
Particularly, ReStore supports the partial load operations required for this shrinking recovery
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via an involved strategic data distribution and recovery mechanism. Keeping the checkpoints
in memory avoids the bottlenecks involved in a PFS and increases scalability. Further, the
user can fine-tune ReStore to favor faster checkpoint creation or faster data recovery by
explicitly choosing an appropriate data distribution strategy. Rapid recovery is particularly
important for data that the program never or rarely changes but has to be redistributed
after every failure, for example, the input data.

To the best of our knowledge, ReStore is the first general purpose checkpointing solution
that allows for in-memory recovery without requiring spare PEs. We show the real-world
applicability of ReStore by integrating it into a fault-tolerant version of the widely-used
phylogenetic inference tool RAXML-NG and a distributed k-means implementation. Since
its publication, ReStore has been used for creating (compressed) checkpoints in a fault-
tolerant PageRank [Pag+99] implementation and will continue to facilitate the development
of fault-tolerant algorithms by providing rapid and scalable checkpoint creation and recovery.

4.1.2 Outline of this Chapter

The remainder of this chapter is structured as follows: In Section 4.2, we first review important
concepts. Next, we offer an overview of existing checkpointing libraries (Section 4.3). Further,
we discuss the design of ReStore’s replication and data distribution scheme (Sections 4.4.1
and 4.4.2), and analyze ReStore’s memory usage (Section 4.4.3) as well as the probability
of irrecoverable data loss (Section 4.4.4). We also present alternative data-distributions,
which enable the recovery of lost replicas after a PE failure (Section 4.4.5). After discussing
our implementation of ReStore in Section 4.5, we experimentally evaluate it via isolated
measurements (Section 4.6.2), integrate it into real-world applications (Section 4.6.3), and
compare our results to other checkpointing libraries and recovering data from the PFS
(Section 4.6.4). Finally, we conclude in Section 4.7.

4.2 Preliminaries

As discussed in Section 2.5, in distributed-memory parallel programs using the Message
Passing Interface (MPI; Section 2.6), p processes (or Processing Elements (PEs)) run on
multiple machines (or compute nodes) and communicate via messages exchanged over
the network. We consider two important factors for evaluating the running time of such
parallel algorithms: The bottleneck number of messages sent and received, and the bottleneck
communication volume (details in Section 2.5). As failures, we consider the case that one
or more PEs suddenly stop working and do not contribute to the computation anymore —
which we will refer to as failed (Section 2.7). The upcoming MPI standard 5.0 will support
mechanisms for mitigating failures of compute nodes and/or network components (Section 2.9).
Currently, there exist two actively developed MPI implementations which already support
MPT’s failure-mitigation mechanisms: MPICH [Gro02] as of version 3.1 and User Level
Failure Mitigation (ULFM) [Bla+13], which has now been merged into OpenMPI 5.

4.3 Related Work

Scientific applications are increasingly implemented /extended to be able to mitigate hardware
failures. Examples include a numeric linear equation and partial equation solver [Ali+16],
a plasma simulation [Obe+17], a molecular dynamics simulation [Lag+16], a Fast Fourier
Transformation [EGO03], and an algorithm for phylogenetic inference [Hiib+21b].
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Table 4.1 Comparison of checkpointing libraries. Note that ftRMA [BH14] is Cray-only. The
author-provided examples for Fenix [Gam+14] segfault on our system. GPI_CP [Bar+17] requires
libiverbs, GPI-2, and password-less ssh-login on all compute nodes. ' The program needs to
allocate spare nodes, which participate in the computation only in case of a failure. 2 The program
needs to allocate spare nodes and, in addition, further nodes exclusively used for storing checkpoints.

< — = g o £
= g + o] + — ] '_T_ 3
SE £ 85 32 4i %
€8 <) = 4 sa g
Features
in-memory checkpointing 4 v X 4 v v
substituting recovery v v v v v v
shrinking recovery X X X X X v
all nodes participate in computation x? ! ! X ! v
. MPI PGAS/
programming model RDMA MPI MPI MPI GPI MPI
Reproducibility
source-code available 4 v v X v v
still maintained (2024) X v v X X v

Checkpointing libraries either write the program’s state to a parallel file system (PFS) or
to the compute nodes main memory (in-memory; Section 2.8). Checkpointing libraries that
save their checkpoints to the PFS include, for example, the algorithm presented by Agarwal
et al. [Aga+04], FTI [Bau+11], CRAFT [Sha+19], SCR [Moo+10], and VeloC [Nic+19]
(Table 4.1). As the number of PEs per parallel program execution continues to grow, the
congestion on the PFS increases — resulting in a bottleneck and reduced checkpointing
performance [Gos+21; Hér+19]. Thus, some checkpointing libraries have been designed
to keep the checkpoints in memory. Examples include ftRMA [BH14], Fenix [Gam+14],
GPI_CP [Bar+17], and the algorithm described by Lu [Lu05].

All of the above checkpointing libraries employ the substitute strategy (Section 2.7) when
recovering after a failure. Therefore, they rely on the availability of replacement nodes, either
by requesting additional nodes from the job scheduler, or by keeping spare compute nodes
around during fault-free recovery. Keeping spare nodes around, which do not participate in
the computation, constitutes a waste of computational resources and energy. Requesting
replacement nodes from the job scheduler can incur an overhead of seconds to minutes and
is thus impractical. Some checkpointing libraries additionally designate some compute nodes
as pure checkpointing nodes, which neither participate at the computation, nor are available
as spares to replace failed nodes. As discussed above, we thus advocate for using shrinking
recovery, that is, re-distributing the work that was assigned to the failed PEs! to the surviving
PEs even though this incurs a more involved data recovery mechanism (Section 4.1).

To the best of our knowledge, ReStore is the only in-memory checkpointing library that
allows for shrinking recovery. While Ashraf et al. [AHE18] describe an implementation of a
fault-tolerance mechanism for a specific application that is able to checkpoint to memory and
recover in a shrinking setting, this is, however, not a general-purpose checkpointing library

! Note that in modern multicore machines, there are multiple PEs per compute node.
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but an application-specific approach. Replication approaches similar to the one presented
in this chapter are used in distributed fault-tolerant file systems like early versions of the
Hadoop Distributed File System [Shv+10] or distributed processing frameworks like Apache
Spark [Zah+12]. However, these target very different use cases and sometimes only support
rudimentary replication strategies like storing each PE’s data on a single partner PE.

4.3.1 Overview of Existing Checkpointing Libraries

In the following, we describe our attempts to replicate the results of competing tools
(Table 4.1): The ftRMA [BH14] library has not been maintained since 2014 and relies on
the Cray-only foMPI library which has also not been further maintained since 2014. The
authors confirmed (pers. comm. 30. June 2022) that the current code exclusively works on
Cray systems and is no longer being actively maintained. Although the authors suggested
that ftRMA could — in principle — be ported to a non-Cray system, taking into account the
unmaintained code base comprising 513 calls to foMPI functions, this would likely incur
a prohibitive programming effort with uncertain outcomes. Further, as ULFM currently
provides “little support for fault-tolerance” with respect to MPI’s Remote Memory Access
(RMA) calls [Boul9], deploying ftRMA would be bound to fail using a current, fault-tolerant
MPI implementation.

The Fenix library has more than 10 commits in the past year, we thus consider it
as still being maintained.? However, the author-provided Fenix examples [Gam+14] fail
with a segmentation fault on our system. Additionally, its source code and documentation
differ substantially among each other. For example, restoring data from another PE is not
implemented, and it is unclear which replication scheme is currently employed. As Fenix does
currently not support restoring the data that was checkpointed on a different PE, setting
up an experimental comparison is challenging. The authors did not respond to our e-mail
requesting assistance.

The SCR [Moo+10] repository has more than 50 commits on 20 distinct days during the
past six months, and we thus consider it as still being maintained. SCR supports caching
checkpoints on a RAM-disk. These checkpoints, however, have to be transferred to the
parallel file system such as to become available after a PE failure. We therefore do not
consider SCR to be an in-memory checkpointing library in the context of node failures.

The source code of Lu’s algorithm [Lu05] is not available, and the author can not be
contacted, as they did not provide a contact e-mail address on their publications.

The git repository of GPI_CP [Bar+17] has only a single commit dating nine years ago;
we thus also assert that it is no longer being maintained. Further, as we do not have access
to a HPC system where GPI-2 — a library for the Partitioned Global Address Space (PGAS)
programming model — is supported, and its dependency libiverbs has to be installed by a
system administrator, we are unable to compare GPI_CP against ReStore.

4.4 In-Memory Replica for Fast Recovery

ReStore allows application developers to store redundant copies of their data in memory,
which they can use to create checkpoints or accelerate the redistribution of input data during

2 This is in contrast to our-original publication of this work [Hiib+22a], where we declared Fenix’s
maintenance state as “unclear”. At that point, the Fenix project had a single commit in six months,
and did not pass the author’s automated test suite.
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PE 0 : PE 1 : PE 2 : PE 3
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Figure 4.1 Basic data distribution (without block ID permutation) used by ReStore for p = 4 PEs,
n = 16 data blocks, and r = 2 copies. The first row shows the data submitted by the application.
As an example, the orange arrows show the data ReStore sends from PE 1 to the target PEs,
which hold copies of the received data. During a shrinking recovery, the application’s load balancer
re-distributes the work previously assigned to the failed PE(s) among the surviving PEs, which thus
have to load fractions of the respective data. Here, after PE 0 fails, the application requests the
data shown in the last row (bold dark red in all occurrences) which is served by ReStore as shown
with the black arrows. Note that regardless of the overall PE-count, only r possible senders exist for
the data of a failed PE; this constitutes a bottleneck.

recovery (Section 4.1). In case of a failure, the surviving PEs can invoke a recovery routine
to load all or parts of the data that was lost during the failure. The application developer
can specify which part of the data to load on which PE.

In Section 4.4.1, we introduce our general framework for maintaining redundant copies of
the user-supplied data in memory and describe our recovery algorithm. Next, we expand
on the distribution of copies by adding random permutations to accelerate the recovery
algorithm (Section 4.4.2). Moreover, we analyze the memory usage of our proposed data
distribution (Section 4.4.3), and the probability of irrecoverable data loss (Section 4.4.4).

4.4.1 General Framework

The fundamental idea of ReStore is to store r copies of the data on different PEs. By storing
them such that it is unlikely for all copies of one data element to fail at once, there will
most likely be copies left to recover from (Section 4.4.4 and Section 4.6.2). Users store their
data in ReStore using the submit function and retrieve data from ReStore using the load
function. In order to allow a specific PE to request only a fraction of the data, we make the
data addressable.

For this, we divide the data into n blocks, each with a unique identifier (ID) z. In its
most basic form (Figure 4.1), for k € [0,7) we store a copy of the block with ID z on PEs

L(z, k) = L%J —l—k-z;) mod p

Under this distribution, by placing the copies of the same data as far apart as possible in
the PE-ID (rank) space, we expect the different copies of a block to not be stored on the same
physical node/case/rack in most cluster setups. This decreases the probability of loosing all
copies of a block due to a single failure event, as PEs failures in the same node/case/rack are
more likely to occur than a simultaneous failure of unrelated PEs [Bau+11].

During recovery, when PE ¢ requests to load block j — that is not stored in its local part
of the ReStore — we choose one of the surviving PEs that holds block j at random to serve
the request. If the user requests multiple successive blocks that are all stored on the same set
of PEs, we choose one PE to serve all requests. Next, we exchange the requested data using
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Figure 4.2 Data distribution with block ID permutation used by ReStore for p = 4 PEs, n = 16
data blocks, » = 2 copies, and s, = 2 blocks per permutation range. The first row shows the data
submitted by the application. As an example, the orange and green arrows show the data ReStore
sends from PE 1 to the target PEs, which hold copies of the received data. During a shrinking
recovery, the application’s load balancer re-distributes the work previously assigned to the failed
PE(s) among the surviving PEs, which thus have to load fractions of the respective data. Here,
after PE 0 fails, the application requests the data shown in the last row (dark red in all occurrences)
which is served by ReStore as shown with the black arrows.

non-blocking point-to-point messages (Section 2.6). This strategy minimizes the bottleneck
number of messages received (Section 2.5). Note that, with 7 copies for a data block, there
are at most r PEs that can act as sources during this message exchange. Further, we copied
consecutive blocks, for example [0,n/p), to the same (small) set of PEs. However, we expect
that user will commonly assign consecutive block IDs to data blocks stored on the same PE,
for example, IDs [0,n/p) on PE 0. Therefore, upon PE failure, the work associated with data

blocks with consecutive IDs is redistributed and the respective data blocks are requested.

However, all copies of all these blocks (with consecutive IDs) are stored on the same (small)
set of PE, resulting in a bottleneck. In Section 4.4.2 we explore a modification to this basic
distribution scheme, which avoids this bottleneck and thus allows for faster recovery.

Note that using the basic data distribution as described here would locate the first copy
of a block on the same PE as we expect the user to commonly assign the respective work
package to. For example, we locate the first copy of blocks [0,n/p) on PE 0 — the exact blocks
PE 0 will commonly work on. Thus, we shift the distribution of data using an offset. We
show this in Figures 4.1 and 4.2, but omit this implementation detail in further discussion.

4.4.2 Breaking Up Access Patterns for Faster Recovery

As discussed above, the data distribution described in Section 4.4.1 induces a bottleneck of
only a small set of PE sending data in common use cases. In the following, we explore how
to adapt the data distribution such that it avoids this bottleneck, and thus accelerates data
recovery, while preserving the failure resilience level.

Assume a failed PE ¢, which worked on the data blocks [i-n/p, (i + 1) - n/p), where
n is the total number of data blocks submitted to ReStore. During the subsequent data
redistribution, we would ideally desire a dedicated sending PE for each receiving PE, resulting
in a bottleneck communication volume of n/p? and a bottleneck number of messages sent
and received of 1. However, with the data distribution from Section 4.4.1, only the surviving
subset of the r < p PEs that hold copies of these blocks act as sources, resulting in a
bottleneck communication volume of n/pr. We can alleviate this by evenly distributing data
block copies [i-n/p, (i + 1) - n/p) among multiple PEs, by randomly permuting their block
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IDs. For a (pseudo-)random permutation 7 and k € [0,7), the block x is stored on PEs
L(z, k) = rr(xn)pJ +k'§ mod p

Thus, if the user requests blocks [i - n/p, (i + 1) - n/p), more PEs have parts of the data
and can send them to the requesting PEs. This approach, however, can lead to a large
bottleneck number of messages being sent and received: If a PE requests n/p2 data blocks,
these blocks can reside on up to min(n/p?, p) different PEs. This will require sending many
messages of very small size over the network causing a plethora of startup overheads. To
mitigate this, we group the data into permutation ranges of size s,,.. We then apply the
random permutation to these permutation ranges instead of applying them to individual
data blocks (Figure 4.2).

If a failure of PE ¢ causes the blocks [i-n/p, (i + 1) - n/p) to be redistributed, these
correspond to the permutation ranges

'i%/p’ (i+1) 'n/p)

Spr Spr

If the data are evenly distributed among the p — 1 surviving PEs, PE j receives the blocks

(n n n i n
RN G+ )p~ (r— 1))
Thus, only n/(p- (p — 1) - spr) PEs send to every receiving PE.

The best choice of s,,-, and whether to use permutations at all, depends on the application’s
data distribution and which PE requests which part of the data after a failure. It further
depends on the frequency of checkpoint creation, as submitting data with permutations

enabled results in a more dense communication pattern. We thus experimentally determine
a “good” value for sp, (Section 4.6.2).

Note that with this data distribution, we always have sets of n/(sp,-p) permutation ranges
that are stored together for all r copies. For example, the blocks 6,7,12,13 in Figure 4.2 are
always stored together — once on PE 0 and once on PE 2. This means that for all copies of
any permutation range whose first copy is stored on PE 7 to become lost, exactly the set
of r PEs i+ k - B, k € [0,7) has to fail. One could also opt for a different approach — for
example, using ar distinct permutation for each copy. In this case, no sets of permutation
ranges will always be stored together. So, in order for any permutation range whose first
copy resides on PE i to be lost, it is sufficient if any of the n/s,.p sets of PEs of size r
fail that hold the copies of one of the permutation ranges. Note that this yields a higher
probability for irrecoverable data loss than our proposed distribution. In Section 4.4.4, we
analyze the probability of irrecoverable data loss under our proposed data distribution.

4.4.3 Memory Usage

Other fault-tolerance libraries [Bau+11; BH14; Lu05] reduce their memory footprint via
erasure coding — for example the Reed-Solomon code [RS60]. That is, they do not store the
replicas A’ and B’ of two blocks A and B but rather the XOR of these blocks A @& B, thus
halving the required storage for the checkpoint. However, erasure coding incurs additional
messages upon checkpoint creation and recovery as well as a substantial computational
overhead [CD96]. Therefore, we do not encode checkpoints in ReStore with an erasure coding
scheme, thus trading reduced communication overhead for increased memory consumption.



4.4.4 Probability of Irrecoverable Data Loss

Again, let n be the number of data blocks, r be the number of replicas, and p be the
number of PEs. On each PE, ReStore requires main-memory to store r - n/p data blocks
for the replicated storage. The memory requirement is doubled during submission as we
require additional space for the send and receive buffers. During recovery, an additional
copy of all data being sent and received is stored on each PE. We verified these formulas
empirically (data not shown). A plethora of applications exist for which the amount of
memory for the input data and the data that need to be checkpointed fit in memory r
times. Examples include RAXML-NG [Hiib+21b; Koz+19], k-means, and PageRank.® For
example, RAXML-NG is memory bandwidth bound [Koz18]. Hence, using additional cores,
with their associated larger cache memory capacity, can even yield super-linear speedups due
to increased cache-efficiency. Such applications can therefore substantially benefit from the
reduced communication and computational overhead we achieve by creating and restoring a
checkpoint without erasure codes.

4.4.4 Probability of Irrecoverable Data Loss

Let r be the replication level (number of copies) and p be the number of PEs. In this analysis,
we assume that r|p (r divides p), which constitutes a reasonable assumption for r = 4 and
current two socket systems, which comprise an even number of cores per socket. If |p, the
PEs are divided into g = p/r groups, with all PEs in a respective group storing the same
data. Thus, if and only if, all » PEs in a specific group fail, we will not be able to recover a
part of the data. We denote such an event as Irrecoverable Data Loss (IDL).

Let f be the number of failed PEs. There is exactly one possibility to draw r out of r
PEs belonging to a single group. The number of possibilities to draw the remaining f — r
failed PEs among the remaining PEs such that they do not belong to the given group is

= (37)

The overall number of possibilities to draw f PEs from the p PEs that are still alive at
program start is C}’ . Thus, the probability that, provided f failures, all processes of a given

T
r

group fail is 1- C%~7/C%. When generalizing this equation to the probability of all PEs of at
least one group failing, we have to apply the inclusion-exclusion principle in order to avoid
counting the same combination multiple times. We thus obtain the following equation for

the probability of an IDL occurring at failure f or any failure before:

P (f)*i(ﬂ)j“cgcfeig
IDL - j C’;’
j=1

Therefore, the probability of an IDL occurring at exactly failure f is given by

PoL(f) = P (f) — Piou(f — 1)

Thus, the expected number of failures until an IDL occurs is

P
E[Failures until IDL] = Z P (f) - f
f=r

3 We implemented fault-tolerant version for all three of these using ReStore and show running times for
RAxML-NG and k-means in Section 4.6.3.
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4.4 In-Memory Replica for Fast Recovery
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Figure 4.3 Modified data distribution enabling easy recovery of replicas after a node-failure. r
denotes the number of replicas. Each block x is placed on the first 7 PEs in the permutation of all
ranks p,. Note that p, depends on the block ID z, thereby spreading out the blocks that resided on
a single failed PE across multiple surviving PEs.
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Further, for small f, we can approximate the probability of an IDL by PR (f) =g (f/p)"
Solving for the fraction of PEs that fail f/p such that P, =1, yields f/p = (r/p)(l/’")
O(p~/") for a fixed r. In order to empirically verify these formulas, we simulate PE failures
using the actual data distribution (Section 4.6.2).

4.4.5 Recovering Lost Replicas After a Node Failure

To further increase the resilience of our framework, we introduce an approach that allows to
restore replicas that were lost during a PE failure while keeping all other replicas in place.
That is, we do not need to redistribute any replicas that reside on surviving nodes, thus
reducing the required amount of data to be exchanged to the theoretical minimum. As in
the previous sections, let n be the number of data blocks, » be the number of replicas per
block, f be the number of failed PEs, and p be the number of overall PEs.

We design a data distribution scheme that requires only O(1) extra space — thereby ruling
out lookup-tables — and is able to output the list of PEs a data block x is stored on in
O(r + f) time. For this, we draw a different random permutation p, of [0,p — 1] (or long,
non-repeating random sequences of PEs) for each block x and place the replicas of = on the
first r alive nodes of that permutation (Figure 4.3). When a PE fails, we copy all replicas
that this PE held to the next PE in each replica’s permutation. This ensures that the blocks
are (stochastically) evenly distributed across the surviving PEs. We can refine this approach
to attain a perfectly balanced initial data distribution and reduce the probability of an IDL
(Section 4.4.2). For this, we initially place the first r replicas (L(x,0), L(z, 1), ..., L(z,r — 1))
deterministically as described in Section 4.4.1. That is, the data distribution is given by

as described in Section 4.4.1, ifk <r
L(z, k) =
pz(k), else

In order to maintain a fast recovery, we apply this technique on a permutation-range-level
rather than on individual blocks as explained in Section 4.4.2. Below, we describe three
different options to draw the required random sequence of PEs for every block .

Double Hashing We can generate different permutations for each block z, via a scheme
that is analogous to collision resolution in hash tables using open addressing and double
hashing [San+19, ch.4.3]. Let h and h, be collision-avoiding hash functions, and s be a seed
to parameterize h. For k € Ny, we define the permutation of PEs for a block z as

pa(k) = (h(z) + k- hy(z)) mod p



Concretely, in order to obtain the list of PEs, where the r copies of block x are currently
stored on, we evaluate p, (k) starting with k£ = 0 until we find r non-failed PEs. The probing
sequences p, and p, are likely to be different for two blocks = and y, even if p.(0) = p,(0).

If L(z,k) = L(z,j) for k < j < p, the entire sequence will repeat from that point on,
yielding recovery of lost replicas impossible after more than j failures. Thus, in order to
avoid this, we require the seeded hash function h, to only yield integers that are coprime
to p. This can be implemented by examining different seeds s for h until hs(z) is coprime

to p. For this purpose, we draw a sequence of seeds uniformly at random at program startup.

The probability of two random integers being coprime is 6/7% [HW60]. Thus, the expected
number of differently seeded hash functions we need to evaluate for a random? p is

1+Z<17T62> :%( 26)~1.65
n=1

To check if hs(z) is coprime to p, we divide hs(z) by every prime factor of p, which we
factorize once during program startup. The Erdés-Kac theorem [EK40] states that the
number of distinct prime factors m of a random number below p approximately follows the
normal distribution with a mean and variance of loglogp. For example, a node count of
p 1097 has m = 3 + 1.7 expected prime factors. For node counts p < 10° (m = 3) we
therefore expect less than m - 1.65 = 5 divisions to check for coprimality each time we need
to compute on which nodes to store a block.

Feistel Networks Alternatively, we can deploy a classical seeded pseudorandom permutation
ps on [0,p — 1] to generate an independent probing sequence for each element x. Note that
in particular, encryption systems are permutations. For example, we can employ a Feistel
Network as our permutation p,. We seed the Feistel network F for each block z with h(z),
where h again, is a collision avoiding hash-function and define

Pa (k) = Fiq) (K)

Linear Congruential Generator A Linear Congruential Generators (LCGs) is a function
which yields a pseudorandom sequence of integers in a configurable range [0, m):

LCGac(k+1)=(a-LCG(k)+c¢) mod m

LCGs are known to generate each number in their value range exactly once before repeating,
if their parameters a and ¢ are chosen according to the Hull-Dobel theorem [HD62].> Given
a hash function h, we can define a permutation seeded with the block ID zx:

P (k) = {LCGa,c(ls + ) - 221 J

m—1

4.5 Implementation

We implement ReStore as a C++ library® using the ULFM proposal implementation [Bla+13].

Application programmers submit their data to ReStore by writing their serialized data blocks

4 Though realistically, we cannot expect p to be random.
® Which is trivial, if m is a power of two.
6 https://github.com/ReStoreCpp/ReStore; LGPL
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to a memory location supplied by the library or using ReStore’s interface for already serialized
data. After a failure, applications can request data blocks by passing a list of block identifier
ranges to ReStore. This can be done in two ways: Either by providing the full list of requested
block IDs to all PEs or by providing exactly those ID ranges each individual PE requires on
exactly that PE. By using the first approach, no communication is required to determine
which PE serves which request. When using the second approach, the receiving PE will
determine which PE should send each requested data block. Subsequently, the PEs exchange
the respective data in what is conceptually a sparse all-to-all (implemented as non-blocking
point-to-point messages). Preliminary experiments showed that the latter method performs
substantially better because the full list of requests usually scales with the number of PEs in
the application, slowing down the first approach. Thus, for all experiments in Section 4.6,
we employ the second approach.

4.6 Experimental Evaluation

In the following, we first tune ReStore’s parameters. For this, we empirically determine
the ideal number of bytes per permutation range w.r.t. runtime performance and verify
that permuting the block IDs incurs a speedup over using consecutive IDs (Section 4.4.2).
Further, we decide on a replication level to use in our experiments based on the probability
of IDL occurring depending on the number of replica and failures. Next, we demonstrate
ReStore’a real-world applicability by integrating it into two fault-tolerant applications: A
simple k-means algorithm and a complex bioinformatics application, RAXML-NG, used by
thousands of researchers (Section 4.6.3). Finally, in Section 4.6.4 we compare ReStore to
reading from a PFS — which represents a lower bound for checkpointing libraries using the
PFES as storage — as well as the reported running times by other checkpointing libraries.

4.6.1 Environment and Experimental Setup

We run our experiments on the SuperMUC-NG. Each node consists of two Intel Skylake Xeon
Platinum 8174 processors with 48 cores and 96 GiB of memory each. The compute nodes
communicate via an OmniPath network with a bandwidth of 100 Gbits™!. The operating
system is SUSE Linux Enterprise Server 15 SP1 running Linux Kernel version 4.12.14-197.78.
We compile our benchmark applications using GCC version 10.2.0 with full optimizations
enabled (-03) and all assertions disabled. Unless otherwise stated, we communicate using
OpenMPI version 4.0.4. We verify that our implementation does work if nodes actually fail
and communication is recovered with ULFM as part of our fully automated unit tests. At the
time, the current version of ULFM, however, was not sufficiently stable to conduct reliable
performance benchmark experiments.” For example, processes were sometimes reported
incorrectly as failed or recovery split the processors into two separate groups, each assuming
the other group’s failure. We reported this behavior on the ULFM mailing list and the
authors of ULFM reproduced and confirmed the bug.® Additionally, most communication
and fault tolerance mechanisms were slow (see Hiibner et al. [Hiib+21b] for details). In our
performance benchmarks, we thus use OpenMPI and simulate failures by removing processes
from the calculation using MPI_Comm_split and replacing other required fault recovery steps
by functionally similar ones (e.g., replacing MPIX_Comm_agree with MPI_Barriers). All plots

" ULFM has now been merged into OpenMPI 5.0.
8 George Bosilca. Post pbSToy94RhI/xUrFBx_1DAAJ on the ULFM mailing list.
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show results for 10 repetitions per experiment. Plots depict the mean with error bars for the
10th and 90th percentile.

4.6.2 lsolated Evaluation

In this section, we evaluate ReStore in an isolated environment. First, in Section 4.4.1,
we empirically determine the optimal number of redundant copies to create for each data
block, a tradeoff between memory usage (Section 4.4.3), checkpoint creation, and restoration
runtime. Next, we analyze ReStore’s runtime performance and experimentally determine the
ideal size of permutation ranges (Section 4.4.2).
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Figure 4.4 Number of PE-failures until at least one data block lost all its redundant copies. We
simulate the failure of random PEs until there is at least one data block with no remaining copies
on the surviving PEs. We then plot the fraction of PEs that failed. We rerun the simulation 10
times, showing the median, 10th, and 90th percentile.

Number of Redundant Copies We empirically determine the number of redundant copies
r one needs to keep for each data block. For this, we simulate PE-failures using ReStore’s
actual data distribution (Section 4.4.2) until at least one block loses all of its redundant
copies because they resided on failed PEs (Figure 4.4). We report, that even for 225 PEs,
more than 1% of all PEs have to fail until we can no longer recover all data when using
r = 4 redundant copies. For applications running on fewer PEs, an even smaller number r of
redundant copies is sufficient to yield data loss unlikely. In the event of an irrecoverable data
loss, the program has to re-load its static input data from disk or restart its computation
from scratch — depending on weather ReStore was used to accelerate the redistribution of
static data or to checkpoint dynamic data. For all further experiments we therefore set the
number of redundant copies to r := 4. Further, we compare the values obtained by applying
the formulas described in Section 4.4.4 with the values obtained via simulation (Figure 4.5)
showing that our theoretical formulae match the simulation results very closely.

Block ID Randomization In the following, we first empirically optimize the size of our
permutation ranges (Section 4.4.2) and subsequently evaluate the runtime of submitting and
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Figure 4.5 Number of PE-failures until at least one data block lost all its redundant copies. We
compare the theoretical probability (Section 4.4.4) and the simulated values from Figure 4.4.

restoring data with ID permutations turned on and off, respectively. For these experiments,
we use data blocks of size 64 bit (e.g., one double) and 16 MiB of data per PE. We show
results for three different operations: In the submit operation we pass 16 MiB of data on all
PEs to ReStore’s submit function. In load 1% of data, we load the data submitted by
1% of the PEs with contiguous data block IDs evenly across all PEs. So, for n total data
blocks, we pick a random starting PE ¢ and request data blocks i - n/p to (i + 0.01 - p) - n/p.
This simulates the requests expected if 1% of PEs fail at once. In load all data we load
all data stored in ReStore evenly distributed across all PEs in a way that no PE loads the
same data it originally submitted. This constitutes the worst case running time scenario.
By decreasing the size of permutation ranges (Section 4.4.2) we can control how many
PEs can participate in sending requested data: When using smaller permutation ranges, more
PEs are able to serve parts of the requested data to the requesting PEs. Small permutation
ranges, on the other hand, lead to fragmentation of the data and therefore require numerous
small messages to be exchanged over the network. In Figure 4.6, we show the number of bytes
per permutation range on the z-axis and the running times of submit and load 1% of
data on the y-axis for different numbers of PEs. We do not show results for load all data
because permutations even have a negative effect on performance here (Figure 4.7). This is,
because all PEs can participate in sending the data even without permutations. Therefore,
they only induce additional messages (see below). We hence recommend turning them off
when using a recovery mechanism which loads all data stored in ReStore. We observe that
for few bytes per permutation range, both submit and load 1% of data are slower by up
to an order of magnitude than the fastest configuration because of a high bottleneck number
of messages. Approaching 16 MiB of data per permutation range, fewer PEs can participate
in sending data. Between these two extremes, there is a range of permutation range sizes
which yield fast running times. For all subsequent experiments, we thus fix the amount of
data per permutation range to 256 KiB (0.65 to 2.27 ms for load 1% of data on 48 to 6144
PEs). For 16 MiB of data per PE, every PE receives approximately 164 KiB in load 1% of
data which results in an average of two PEs requesting the same permutation range and
therefore induces a sparse communication pattern. On the sending side, this implies that
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Figure 4.6 Optimizing the number of bytes per permutation range. The runtime of submitting
data to and loading data from ReStore depends on the number of bytes which are being permuted
together as described in Section 4.4.2. Fewer bytes permuted together will spread out the data more,
yielding more, but shorter messages. We chose 256 KiB (dashed line) as the default value.

the data submitted by a single PE is distributed among 64 permutation ranges. With r = 4
redundant copies, this results in up to 64 - 4 = 256 PEs that participate in serving this part
of the data.

As expected, enabling random permutations speeds up load 1% of data and slows
down load all data, especially for runs on many PEs (Figure 4.7). This is because in load
all data, even without permutations, every PE needs to send some part of the data. By
enabling permutations, the data requested by a PE is distributed among more sending PEs,
resulting in a denser communication pattern. We can tolerate an increase in running time
of submit as it is invoked only once in the case of only submitting input data. In contrast,
a load is issued after every failure. We therefore provide the application developer with a
tuning parameter to adapt the behavior of ReStore to their application’s access pattern.

4.6.3 Applications

To demonstrate realistic ReStore use cases, we employ it to restore lost data in two different
real-world applications. Figure 4.8 shows running times for a small example application that
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Figure 4.7 Weak scaling experiment (16 MiB per PE) of our three benchmark operations with
and without ID randomization. We copy all data over the network — that is, no PE holds a copy of
its requested data in its local part of the ReStore storage.

computes a k-means clustering [Ma067].9 Each PE holds 65536 points in a 32-dimensional
space as input with 64 bit double precision floating-point values per dimension resulting in
16 MiB of input data. All PEs start with the same 20 random starting centers. Iteratively,
each PE assigns the nearest center to each of its local points and all PEs collaboratively
calculate new center positions using an all-reduce operation (Section 2.6) over k elements. If
a PE fails, the remaining PEs divide the failed PE’s data points evenly among themselves
using ReStore and continue with the calculation. We perform 500 iterations of the algorithm
and simulate an expected failure of 1% of all nodes distributed uniformly at random during
these iterations. This is done by determining a suitable probability for each PE to fail in
each iteration of the algorithm — implemented via a discrete exponential decay with 1% of
failed PEs after 500 iterations. We find that ReStore accounts for only 1.6 % (median) of the
overall running time on up to 24576 PEs with up to 262 PEs failing. Note that the overall
running time increases by more than ReStore’s overhead for large PE-counts. This is mainly
due to MPI operations required to restore a functioning communicator after a PE failure.

® We ran these experiments with Intel MPI, because its Group_*-functions — which we use to determine
which PEs failed — perform better than OpenMPT’s.
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Figure 4.8 Running time of the k-means clustering algorithm with and without failure of 1% of
PEs on 16 MiB of data per PE. k-means loop: time spent for the core clustering algorithm. ReStore
overhead: time spent in ReStore’s functions. Owerall running time also includes additional work
required for attaining fault-tolerance, such as a load balancer to determine how to redistribute data
and MPI functions for identifying the failed PEs.

Next, we demonstrate ReStore’s performance for the fault-tolerant version of the highly
complex and widely-used phylogenetic tree inference tool RAXML-NG [Koz+19] — called
FT-RAXML-NG [Hiib+21b] — using the same empirical datasets as in [Hiitb+21b] (Fig-
ure 4.9a). Additionally, we use a 19.1 GiB synthetic dataset [AKS14] for scaling experiments
(Figure 4.9b). FT-RAXML-NG redistributes its input data among all surviving PEs. We
therefore deactivate permutation ranges for this application. We compare ReStore’s perfor-
mance against FT-RAXxMIL-NG’s currently implemented recovery mechanism: Loading the
data from the PFS using RAXML-NG’s dedicated binary file format (RBA), which enables
rapidly reading only the required subset of the input matrix. We distinguish between the
input files being uncached by the file system (in the first read) and being cached by previous
reads. Both, submitting data to ReStore and loading data after a failure, is faster than the
original method of loading the data from files — often by more than one order of magnitude.
On the synthetic dataset, for low PE-counts, submitting to ReStore is slower than reloading
from a file. However, this is negligible because an actual phylogenetic inference on this
dataset requires terabytes of memory for likelihood calculations and would therefore never
run on this few PEs. We also emphasize that submitting to ReStore has to be done only
once in FT-RAxML-NG, while loading has to be conducted after every failure.

Further, as the probability of PE-failure increases with the number of PEs, we require
checkpointing libraries whose running time not only remains constant, but decreases with
additional PEs. For the weak scaling experiment on the synthetic dataset, the time required
for reading data from the PFS increases with the number of PE, while the time required to
submit data to, and load data from, the ReStore decreases substantially (Figure 4.9b).

4.6.4 Comparison with Other Approaches

Next, we evaluate ReStore’s performance in comparison to other checkpointing approaches.
However, as outline in Section 4.3, most checkpointing libraries store their checkpoints on
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Figure 4.9 Running times to re-load data after the necessary re-distribution of work following a
shrinking failure-recovery in FT-RAXxML-NG. RAXxML-NG either loads the data from ReStore, or
from a binary file located on the parallel file system, which either can be in the file server’s cache
or not. (a) Labels on the z-axis show the name of the dataset, the number of PEs used for the
respective dataset, and the corresponding amount of input data per PE.

the PFS. Further, most on-disk and all in-memory checkpointing libraries only support
substituting recovery, that is, no shrinking recovery (Section 2.7), yielding a comparison with
ReStore challenging. Additionally, as detailed in Section 4.3.1, to the best of our knowledge,
there exists no in-memory checkpointing library that is still being maintained and working
to compare ReStore to.

Comparing to Disk-Based Approaches We compare ReStore against loading a copy of
the data stored on the PFS (Figure 4.10). We create the respective file such that we can
read all data in a single consecutive read operation and therefore as fast as possible. We
show running times for reading a separate file for each reading PE using C++’s ifstream
and reading a single file for all PEs via MPI_File_read_at_all (MPI I/O in the plot).
This constitutes a lower bound for all checkpointing libraries that need to read their data
from disk. ReStore outperforms disk access (ifstream) on 24576 PEs by a factor of 206
(1% of application data; median) and 55 (all application data; median), respectively. For
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Figure 4.10 Loading performance of ReStore vs. loading from files on the HPC system’s parallel
file system, representing the approach of most checkpointing libraries.

48 PEs (1 compute node of the HPC system), reading from file seems to be almost as
fast as ReStore. This might be explained by the file system caching the file on the same
node as we write it immediately before reading it — usually on a different node which is
not possible using only 1 node. Note, however, that all PEs on a single node are likely
to fail at once, rendering in-memory checkpointing futile on a single node. We conclude
that in-memory checkpointing as implemented in ReStore will substantially outperform any
disk-based approaches, especially when reloading only fractions of the data, such as during
shrinking recovery.

Comparing to Reported Measurements As we were unable to obtain working competing in-
memory checkpointing libraries, despite substantial (four person-weeks) effort (Section 4.3.1),
we compare ReStore to the reported measurements of the respective papers in the following.

Besta and Hoefler [BH14] benchmark ftRMA by measuring the slowdown it induces
on two existing programs, but not in isolation and are thus challenging to compare to.
Gamell et al. [Gam+14] measure approximately 115 ms to write a checkpoint with 14.8 MB
per PE on 1000 PEs using Fenix. Fenix implements a replication level of » = 1. This means,
that there exists a single copy of the data in addition to the data the PEs are actively working
on. According to our definition (Section 4.4.4), a single PE failure will cause irrecoverable
data loss. This works in practice, as long as the data which resided on the failed PE(s)
does not need to be restored. In comparison, to serialize and store 16 MiB per PE on 1536
PEs (32 nodes) with a replication level of » = 1 and using consecutive IDs, ReStore requires
126 + 3ms (o £ o, 10 repeats). Gamell et al. [Gam+14] expect Fenix’s recovery time to
be analogous to its checkpointing time but do not provide experimental results for this
claim. In comparison, ReStore restores the data of a single PE to another single PE in our
experiments in 21 + 2ms. ReStore additionally offers restoring data of a single PE scattered
to all surviving PEs. This operation requires 20 = 5ms in our experiments. Further, in the
case that one expects more than one recovery per checkpoint, ReStore offers ID permutations
to speed up recovery at the cost of slower checkpoint creation (Section 4.4.2). This would,
for example, be the case for static input data, of which multiple PEs need different, but
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4.7 Conclusion and Future Work

small fractions of data after getting assigned new work following a PE failure. With ID
permutations enabled, saving the data to ReStore requires 215 + 9ms in our experiments.
Restoring the data requires 15 + 3 ms if restoring all data to a single PE and 0.9 + 0.2 ms
if restoring the data scattered across the surviving PEs. As the latter evenly distributes
the data across the surviving PEs, we expect it to become the more common scenario when
working in a shrinking setting. Further, Bartsch et al. [Bar+17] report GPI_CP to require
approximately 1s to initialize, 200 ms to create a checkpoint, and 15 ms to restore data from
a checkpoint.

Fenix’s performance was measured on a Cray XK7 system with 16 cores per node and a
160 GBs™! network [Cral3]. GPI_CP’s performance was measured on an unnamed system
with 16 cores per node and a QDR Infiniband network. We measured ReStore’s performance
on the SuperMUC-NG, which has 48 cores per node and an OmniPath interconnection with
100 Gbits™! (Section 4.6.1). We choose our experiments such that data are always copied
between different nodes and never between two processes running on the same node. Thus,
all 48 processes on a single node have to share the same interconnect. Considering that
we evaluate ReStore on a slower network than Fenix, we expect an even more favorable
comparison when having access to a similar HPC system.

Lu [Lu05] reports checkpoint creation times of 8 to 20s for 157 to 182 MB on 448 PEs.
They report restoration times of 20 to 48s. Thus, assuming linear scaling, we expect
checkpoint creation times of approximately 1s and restoration times of approximately 2s for
16 MiB of data. Lu’s algorithm is thus an order of magnitude slower than ReStore and Fenix.
We assume this is due to the fact, that Lu’s algorithm uses erasure codes (Section 4.4.3).

To summarize, ReStore can be configured to create and restore from checkpoints in the
same manner and approximately the same time as existing checkpointing solutions. ReStore
additionally has functionality to (a) increase the replication level (b) restore the data in a
scattered manner to multiple PEs instead of to only one PE, and (c) enable ID permutations
to decrease data restoration time by an order of magnitude while doubling the time required
to create a checkpoint. The latter option is useful, for example, when creating a replicated
storage for the input data of a program, which has to be partially reload after a failure.

4.7 Conclusion and Future Work

Mitigating hardware failures constitutes a major challenge in High Performance Comput-
ing [SDM10]. As it is impractical to either, request replacement for failed PEs or to maintain
spare PEs, applications must continue execution with the remaining ones (shrinking recovery).
Thus, during failure-recovery, applications have to re-distribute their workload and reload
the respective parts of the input data to the remaining PEs. However, current checkpointing
libraries often do not support this data redistribution. Further, they typically write check-
points to the parallel file system instead of the main memory, inducing slow recoveries due
to low disk access speeds and inducing disk congestion.

We present ReStore, the to the best of our knowledge, first algorithmic framework that
enables shrinking data-recovery from memory when mitigating hardware failures in MPI
programs. This allows applications to employ all PEs for the computation, instead of having
to maintain some of them as spares for replacing failed PEs.

We evaluate ReStore in both, controlled, isolated environments, and using real-world
applications. Our experiments show loading times of lost data in the range of milliseconds on
up to 24576 PEs. We achieve this by using a distribution scheme for redundant copies that
ensures a low probability of data loss and allows for rapid data recovery by balancing the



bottleneck communication volume and bottleneck number of messages. Further, we analyze
the probability of irrecoverable data loss and propose a data distribution to easily restore
lost replicas after a failure. ReStore can be used by any HPC applications using MPI 5.0 —
which introduces fault-tolerance mitigation functionality. For example, using ReStore, we
were able to improve recovery performance of FT-RAXxML-NG [Hiib+21b; Koz+19] by up
to two orders of magnitude. Therefore, ReStore enables scientific applications to mitigate
hardware failures in milliseconds, without requiring replacement or spare resources.

In future work, we plan to provide an experimental and theoretical evaluation of the
proposed recovery of lost replicates after a PE-failure (Section 4.4.5). This will further
decrease the probability to lose all copies of any datum. Further, next to its usage in fault-
tolerant algorithms, we also plan on evaluating if ReStore can facilitate rapid re-distribution
of work in the context of load-balancing in distributed applications.
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5 Bit-Reproducible Reduction Under
Varying Core-Counts in Distributed
Phylogenetic Inference

Attribution: This chapter is based on work conducted in close collaboration
with Christoph Stelz, who explored this topic during his Bachelor’s Thesis, which I
supervised. Subsequent to his thesis work, we continued to work on this project in close
collaboration. Our enhanced understanding of the factors influencing runtime gained
from his thesis, including profiling insights, led me to design a novel bit-reproducible
reduction algorithm, which Christoph Stelz implemented and integrated into our bit-
reproducible RAXML-NG variant. Additionally, T designed, conducted, and assessed
the reproducibility study for phylogenetic tree inferences. Moreover, I designed the
runtime benchmarks for ReproRed and Repro-RAxML-NG in close collaboration with
Christoph Stelz, who wrote and executed the benchmarks. I then analyzed the results
and created the visualizations. I authored the tezt in this chapter, with Christoph
Stelz providing feedback and filling in details. This work is currently unpublished.

Summary: Phylogenetic trees describe the shared evolutionary history among related
biological species based on their genomic data. Maximum-Likelihood based phylogenetic
tree inference tools search for the tree and evolutionary model that best explain the
observed genomic data. Given the independence of the likelihood score calculations at
different genomic loci/sites, parallel computation is commonly deployed; followed by
summation in order to obtain a single tree score. However, basic arithmetic operations
on IEEE 75/ floating-point numbers, such as addition and multiplication, inherently
introduce rounding errors. Consequently, the order in which floating-point operations
are executed affects the exact result value, yielding IEEE 754 floating-point arithmetic
non-associative. Moreover, parallel reduction algorithms in scientific codes re-associate
operations based on the CPU core-count, resulting in different round-off errors. These
low-level discrepancies can cause heuristic search algorithms to diverge and thereby
propagate up to discrepancies in high-level results.

This effect has been observed in phylogenetics, sheet metal forming, climate and weather
modeling, power grid analysis, atomic and molecular dynamics, as well as fluid dynam-
ics. We observe that varying the degree of parallelism results in diverging phylogenetic
tree searches (high level results) for over 31 % out of 10130 empirical datasets. More
importantly, 8 % of these diverging datasets yield trees that are statistically significantly
worse than the best found tree (AU-test, p < 0.05).

To alleviate this, we introduce the ReproRed reduction algorithm, which yields bit-
identical results under varying core-counts, by maintaining a fixed operation order
that is independent of the communication pattern. ReproRed is thus applicable to all
associative reduction operations — in contrast to competitors, which are confined to
summation. This facilitates integration into the Message Passing Interface (MPI)
wrapper library KaMPlIng, allowing for arbitrary associative reduction operators, such
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as C++ lambdas or function pointers. Our ReproRed reduction algorithm only ex-
changes the theoretical minimum number of messages, overlaps communication with
computation, and utilizes fast base-cases for local reductions.

ReproRed is able to all-reduce (via a subsequent broadcast) 4.1 x 10° operands across 48
to 768 cores in 19.7 to 48.61 ps, thereby exhibiting a slowdown of 13 to 93 % over a non-
reproducible all-reduce algorithm and 8 to 25% over an non-reproducible Reduce-Bcast
algorithm. Further, our algorithm outperforms the state-of-the-art reproducible all-
reduction algorithm ReproBLAS (offers summation only) beyond 10000 elements per
core. Finally, we develop a variant of the widely used phylogenetic inference tool
RAzML-NG, which yields bit-reproducible results under varying core-counts, with a
slowdown of only 0 to 6.7% (median 0.93%) on up to 768 cores.

In summary, we re-assess non-reproducibility in phylogenetic inference and present
the first bit-reproducible parallel phylogenetic inference tool. Further, we integrate our
reduction algorithm into an open-source MPI-wrapper library, which facilitates the
transition to bit-reproducible code.

5.1 Introduction

Next to disseminating results, scientific publications also aim to convince the reader of
the results’ validity [Mes10]. However, despite the fact that reproducibility is crucial for
validating scientific claims [IT18], practical attempts to reproduce findings frequently fail
(Section 2.10). Further, a failure to replicate a result might also indicate the inability to
generalize the respective finding to variations in experimental conditions that were previously
perceived as being irrelevant [GL19]. This observation induces a more nuanced picture of
the corresponding scientific claim and paves the avenue for more specific inquiries. Thus, in
order to avoid investigating measurement noise, computational results should be invariant
(produce bit-identical outputs) under different CPU types and CPU core-count.

Moreover, bit-reproducibility is important for fulfilling contractual obligations, for example,
in drug and nuclear reactor design [BK13], as well as for legal reasons [CLP16]. Bit-
reproducibility also facilitates code debugging and verification [AFH14; DN15; JAM20;
RRA11; Vil4+09], as well as code extension by other researchers [SKC00]. Additionally,
non-reproducible codes can follow different search paths, or converge more slowly, affecting
running time measurements [Vil409].

In computer science, the rounding errors that are inherent to floating-point computations
can cause discrepancies in computed results as a consequence of, for example, differences in the
available hardware instructions or number of Processing Elements (PEs; Section 2.10). This
can lead optimization algorithms to pursue diverging search paths. Documented instances of
these rounding errors impacting high-level outcomes span various scientific domains, including
phylogenetics [DFS18; She+20a] (Section 2.10). Shen et al. [She+20b] found that varying
the parallelization level affected the resulting tree topologies in 9 to 18 % of the empirical
single gene datasets they examined (Section 5.2).

Common practices that aim to improve the reproducibility of computational results
include documenting and archiving source code, input data, the manual steps to undertake,
the software environment (e.g., the operating system), random seeds, and the used CPU model
and number of PEs. However, the described supercomputer configuration or CPU model is
unlikely to be available to future researchers that attempt to reproduce the findings. Thus,
scientific codes should aim to yield bit-reproducible results across diverse CPU architectures
and parallelization levels.
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5.1.1 Contribution

In this work, we investigate the bit-reproducibility of phylogenetic tree inference across 10 130
empirical datasets under varying PE-count and Single Instruction Multiple Data Stream
(SIMD) parallelization kernels. Our findings support that by Shen et al. [She+20b] in that
31 % of the tree searches diverge; with 8 % yielding significantly (AU-test, p < 0.05) worse
phylogenetic trees due to differing levels of parallelism. To address this issue, we introduce a
bit-reproducible version® of the phylogenetic tree inference tool RAXML-NG [Koz+19]. This
bit-reproducible variant exhibits a slowdown of only 0 to 6.7% (median 0.93 %) compared to
the non-reproducible RAXML-NG version when benchmarked on 18 large, empirical datasets
and on up to 768 cores.

Further, we introduce the distributed-memory parallel reduction algorithm ReproRed,?
which enables bit-reproducible reductions for arbitrary associative reduction operations. This
is contrast to competitors — who are confined to summation (Section 5.2) — and allows
us to integrate ReproRed into the open-source MPI-wrapper library KaMPIng. ReproRed
exchanges only the theoretical minimum number of messages, overlaps communication with
computation, and utilizes a fast base-case for conducting local reductions. ReproRed is
able to perform an all-reduction (via a subsequent broadcast) on 4.1 x 10° operands across
48 to 768 cores in 19.7 to 48.61 ps, thereby yielding in a slowdown of 13 to 93 % over a
non-reproducible all-reduce algorithm and 8 to 25 % over a non-reproducible Reduce-Bcast
algorithm. ReproRed outperforms the state-of-the-art reproducible all-reduction algorithm,
ReproBLAS (summation only) for more than 10000 elements per PE.

5.1.2 Outline of this Chapter

This chapter is organized as follows: Initially, we provide a comprehensive study on the repro-
ducibility of phylogenetic tree searches under varying degrees of parallelism (Section 5.5.2)
and discuss our results with respect to related work (Section 5.2.1). We then provide an
overview of existing parallel reproducible (all-)reduction algorithms and non-reproducible
baselines (Section 5.2). In Section 5.3.1, we outline the design of our bit-reproducible
distributed reduction algorithm ReproRed, which supports arbitrary associative reduction
operations. We discuss an efficient implementation and associated optimizations of ReproRed
in Section 5.3.2. In Section 5.3.2, we discuss an all-reduce variant of ReproRed utilizing
recursive-doubling, that halves the latency relative to a Reduce-Beast approach. Next, in
Section 5.4, we detail our bit-reproducible variant of the phylogenetic search tool RAXML-NG.
We discuss the factors influencing ReproRed’s running time in Section 5.5.3. In Section 5.5.1
we describe our experimental setup, and present our large-scale study on the reproducibility
of phylogenetic tree searches in Section 5.5.2. The subsequent Section 5.5.4 provides an empir-
ical evaluation of ReproRed’s running time compared to the state-of-the-art bit-reproducible
(all-)reduction algorithm ReproBLAS. Following this, we assess the running time penalty
induced to RAXML-NG by using bit-reproducible reduction (Section 5.5.5), summarize our
findings, and discuss directions of further research (Section 5.6).

! https://doi.org/10.5281/zenodo. 15017407
2 https://doi.org/10.5281/zenodo.15004918; LGPL
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5.1.3 Parallel Reduction and All-Reduction

Even if we assume that the CPU executes identical instructions using identical floating-
point CPU settings (Section 2.10), distributed-memory algorithms often use non-reproducible
(all-)reduction operations [Rab00]. Here, the number of participating PEs affects the reduction
order and ultimately the exact value of the end-result [Li+23; SMR24] (Section 2.10).

More specifically, given an input array of elements E = [eg,eq,...,e,—_1], distributed
across p PEs, we desire to compute r = eg P ey ® ... P e,_1, where @ denotes a binary,
associative operation such as summation or multiplication. In a distributed reduction, we
return the result r to a single PE, while in an all-reduction, we return the result to all
PEs. Conceptually, an all-reduction thus consists of a reduction followed by a broadcast.
However, this approach results in a latency of 2 - log,(p) messages: log,(p) messages for the
reduction phase and log,(p) messages for the broadcast phase [San+19, ch. 13.2.1]. Dedicated
all-reduction algorithms, such as recursive doubling as implemented in MPICH [BK13],
exhibit a latency of only log,(p) messages.

Figure 5.1 (a) Binomial trees By to Bs. (b) Alternative representation of By to Bs, indicating
the messages sent in a binomial tree reduction. (c) B* binomial trees.

Binomial Tree Reduction For a small number of elements per PE, a binomial tree reduction
is optimal in terms of message-count and size, as well as the number of operations performed,
and thus, also running time [San+19, ch. 13.1.1]. Following Cormen et al. [Cor+01, ch.19.1.1],
we define a binomial tree as follows: The binomial tree By of order 0 consists of a single
node. A binomial tree By of order k& comprises a root node whose children are the roots
of the binomial trees of order k — 1,k — 2,...,2,1,0 (Figure 5.1.a). Further, we define a
generalized binomial tree B™, where the root of a binomial tree B}' has m — 1 copies of
each B]" fori =k —1,k—2,...,2,1,0 as children (Figure 5.1.b). Thus, in this notation, a
canonical binomial tree is a B2. In a binomial tree reduction, PEs send intermediate results
along the edges of a binomial tree towards the root and also reduce the values in each step.

Non-Reproducibility of Distributed Reduction In High Performance Computing (HPC)
applications, each PE typically handles multiple input elements. During the distributed
reduction, we first reduce all local elements into a single intermediate result per PE. Next, we
reduce these intermediate results via a binomial tree reduction [San+19, ch. 13.9] into a single
global end result. However, in this algorithm, the PE-count influences the order by which we
reduce the input elements, which in turn affect the rounding errors and consequently the
value of the end result.

Further, topology-aware MPI implementations, such as MPICH, adjust the reduction tree’s
topology to accommodate the heterogeneous connectivity among PEs. Specifically, MPICH
first reduces the elements of PEs on a single shared-memory machine before exchanging
messages over the network [BK13]. Thus, for an identical PE-count, variations in topology
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Figure 5.2 Common implementations of distributed-memory parallel reduction algorithms are
not reproducible if the number of PEs differs between runs. First, each PE reduces its local elements,
arriving at a single intermediate per-PE result. Next, these intermediate results are exchanged
via messages over the network and further reduced into a single element. Note that the PE-count
influences the reduction operation order and thus how results are rounded.

(e.g., cores per CPU or CPUs per compute node) can affect the reduction order and thereby
the value of the end result [BK13].

Reduction in KaMPIng In Chapter 6, we present KaMPIng, our C++ wrapper around MPI,
which includes the reduction and all-reduction collective operations. Here, the user can provide

arbitrary associative reduction operations to KaMPIng’s reduce and allreduce functions.

Note that associativity is a necessary requirement for parallel reduction. Analogous to the
standard KaMPIng reduce, our bit-reproducible reduction supports plain-MPI constants,
function pointers, and C++ lambdas. For example, after initialization (Section 5.3.1), one
could call our bit-reproducible reduction in KaMPIng as follows:

auto const result = comm.reproducible_reduce(
send_buf (local_data), op([](auto& rhs, auto& 1lhs){ /* ... */ }));

5.2 Related Work

In this section, we first review related empirical studies on the non-reproducibility of

phylogenetic inferences, and then also discuss competing reproducible reduction algorithms.

5.2.1 Non-Reproducibility of Phylogenetic Inference

Finding the most-likely phylogenetic tree among the super-exponentially large number of
distinct possible phylogenies [SKK20] is A"P-hard [Roc06]. As a result, phylogenetic tree

inference algorithms attempt to iteratively refine the currently best-known tree (Section 2.3).

Consequently, minor differences in the Log-Likelihood (LLH) score of topologically identical
intermediate trees can cause tree searches to diverge.

Darriba et al. [DFS18] where the first to report that Maximum-Likelihood phylogenetic
tree searches can diverge due to floating-point inaccuracies (round-off errors). Following this
observation, Shen et al. [She+20b] systematically analyzed 3515 single-gene datasets. They
observed that variations in the CPU model, corresponding SIMD instruction sets, and the
number of threads, yielded different phylogenetic trees for 9 to 18 % of empirical single-gene
datasets. Furthermore, Shen et al. observed that 8.6 % of the non-reproducible phylogenetic
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5.2 Related Work

trees found by IQ-TREE and 25.21 % of the non-reproducible phylogenetic trees found by
RAXML-NG where significantly worse than the respective best tree that was found (p < 0.05;
AU-test [Shi02]).

5.2.2 Reproducible Reduction

(All-)reduction algorithms that yield bit-identical results under varying PE-counts have been
studied for both, shared-memory [Vil+09] and distributed-memory [CLP17; Iak+15] systems.

Villa et al. [Vil+09] developed a bit-reproducible reduction algorithm on a shared memory
Cray XMT supercomputer. They utilized this algorithm to sum over floating-point numbers
using up to 16 PEs. Their algorithm ensures bit-reproducibility by fixing the reduction
operation order independently of the PE-count. It therefore supports arbitrary associative
reduction operations. Their reduction tree is based on a binomial tree, however, they
accumulate k > 2 instead of 2 values sequentially at each inner node of the reduction tree,
which reduces the required tree height. We do not compare our reduction algorithm to Villa
et al. because the latter has been developed for a shared-memory Cray system which we do
not have access to. Furthermore, our attempts to obtain the source code from the authors
were unsuccessful.

For distributed-memory parallel machines, one has to consider explicit communication be-
tween PEs as well as scheduling the pair-wise reduction operation to PEs. Although the MPI
standard encourages the implementation of bit-reproducible reduction operations [MPI4.1,
ch. 6.9], existing MPI implementations prioritize performance over reproducibility [BK13].
Further, Balaji and Kimpe [BK13] claim that reproducible reduction cannot utilize knowl-
edge about the concrete HPC topology for improving communication efficiency. However,
we separate the communication pattern from the computation of the reduction, thereby
demonstrating that this is not necessarily the case (Section 5.3.1).

Numerous bit-reproducible parallel summation algorithms exists [ADN20; AFH14; CLP16;
Col+15; DN15; Li+23; Neal5]. These algorithms utilize variants of Kahan’s compensated
summation [Kah65; SMR24], which accumulates errors from each pair-wise summation in a
separate variable. It thereby effectively increases the number of significant bits. Subsequent
work by Demmel et al. [DN13] extends this concept to multiple variables, where each variable
accumulates successively smaller parts of the error [SMR24]. However, these approaches are
summation-specific and do not generalize to other reduction operations. Further, most of
these approaches require a specific data representation and have a single target hardware
architecture, which complicates code maintenance [SMR24].

The above algorithms have been implemented in three highly-optimized Basic Linear
Algebra Subprograms (BLAS) libraries: ReproBLAS [ADN20], RareBLAS [CLP17], and
ExBLAS [lak+15]. However, RareBLAS [CLP17] targets parallel shared-memory machines,
yielding it inapplicable to our distributed-memory context. Further, Lei et al. [Lei423]
show that ReproBLAS is consistently faster than ExBLAS. Consequently, we omit ExBLAS
and only consider ReproBLAS as the state-of-the-art implementation for evaluating our
ReproRed algorithm.

The IntelMPI and MPICH MPI implementations (Section 2.6) support reproducible
reduction [BK13; Int25¢]. However, both require a consistent PE-count between runs; which
substantially simplifies the problem.

Further Baselines With Gather-Bcast, we denote an algorithm first described by He and
Ding [HDO1]: Initially, the algorithm gathers all input data elements on a single root PE.
This root PE subsequently locally reduces the data elements in a fixed order, for instance,



from left to right. Finally, the root PE broadcasts the reduced result to all other PEs. The
MPI standard recommends this algorithm for obtaining bit-reproducible results under varying
PE-counts [MPI4.1, ch6.9]. However, this approach incurs a bottleneck communication
volume of O(p) messages and O(n) received elements at the root PE, where p is the number
of PEs, and n is the number of input data elements. Further, it lacks parallelism, resulting
in a running time of O(n). Moreover, the root PE requires sufficient memory to hold all
input data elements — if not implemented using a streaming algorithm.

We also compare ReproRed against two non-reproducible baselines: A PE-local reduction
using C++’s std: :reduce followed by either IntelMPI’s MPI_Allreduce, or a MPI_Reduce
and a subsequent MPI_Bcast. We denote these algorithms as Allreduce and Reduce-Bcast,
respectively. Here, IntelMPI selects the “best” (all-)reduction algorithms by using yet
undisclosed heuristics. We attempted to re-configure IntelMPI to use a binomial tree
broadcast, binomial tree reduction, and recursive doubling all-reduction by adjusting the
respective I_MPI_ADJUST variables. However, this resulted in performance degradation,
possibly because of the loss of topology-aware optimizations. We therefore perform all
benchmarks with IntelMPI’s default settings.

5.3 ReproRed: Operation-Agnostic Bit-Reproducible Parallel Reduction

The only approach for ensuring bit-reproducibility while only assuming the associativity of
the underlying reduction operation, is to maintain a fixed reduction operation order [AFH14].
As parallel reduction typically represents only a single step in complex numerical algorithms,
optimizing the load-balancer for efficient reduction operations may induce upstream work
imbalances, potentially undermining the running time benefits of a more efficient reduction
algorithm. Therefore, we design ReproRed to maintain a fixed reduction operation order
independently of the communication pattern and do not impose a specific data distribution.

5.3.1 Design of ReproRed
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Figure 5.3 Decoupling the order of reduction operations from communication. In ReproRed,
the input data elements are always reduced in an order determined by a binary tree, regardless of
the number and topology of the PEs. We implement the communication among the p PEs via a
binomial tree, which requires the minimum number of messages O(p — 1).

The core idea of ReproRed is to decouple the communication among PEs from the order
by which we apply reduction operations, allowing us to maintain a fixed operation order
under varying PE-counts (Figure 5.3). To this end, we organize the reduction operations as
a binary tree with the input data elements being the leaves. This pair-wise reduction also
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Figure 5.4 Implementation of ReproRed. (a) A post-order traversal of a binary tree (left) can
be implemented using a stack (right). When we encounter a leaf node during the traversal, we push
the respective data element onto the stack. For a non-leaf node, we pop the two topmost elements
from the stack, reduce them, and push the result back onto the stack. Ultimately, at the root of the
tree, the remaining stack element contains the final result of the post-order traversal. (b) Reduction
operations performed on PE 1 in Figure 5.3. The received messages m;_.; are consecutively stored
after the local elements. Note that some received elements already constitute intermediate results of
the overall reduction. Further, the PE can reduce most of its local elements (green, dashed boxes)
thereby overlapping computation with communication.

reduces the overall rounding errors [Hig93]. Further, we orchestrate communication via a
binomial tree, which is theoretically optimal for small message sizes [San+19, ch.13.9], and
used, for instance, by MPICH [BK13]. Note that this design implies that PEs can generally
not reduce all their local elements into a single intermediate result, but are required to
send the intermediate results of multiple subtrees to their parent PE in the communication
tree instead. However, we expect the startup overhead for each message to exceed the
cost of transmitting the respective additional floating-point values. We explore the efficient
implementation of this design in the next paragraph and discuss its implications on running
time in Sections 5.5.3 and 5.5.4.

Post-Order Traversal via Stack Operations We can implement a post-order traversal of an
arbitrary binary tree via a stack S (Figure 5.4.a). Let E = (e, e1,...,e,—1) be the ordered
sequence of elements to be reduced. In the reduction tree, each leaf (in-degree 0) corresponds
to an element e; € E. During the post-order traversal, upon encountering a leaf, we push
the corresponding element onto .S. We denote this as add Value. Conversely, each non-leaf
node of the reduction tree represents an intermediate result r;, which we index in post-order.
When we reach a non-leaf node, we pop the two topmost elements from .S, apply the reduction
operator @, and push the result back onto S. We denote this as reduce Two Values. Ultimately,
the root of the reduction tree (out-degree 0) contains the final result of the reduction; and it
will be the sole element remaining on the stack. Consequently, we can implicitly represent
the reduction tree through a sequence of addValue and reduce Two Values operations.

Distributing the Post-Order Traversal Among the PEs To parallelize the reduction, we
distribute this sequence of addValue and reduceTwo Values operations, which describe the
post-order traversal of the reduction tree, across all PEs. For this, we assign each addValue
operation to the PE that holds the respective data element. Each reduce Two Values operation
corresponds to a specific non-leaf node in the reduction tree. This node, including its
descendants, induces a subtree in the reduction tree, with a set of (consecutive) input data
elements as leaf nodes. Each of these elements resides on a specific PE. The set PEs on which
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Figure 5.5 Pair-wise addition of eight 64 bit IEEE 754 floating-point values using AVX2 vector-
ization. (a) The subtree of the reduction tree to be reduced. A, ..., H can be either input data
elements or intermediate results from lower subtrees. (b) Implementation of the AVX2-vectorized
reduction of the subtree depicted in (a). Note that the order of operations is consistent with a
non-vectorized pair-wise addition implemented as a post-order traversal as described in Figure 5.4.

the elements of a reduction tree subtree reside have a Lowest Common Ancestor (LCA) in
the communication tree. We assign the reduce Two Values operation to this LCA-PE.

We determine this assignment of operations to PEs during a pre-processing step, which
we run once for each data distribution. Thus, when one invokes the distributed reduce
operation with concrete values — possibly thousands of times per second (Section 5.5.5) —
each PE already knows all operations it needs to execute a priori (Figure 5.4.b).

During a reduction, each PE initially triggers the asynchronous message-receive operations,
thereby allowing computation to overlap with communication. As each PE knows the number
of messages and data elements it will receive, it can arrange local and received data in
consecutive memory locations. The operations of a PE define reduction operations on a
subtree of the overall reduction tree — with input data elements and intermediate results
being computed on other PEs as leaves. The PE then starts reducing its local subtree. Here,
we apply a fast base-case for fully local subtrees; for example, we parallelize summation
using manually optimized AVX2 code (see Section 5.3.2). If a PE needs to perform a
reduce Two Values operation for which one operand has not been received yet, the PE blocks
until the respective message exchange has been completed. Upon completing its reductions,
the PE sends the computed intermediate results to its parent in the communication tree.
Note that the stack will already contain the elements ordered as expected from the receiving
PE. If an all-reduction shall be executed, we subsequently broadcast the final result from the
reduction’s root-PE.

5.3.2 Optimizations

The three key optimizations we implement are to overlap computation with communication,
a fast base-case for reducing PE-local data elements, and to communicate via a B* instead
of a B? binomial reduction tree (Figure 5.1).

Vectorized Reduction of PE-local Subtrees The peak floating-point operations per second
(FLOPS) in CPUs increases substantially when exploiting SIMD capabilities [Dol18]. Im-
portantly, our binary reduction tree allows for parallelizing the reduction without altering
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the order of operations. In contrast, a left-to-right reduction is inherently sequential and
requires vectorized algorithms to change the operation order, thereby compromising bit-
reproducibility. As an example, we implement an AVX2-vectorized base-case for summing
over PE-local subtrees in the reduction tree (Figure 5.4). Note that analogous, fast base-case
implementations are feasible for arbitrary reduction operations.

Our AVX2 implementation reduces a subtree comprising eight elements or intermediate
results using two 256 bit registers, two 128 bit registers, two load operations, and five additional
SIMD instructions (Figure 5.5). We apply the reduction recursively, that is, the leaves of
this eight-element tree may be intermediate results of preceding vectorized reductions. For
example, to reduce 512 input elements, we execute three levels of AVX2-optimized reductions,
resulting in 73 invocations of the 8-value AVX2 kernel (Figure 5.5.b).

First, we horizontally sum pairs of elements in two 256 bit registers and combine the
results into a single 256 bit register (Figure 5.5). Since AVX2 instructions operate within
128 bit lanes, we must separately extract the upper and lower 128 bit segments after the
initial horizontal addition in order to maintain the correct summation order. Subsequently,
we conduct an element-wise addition on the two resulting 128 bit registers, followed by
horizontal addition on the resulting 128 bit register. Again, as the operation order and thus,
the round-off errors remain unaltered, a vectorization with different SIMD register widths
will produce identical results.?

Compilers, such as GCC, attempt to automatically vectorize code. However, a reduction
with manually optimized AVX2 vectorization achieved a speedup of 2.9 % (median) compared
to the compiler-vectorized reference on the datasets in Section 5.5.4. For datasets with tens
of millions of elements across all PEs, we attain speedups of up to 200 %.

Using a B* Reduction Tree We implement the communication tree as a B%, instead of a
B? tree (Figure 5.1, not shown in all figures). We empirically determined this appropriate
degree of m = 4 and gain a speedup of 5.6 % (median; data not shown) over a B? tree. This
acceleration is attained because the algorithm is able to reduce data elements at lower levels
of the communication tree, thereby reducing message sizes and decreasing the number of
times an element will be forwarded (Section 5.5.3).

Overlapping Communication with Computation We implement ReproRed such as to
overlap computation with communication (Figure 5.4) by utilizing non-blocking MPI messages
(Sections 2.6 and 6.4.5). Specifically, each PE first posts the MPI receive operations before
reducing its local elements. A PE blocks and waits for a message only when it requires an
element that has not yet been received. By overlapping computation with communication,
we accelerate the reduction by 4.4 % (median; data not shown).

Bit-Reproducible All-Reduction using Recursive Doubling In ReproRed, all-reduction is
currently implemented as a reduction followed by a broadcast (Figure 5.6.a). This induces a
latency of 2log,(p) messages for p PEs. Here, we propose a variant with a latency of log,(p)
messages using the recursive doubling algorithm [TRGO5]. In the first step of recursive
doubling, PEs with a distance of one exchange data. In a second step, PEs with a distance
of two exchange data — including the data they received from the other PE in the first step.
In subsequent steps, the distance increases exponentially, until, after log,(p) steps, all PEs

3 We experimentally verified that a SSE3 implementations yields bit-identical results with our AVX2
implementation.
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Figure 5.6 (a) The ReproRed-TwoPhase all-reduction algorithm consists of a binomial tree
ReproRed reduction, followed by a binomial tree broadcast. (b) The ReproRed-RecursiveDoubling
all-reduction algorithm is based on the recursive doubling all-reduction [TRGO05]. It reduces the
latency from 2log,(p) to log,(p) for p PEs compared to ReproRed-TwoPhase.

know each other PEs’ data — or a reduced form thereof. Note that in recursive doubling,
a PE always has knowledge of elements that reside on PEs that are consecutive in PE-id
(rank)-space, thus allowing for the reduction of intermediate results (Figure 5.6.b). Future
work will include implementing this ReproRed-RecursiveDoubling algorithm.

5.4 Reproducible Phylogenetic Inference

We present Repro-RAXxML-NG, a bit-reproducible variant of the widely used phylogenetic
tree inference tool RAXML-NG (developed by our lab). For this, we evaluate different
bit-reproducible all-reduction implementations and discuss the observed slowdowns compared
to the standard non-reproducible RAXML-NG version in Section 5.5.5. Repro-RAXxML-NG
currently supports bit-reproducible tree evaluation and tree searches (Section 2.3). At present,
the pattern compression, tip inner, and site repeats optimizations as well as the vectorization
of phylogenetic likelihood derivatives required for branch length optimizations, are disabled to
keep code changes to the necessary minimum for our experiments. However, these simplifica-
tions do not affect reproducibility for we plan to reintroduce them to Repro-RAxML-NG. We
empirically verify that Repro-RAxML-NG yields bit-identical results across all configurations
when run on the empirical datasets described in Section 5.5.1 — some of which are known to
cause diverging tree searches under varying PE-counts.

5.5 Evaluation

In the following section, we first discuss the factors influencing the running time of ReproRed
in comparison to the state-of-the-art bit-reproducible reduction algorithm for summation,
ReproBLAS. Next, we empirically evaluate the running times of both algorithms, along
with non-reproducible baselines in an isolated reduction benchmark (Section 5.5.4). In
Section 5.5.5, we report on the overhead incurred in RAXML-NG when ensuring the results
are bit-reproducible.

5.56.1 Experimental Setup

4

We conduct our experiments on the SuperMUC-NG HPC system.® Each compute node

is equipped with 96 GiB of memory and comprises two Intel Skylake Xeon Platinum 8174

4 https://doku.lrz.de/display/PUBLIC/SuperMUC-NG
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processors with 24 cores, each running at a fixed 2.3 GHz. The nodes communicate via
an OmniPath network with a fat tree topology and a bandwidth of 100 Gbits™!. The
operating system is SUSE Linux Enterprise Server 15 SP3 running Linux Kernel version
5.3.18-150300.59.63. We compile our benchmark applications using GCC version 12.2.0
with full optimizations enabled (-03) and all assertions in RAXML-NG being disabled; we
employ IntelMPI 2021.9.0. Repro-RAxML-NG?, our reproducible variant of RAXML-NG,
is based on commit 816£9d13,% which we use as a reference.

We assess the computational reproducibility on 10 130 empirical phylogenetic datasets
from TreeBASE [Pie+09] comprising more than 100000 distinct taxa collected from over
4000 publications. These TreeBASE datasets contain 4 to 4019 taxa, 1 to 179 partitions, and
21 to 3848295 sites — with up to 214 492 unique columns in the respective Multiple Sequence
Alignments (Section 2.2). For our running time benchmarks, we utilize the same datasets
as previously used to evaluate the performance of RAXML-NG upon its release [Koz+19].
These datasets comprise between 1371 and 21410970 sites. The largest are thus suitable
for parallel inference on dozens or hundreds of PEs, where we anticipate our approach to
perform the worst due to the extended critical path (Section 5.5.3).

5.5.2 Reproducibility of Phylogenetic Inference

For each TreeBASE [Pie4+09] dataset (Section 5.5.1), we execute the same RAXML-NG
[Koz+19] application binary eight times, using identical hardware, search settings, and
random seeds; and only vary the degree of parallelization. Specifically, we conduct inferences
using one to five PEs with the AVX2 vectorization, as well as single-PE inferences with
SSE3, AVX, AVX2, and compiler auto-vectorization. We quantify the divergence between the
resulting trees using the relative Robinson-Foulds distance [RF81] (Figure 5.7). Additionally,
we assess the statistical significance of differences in tree likelihoods via the Approximately
Unbiased (AU) test (Figure 5.8).

Robinson-Foulds Distance Let a bipartition refer to the split of a tree’s tips into two disjoint
sets. Each edge of a tree induces a bipartition, and collectively, the set of all bipartitions
fully describes a tree. The Robinson-Foulds distance [RF81] quantifies the proportion of
bipartitions that differ between two trees.

Approximately-Unbiased test When multiple trees exhibit sufficiently similar likelihood
scores, there is no compelling reason to favor one over the others. Thus, following Shen
et al. [She+20b], we apply the AU-test [Shi02] to determine if two tree topologies have
significantly different likelihood scores (p < 0.05). If the difference is significant, this
indicates that the tree search conducted under a particular level of parallelism yielded a
significantly worse tree than one conduced under a different level of parallelism. To prevent
erroneous rejection of the correct tree in sets with similar likelihoods [Shi02], we consider
trees with a log-likelihood difference of less than 10™% to not be significantly different.”

Results We consider a dataset as diverging if the phylogenetic inferences conducted on
it yield at least two topologically distinct trees. Among the 10130 TreeBASE [Pie+409]

5 https://doi.org/10.5281/zenodo. 15017407
6 https://github.com/amkozlov/raxml-ng/commit/816£9d13

" Shimodaira’s implementation of the AU-test generated the following warnings: “small variance”, “theory
does not fit well”, and “regression degenerated”.
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Figure 5.7 Average relative Robinson-Foulds distance between all distinct tree topologies resulting
from diverging tree searches because of different degrees of parallelization. Only datasets with at
least two distinct tree topologies (31 % of all datasets) are shown.
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Figure 5.8 Number of trees found in tree searches diverging due to varying degree of parallelization
that are significantly worse than the best found tree. We show only the 8 % of diverging datasets
where the tree searches yielded at least one tree that is significantly worse than the best found tree
(AU-test, p < 0.05).

datasets (Section 5.5.1) where the phylogenetic inference completed without error, 31 %
(3111) datasets produced multiple topologically distinct trees (Figure 5.7). Of these 3111
datasets with diverged inferences, 46 % (1418) exhibit a log-likelihood difference exceeding
1073 log-likelihood units. Further, 8 % (245) contain significantly different trees (AU-test,
p < 0.05) in the resulting tree set (Figure 5.8).

Compared to Shen et al. [She+20a], who analyzed 3515 single-gene datasets, we observe a
higher rate of diverging tree searches (31 % vs. 9.3 % with RAXML-NG) yet fewer significant
differences (8 % vs. 25 % of diverged tree searches). The increased proportion of diverging tree
searches in our analysis likely arises because we assess eight distinct degrees of parallelization,
instead of two, as in Shen et al. [She+20a]. Further, we classify trees with a LLH-difference
< 107? as not being statistically different (see above), while Shen et al. [She+20a] do not
apply this (arbitrary) threshold. If we omit this filtering step, 38 % (1186) of our datasets
with diverging tree searches yield significantly different trees (AU-test, p < 0.05).

Conclusion In conclusion, we demonstrate that phylogenetic tree search is vulnerable to
different rounding errors — caused by varying degrees of parallelization — to induce divergent
tree searches. This finding supports the results of Shen et al. [She+20b]. Note that divergences
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in trees due to parallelization differ in their distribution from those caused by variations
in random seeds or bootstrapping [Efr79; Fel85]. More importantly, differing degrees of
parallelization introduce an unknown bias in the distribution of resulting trees. In contrast
to this, the effects and generalization properties of varying random seeds and employing
bootstrapping are well-studied [EHH96; Hed92; San89]. Whether differences between trees
that are considered as being not significantly different from each other also have implications
on their biological interpretation is non-trivial to answer and remains an open question.
Therefore, we advocate for a bit-reproducible implementation of phylogenetic tree searches.

5.5.3 Factors Impacting ReproRed’s Running Time

In the following, we discuss the factors impacting the running time of ReproRed compared
to ReproBLAS: The number and size of messages exchanged, the local work, as well as the
length of the critical path.

Message Size And Count For a reduction, each of the p PEs, except the root, has to send at
least one message in order for its data elements to be included in the end result. This yields
the lower bound of p — 1 on the message-count [San+19, ch.13.9]. ReproRed sends exactly
p — 1 messages along the edges of a binomial tree. This also holds for the B* tree described
in Section 5.3.2, as again, each PE, except the root, sends exactly one message. ReproBLAS
(Section 5.2) can utilize an arbitrary communication pattern, for instance, a binomial tree,
which exchanges p — 1 messages. Further, for an all-reduction, the two-phase approaches
ReproRed-TwoPhase and ReproBLAS-TwoPhase (as well as Reduce-Beast) exchange 2(p—1)
messages. We experimentally verify in our benchmarks that the implementations of these
algorithms exchange exactly the described number of messages.

The message sizes exchanged do not differ substantially between ReproBLAS and
ReproRed. ReproBLAS exchanges six double precision floating-point values, that is, 384 bit,
per message [ADN20] — which we experimentally verify for our benchmarks using the Score-P
profiler [Knii+12]. Conversely, the message size in ReproRed varies depending on to the
number of elements, the number of PEs, and the distribution of the elements among the PEs.

Consider, a distribution of n elements e; (i € N) among p PEs, such that each PE holds
the same power-of-two number of elements (Figure 5.9.a). Specifically, PE j holds elements
€j.aks - -5 €(j11).25—1, Where k = loga(n/p). We denote a pair (e;,e;41) as a PE-boundary
if e; and e; 1 are held by different PEs. Under this data distribution, PE-boundaries are
located in-between full subtrees of the binary reduction tree. Thus, each PE is able to reduce
all elements it holds into a single intermediate result. Further, during communication, the PE
can immediately reduce the incoming values with its local intermediate results. Consequently,
each message has a length of exactly one intermediate result (64 bit).

In contrast, consider the distribution in Figure 5.9.b: The first PE holds one element
more than a power-of-two, while all other PE still hold a power-of-two elements.® Specifically,
PE 0 holds eg, e3r1; and a PE j > 1 holds the elements €;.0¢41,...,€(j11).2s. Under this
distribution, the PE-boundaries cut log,(n) edges of the binary reduction tree. Each cut
edge represents an element or intermediate result that must be exchanged across the network.
Moreover, the two PEs of a boundary might not share an edge in the communication tree.
In such cases, the corresponding data must be sent up the communication tree until they
reach the lowest common ancestor of the two PEs at the boundary.

8 The last PE has one element less, which we omit in the following discussion for simplification.
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Figure 5.9 Examples of the best (a) and worst (b) case data distributions with regard to the
message size (and critical path length) in ReproRed. Dashed lines represent PE-boundaries. (a) In
the best case, each PE holds a power-of-two number of elements and is thus able to reduce its
elements into a single intermediate result. Here, each PE-boundary cuts exactly one edge of the
reduction tree. (b) In the worst case, the PE-boundaries cut O(log,(n)) edges of the reduction tree.
Each cut edge corresponds to an intermediate results that has to be exchanged over the network.

In summary, each PE-boundary cuts up to log,(n) edges of the reduction tree, resulting
in the respective PE to send this number of elements to its parent-PE in the communication
tree. Further, each of these elements is relayed up to log,(p) times. We observe that the
messages exchanged in our isolated benchmarks (Section 5.5.4) contain 1 up to 24 (median
and mean 11) elements, each comprising 64 bit. Thus, we expect the startup overhead for
each message to substantially exceed the cost of transferring these additional bytes [San-+19,
ch.13.6.2].

Local Work ReproBLAS executes 9 floating-point and 3 bit-wise operations per floating-
point element in the input [ADN20], regardless of the data distribution. In contrast, ReproRed
requires five floating-point SIMD operations to sum eight fully-local floating-point values.
Further, for each pair-wise reduction involving received data, ReproRed must increment an
iterator, extract a bit from a bit-vector, and perform a conditional jump in order to decode
the operation (Section 5.3.1). Additionally, for each non-local reduction (reduceTwoValues)
operation, ReproRed performs two pop and one push operation on a stack.

Using the Score-P profiler [Knii412], we experimentally obtain that ReproBLAS requires
more running time for its local work compared to ReproRed in our isolated benchmarks
(Section 5.5.4). The precise overhead for local work of ReproBLAS over ReproRed depends
on the number of elements per PE and varies by up to a factor of two (data not shown).

Length of Critical Path During Message Exchange We define an algorithm’s critical path
as the longest task sequence where each task depends on the preceding one. These tasks
include message exchanges and local operations, such as applying a reduction operation
to two elements. For both, ReproRed and ReproBLAS, the number of messages on the
critical path in a reduction corresponds to the longest path in a binomial tree, that is
log,(p) [TRGO5], where p is the number of PEs. ReproBLAS allows the PEs to reduce
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all their local elements into a single intermediate result in parallel. These elements are
subsequently reduced via at least logy(p) steps, using, for example, a binomial tree reduction.
In each step, ReproBLAS executes 9 floating-point operations and 3 bit-operations [ADN20].
Thus, ReproBLAS executes O(n/p + log,(p)) operations on its critical path. In ReproRed,
depending on the data distribution, PEs cannot reduce their local elements into a single
intermediate results, but rather a (small) set of intermediate results. As each PE-boundary
cuts up to log,(n) edges of the reduction tree, the respective number of operations is thus
located on the critical path. Overall, assuming n > p, there are O(n/p + log,(n)) pair-wise
reductions — and thus arithmetic operations — on ReproRed’s critical path. Note that the
critical paths are of the same length asymptotically, but differ in a constant factor. We
implement ReproRed to overlap communication with computation, thereby mitigating the
impact of this extended critical path (Section 5.3.2).

During an all-reduction, the two-phase approaches, ReproRed-TwoPhase, ReproBLAS-
TwoPhase, and Reduce-Bcast, perform a binomial tree reduction followed by a binomial tree
broadcast. Thus, these methods exchange 2log,(p) messages on the critical path. However,
all-reduce algorithms with only log,(p) messages on their critical path exists, such as recursive
doubling [TRGO05]. We outline a recursive doubling based implementation of ReproRed in
Section 5.3.2. Thus, when assessing ReproRed’s reduction performance, one can argue for
using Reduce-Bceast as the reference benchmark.

5.5.4 Isolated Bit-Reproducible Reduction
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Figure 5.10 Slowdown of bit-reproducible all-reduce algorithms over an non-reproducible all-
reduction. Each point represents the median runtime of 4000 iterations for this combination of
the number of elements and number of PEs divided by the respective median runtime of the
non-reproducible reference (MPI_Allreduce) The vertical line represents the median number of
LLH-values per PE in our analyses of the real-world datasets (Section 5.5.5).



5.5.4 Isolated Bit-Reproducible Reduction

We compare the running times of the bit-reproducible all-reduce algorithms, ReproBLAS
(state-of-the-art), ReproRed (ours), and Gather-Bcast (recommended by the MPI-standard),
as well as the non-reproducible MPI_Allreduce and Reduce-Bcast (Section 5.2). As only
ReproRed supports reduction operators beyond summation, we use summation as the
reduction operator in our benchmarks.

The actual data distribution, and in particular the number of elements per PE, impact the
running time of ReproRed. Thus, we utilize the same number of elements (i.e., Log-Likelihood
values; Section 2.1), as in our phylogenetic inferences (Section 5.4). We distribute 1000 to
4190000 double precision (64 bit) IEEE 754 floating-point elements across 48 to 768 PEs,
maintaining approximately equal numbers of elements per PE. This configuration reflects
realistic usage scenarios for RAXML-NG.

We run 5000 iterations for each data distribution, discarding the first 1000 runs for each
distribution to warm up the network caches. The absolute runtimes for MPI_Allreduce
range from 1.6 to 600 ps (median 10.8 pus). We verify that the reductions performed with
ReproBLAS and ReproRed yield bit-identical results across different data distributions and
PE-counts. Additionally, we verify that the results of all algorithms differ by less than 1076,

Gather-Bceast (Section 5.2) is 9.8 to 125 (median 31) times slower than MPI_Allreduce.
In addition, Gather-Bcast necessitates at least one of the PEs to have sufficient memory to
store all elements. We thus consider Gather-Bcast impractical and omit it in Figure 5.10.

Further, ReproRed substantially outperforms the algorithm we describe in previous
work [Ste22] (data not shown). Profiling results obtained with Score-P [Knii412] (data not
shown), indicate that this improvement results from minimizing the message-count to the
theoretical minimum of p — 1. We thus omit this initial algorithm in the further discussion.

ReproRed is currently implemented as a reduction algorithm. We implement the
ReproRed-TwoPhase all-reduction as a ReproRed reduction and a subsequent MPI_Bcast.
This approach doubles the number of messages on the critical path compared to an all-
reduction algorithm using recursive doubling from log, (p) to 2log,(p) [Rue+21] (Section 5.5.3).
We outline a recursive doubling based ReproRed variant Section 5.3.2, but do not implement
it (yet). To evaluate the overhead induced by this two-phase strategy, we measured the per-
formance of a non-reproducible local reduction followed by an MPI_Reduce and an MPI_Bcast
(denoted as Reduce-Bcast; Figure 5.10). The median number of elements per PE in our
phylogenetic experiments (Section 5.4) is 1935. For such a data distribution, Reduce-Bcast
is 61 % slower (median) than all-reduce. However, for more than 45000 elements per PE,
Reduce-Bcast is merely 5 % slower (median; Figure 5.10).

We find that ReproRed is faster than ReproBLAS-TwoPhase under most data distribu-
tions with more than 3000 elements per PE, and faster than ReproBLAS-Allreduce when
more than 10000 elements are stored on each PE (Figure 5.10). As detailed in Section 5.5.3,
the running times of ReproBLAS and ReproRed depend on the amount of local work, the
message-count on the critical path and, for ReproRed, also the data distribution. While
ReproRed performs less local work than ReproBLAS, it also increases the number of compu-
tations on the critical path (Section 5.5.3). In accordance to this, we observe that ReproRed
is slower than ReproBLAS for less than a few thousand elements per PE. However, as the
number of elements per PE increases, local computation begins to compensate these effects.
This explains ReproRed’s notably faster performance on data distributions with tens of
thousands of elements per PE (Figure 5.10). For instance, ReproRed is 37 % (median) times
faster than ReproBLAS on 8000 to 12000 elements per PE and 92 % (median) times faster
on more than 30000 elements. Note, however, that ReproBLAS utilizes additional local
work to guarantee the accuracy of the final result. In contrast, ReproRed’s pair-wise summa-
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tion merely increases the accuracy [Hig93]. Further, ReproBLAS is fundamentally confined
to summation as the reduction operator, while ReproRed supports arbitrary associative
reduction operators.

5.5.5 Reproducible Phylogenetic Tree Search
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Figure 5.11 Slowdown of bit-reproducible Repro-RAXxML-NG over reference RAxML-NG.
Reduce-Bceast uses a non-reproducible reduction but includes the remaining modifications required
for bit-reproducibility. The variants ReproBLAS and ReproRed yield bit-reproducible results.

We assess the slowdown of our bit-reproducible Repro-RAXML-NG (Section 5.4) in com-
parison to the unmodified reference RAXML-NG (Figure 5.11). Specifically, we evaluate
Repro-RAXML-NG with the reproducible all-reduce algorithms ReproBLAS (state-of-the-
art), Gather-Bceast (recommended by the MPI-standard), and ReproRed (ours). Further, we
present results for the non-reproducible MPI_Allreduce, and TwoPhase approaches (for a
rationale, see Section 5.5.3). We utilize the PE-counts recommended by RAxML-NG for
the respective datasets, resulting in 253 to 11903 (median 5569) unique Multiple Sequence
Alignment columns per PE and 1935 (median) all-reduce operations per second (for the
RAxXML-NG reference version). For consistency, we disable optimization features not support-
ing bit-reproducibility in all variants (Section 5.4). As only experiments where RAXML-NG
followed identical tree search paths are comparable, we exclude datasets where the variants
did not converge on the same topologically identical best tree. Further, we verify that the
resulting tree LLHs (Section 2.3) differ by less than 1073 LLH-units among all variants.

Repro-RAXML-NG using the Gather-Beast all-reduce algorithm is 21 to 386 % (median
26 %) slower than the reference. It consistently is the slowest variant across all configurations;
we hence omit it in further discussion. Additionally, since ReproRed is never slower than the
approach we presented in previous work [Ste22], we also omit the latter.

The Repro-RAXML-NG variant using ReproRed-TwoPhase is 10 to 29 % (median 17 %
slower than the reference. When comparing ReproRed-TwoPhase to Reduce-Bcast, we



attribute up to 30 % (median 1%) of this slowdown to the adoption of a two-phase approach
(Section 5.2). Consequently, we attribute the residual slowdown to ReproRed’s extended
critical path (Section 5.5.3). Given that there are 1935 (median) all-reduce operations per
second, even a minor running time increase of a single all-reduce operation substantially
affects the overall running time.

Utilizing the bit-reproducible ReproBLAS all-reduction, Repro-RAxML-NG only exhibits
a 0 to 6.7 % slowdown (median 0.93 %) compared to the non-reproducible reference. This
is consistent with the isolated measurements described in Section 5.5.4, where ReproBLAS
outperforms ReproRed-TwoPhase on less than 10000 elements per PE. Note that certain
optimizations in RAXML-NG are disabled, as they lack bit-reproducible implementations
(Section 5.4). Nonetheless, based on these measurements, we are cautiously optimistic that a
bit-reproducible phylogenetic tree inference is feasible, despite having to execute thousands
of all-reduce operations per second. We anticipate that this also applies to a bit-reproducible
Bayesian phylogenetic inference; investigating this constitutes further work.

5.6 Conclusion and Future Work

Maximum-Likelihood based phylogenetic tree inference tools, such as RAXML-NG, heuris-
tically search for the phylogenetic tree that best explains the observed genomic input
sequences (Sections 2.1 and 2.3). However, due to differences in rounding errors of IEEE 754
floating-point computations during all-reduce operations, parallel phylogenetic tree infer-
ences frequently diverge under varying PE-counts. Supporting Shen et al. [She+20a], we
observe that the level of parallelism contributes to diverging phylogenetic tree searches on
31 % of 10130 empirical datasets. Moreover, 8 % of diverging datasets yield trees that are
significantly worse than the best found tree (AU-test, p < 0.05). To alleviate this issue, we
present Repro-RAXxML-NG, a variant of the widely-used phylogenetic tree inference tool
RAxML-NG that yields bit-reproducible results under varying core-counts. This variant
is merely 0 to 6.7 % (median 0.93 %) slower than the non-reproducible reference on up to
768 PEs.

Moreover, we present the bit-reproducible reduction algorithm ReproRed, which maintains
the order of reduction operations and is independent of the communication pattern. To
the best of our knowledge, ReproRed is thus the first bit-reproducible distributed-memory
reduction algorithm that allows for arbitrary associative reduction operators. This permits
the integration of ReproRed into the MPI wrapper library KaMPIng, which enables users to
pass arbitrary reduction operators, such as C++ lambdas or function pointers. ReproRed
only exchanges the theoretical minimum number of messages, overlaps communication with
computation, and utilizes a fast base-case implementation for local reductions. As an example,
we implement an AVX2-vectorized base-case for summation as the reduction operator.

We find that ReproRed is able to all-reduce (via a subsequent broadcast) 4.1 x 10°
elements on 48 to 768 PEs in 19.7 to 48.61 ns. Thus, ReproRed exhibits a slowdown of 13 to
93 % over an non-reproducible all-reduce algorithm and 8 to 25 % over a non-reproducible
Reduce-Bceast algorithm. ReproRed outperforms the state-of-the-art reproducible all-reduce
algorithm ReproBLAS when more than 10 000 elements reside on each PE.

In conclusion, we highlight the issue of non-reproducibility in phylogenetic inference
and present the first bit-reproducible phylogenetic tree inference tool. Additionally, we
incorporate our reduction algorithm, which supports arbitrary reduction operators, into an
open-source MPI-wrapper library, thereby facilitating the transition to bit-reproducible code.

In future work, we aim to develop bit-reproducible kernels for calculating the derivatives
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of the phylogenetic likelihood and to port optimizations like pattern compression [SL03] to
Repro-RAXML-NG. We also intend to implement the recursive-doubling all-reduce variant
of ReproRed (Section 5.3.2), thus speeding up all-reduction. Additionally, we plan to extend
ReproRed to support both, inclusive, and exclusive prefix sums.
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6 KaMPIng: Flexible and (Near)
Zero-Overhead C++ Bindings for MPI

Attribution: Large parts of this chapter have been copied either in modified or
verbatim form from this the peer-reviewed publication “KaMPIng: Flexible and (Near)
Zero-Overhead C++ Bindings for MPI” [Uhl+24a], where I am a (shared) first author.
In the following, I break down my contribution to KaMPIng, a large-scale project
with multiple person-years of work by eight distinct authors.

Florian Kurpicz, Tim Niklas Uhl, Lukas Hiibner (I), Matthias Schimek, Daniel
Seemaier, and Demian Hespe (names in random order) contributed equally to the core
functionality of KaMPIng. This includes the design, implementation, and evaluation
of (a) named parameters that can be provided in arbitrary order with automatic
computation and transfer of omitted information, (b) MPI communicator abstractions
as well as initialization and clean-up of the MPI environment, MPI groups, and
contiguous blocks of memory, (¢) compile-time checks with readable error messages,
and (d) design of the plugin infrastructure.

Abstractions of MPI calls are closely linked to KaMPIng’s core, including named
parameter parsing, safety checks, automatic omitted parameter deduction, and buffer
ownership management. These functions were often developed by a single author
and later refactored, refined, and extended by others. My major contributions are
(a) the initial implementation of most (blocking) collective operations, which was later
refactored and refined by Matthias Schimek and Tim Niklas Uhl, (b) implementing
automatic compile-time deduction of the MPI type from the provided C++ type, later
extended by Tim Niklas Uhl, (¢) co-design and implementation of the plugin hooks
system in close collaboration with Tim Niklas Uhl. Additionally, I contributed via
code reviews or small code additions to numerous other features.

Most of KaMPIng’s high-level features were developed by one or two authors each.
I implemented the abstraction over MPI’s failure-tolerance layer and integrated
KaMPIng into RAXML-NG, our largest real-world application benchmark. Further,
I supervised and reviewed the inclusion of a reproducible reduction algorithm into
KaMPIng (Chapter 5) by Christoph Stelz. My minor contributions include initial
versions of sparse collectives and custom data types.

Further, I contributed by (a) creating documentation and examples together with
Matthias Schimek, (b) developing coding, documentation, testing, and contribu-
tion guidelines together with Florian Kurpicz, (c¢) performing experiments regarding
KaMPIng’s integration into RAXML-NG, (d) conducting requirements engineering,
later refined by Tim Niklas Uhl.

Note that I omitted those parts of KaMPIng in this breakdown to which I did not
substantially contribute. These include our custom assertion library KAssert, point-
to-point communication, management of memory allocation and ownership, automatic
serialization, and application benchmarks other than RAXxML-NG.

Peter Sanders supervised the entire project, was involved in high-level discussions, set
goals, and provided guidance.
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6.1 Introduction

Summary: The Message Passing Interface (MPI) and C++ form the backbone of
High Performance Computing (HPC), with MPI offering abstractions over exchanging
messages among processes in distributed-memory HPC systems. However, MPI only
provides C and FORTRAN bindings, even though high-level programming languages
such as C++ yield software development quicker and less error-prone [BN11].

We therefore propose a novel set of C++ language bindings as well as an extensively
tested, open-source implementation (KaMPlIng), covering all abstraction levels from
low-level MPI calls to convenient STL-style bindings. Through configurable inference of
parameter defaults, fine-grained memory allocation control, enhanced safety guarantees,
and a flexible plugin system, KaMPIng enables both, rapid prototyping and careful fine-
tuning of distributed algorithms. Further, KaMPIng provides this added functionality
at (near) zero runtime overhead by leveraging template-metaprogramming, causing the
compiler to only generate the necessary code paths.

We demonstrate that KaMPIng provides a foundation for a future distributed parallel
programming standard library using multiple application benchmarks, from sorting
algorithms to phylogenetic interference using RAzML-NG. Additionally, we integrate
a bit-reproducible distributed-memory reduction algorithm as well as abstractions over
MPI’s failure-mitigation interface into KaMPIng. Various scientific C++ codes already
utilize KaMPIng and we are working closely with the MPI language binding working
group towards the development of a novel MPI C++ interface with KaMPlIng as a
prototypical reference implementation. By incorporating further highly-efficient basic
toolbox algorithms into KaMPIng, and eventually covering the entire MPI standard,
we strive to establish KaMPIng as a stable core for a comprehensive ecosystem of
future general-purpose distributed algorithms and applications.

6.1 Introduction

The growing demand for efficiency, parallelism, and bit-reproducibility further increase
software complexity (Section 1.1). Abstraction is one of the fundamental tools to handle
complexity in software systems. Software libraries bundle abstractions and provide sets
of related functionality, for example, for exchanging messages in distributed memory High
Performance Computing (HPC) systems. Here, the Message Passing Interface (MPI) [MPI4.1]
offers abstractions for passing messages between processes in a HPC context (Section 2.6).

The first version of MPI was proposed by the Message Passing Interface Forum in
1994 with the goal of standardizing a portable, flexible, and efficient standard for message-
passing [MPI4.1]. Today, it is the message exchange library of choice for most HPC applica-
tions and a backbone of scientific computing. While the majority of scientific applications are
written in C++ [Lag+19], MPI’s syntax and semantics are designed around C and FORTRAN.
Although this allows C++ code to invoke MPI’s C interface, the semantics do not reflect
modern C++ language features such as object orientation, structured bindings, or move
semantics (Section 6.2). This yields developing MPI applications in C++ counter-intuitive
and error-prone [Rue+21].

Past efforts to introduce C++ bindings for MPI have failed. For instance, the C++
bindings introduced by MPI 2.0 in 1997 were deprecated 12 years later with MPI 2.2. This
decision was taken because the bindings only added minimal functionality over the C bindings
while inducing substantial maintenance complexity to the MPI specification [MPI2.2]. For
example, the official C++ interface did not automatically free resources using the Resource
Acquisition Is Initialization pattern [SS+24, P.8] or explicitly transfer ownership of resources



std::vector<double> v = {...};
// KaMPIng allows concise code
// with sensible defaults ... (1)

auto v_global = comm.allgatherv(send_buf(v));

// ... or detailed tuning of each parameter (2)
std::vector<int> rc;
auto [v_global, rcounts, rdispls] = comm.allgatherv(

send_buf (v), //(3)
recv_counts_out<resize_to_fit/*(6)*/>(std::move(rc)), //(4)
recv_displs_out () //(5)

)

Figure 6.1 KaMPIng offers a high-level easy-to-use interface (1) and full control over each
parameter (2). Data types and buffer sizes can be automatically inferred (3). Arguments allow
for passing by reference or by value and transferring data ownership via move semantics (4). Out-
parameters allow for controlling which parameters will be returned to the user (5). Resize policies
allow for controlling memory allocation (6).

using move semantics [SS+24, page 1.11]. This was in part due to the respective C++ features
— such as move semantics — not being available at the time. Subsequently, MPI’s C++ bindings
have been removed entirely with version 3.0.

Since then, further C++ interfaces for MPI have been proposed. Notable libraries include
Boost. MPI [GTO07], the MPI bindings by Demiralp et al. [Dem+23], and MPL [Baul5]. The
latter has recently been considered as a starting point for new standardized C++ language
bindings by the recently formed MPI working group on language bindings [Gho+21].

Previous bindings focused on yielding MPI’s C interface compatible with C++ features
such as templates, containers from the C++ Standard Template Library (STL), object
orientation, and providing sensible defaults for optional parameters. However, this resulted in
each library choosing its own level of abstraction: They either provide a high-level interface,
while often sacrificing performance [Gho+21], or only offer a thin layer of abstraction over
MPT’s C interface, still necessitating substantial amounts of boilerplate code. Additionally,
these libraries often do not support explicitly transferring memory ownership via move
semantics (Section 6.2), and other common practices proposed by the C++ core guidelines,
for instance, returning results by value instead of using C-style in/out parameters [SS+24,
F.20]. Therefore, despite past efforts, designing an improved C++ MPI interface remains an
open problem that is being actively discussed in the MPI forum [MPI120].

As a solution, we propose a novel set of C++ MPI bindings and our respective open-source
implementation KaMPIng (Karlsruhe MPI next genemtion).1 KaMPIng’s main design goal is
to cover the complete range of abstraction levels over MPT calls (Figure 6.1). It enables rapid
prototyping, relying on its sensible defaults, as well as fine-tuned distributed algorithms by
allowing the user to freely chose the degree of automation added on top of the MPI interface.
Further, KaMPIng supports inference of defaults for optional parameters, for example, the
receive-counts and displacements during an allgatherv operation (Section 6.2), thereby
substantially reducing boilerplate code. Moreover, KaMPIng offers extensive control over
memory allocations, for instance, allowing the caller to re-use buffers or automatically resizing
them to the required size (Section 6.4.3). KaMPIng also helps to reduce common sources of
programming errors by employing compile-time error checking (Section 6.4.7) and prevents

! https://github.com/kamping-site/kamping; LGPL
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invalid memory access in non-blocking communication via an ownership model (Section 6.4.5).
KaMPIng’s flexible type system supports type safety by generating type definitions at compile
time (Section 6.4.4) and enables serialization when needed (Section 6.4.4). Further, KaMPIng
provides a plugin system, which we use, for example, to provide abstractions for MPI’s
failure-mitigation mechanism (Section 6.6.2) and a bit-reproducible distributed-memory
reduction algorithm (Section 6.6.3). KaMPIng provides this added functionality at (near)
zero runtime overhead by leveraging template-metaprogramming, causing the compiler to
generate only those code paths that are necessary for a specific call site. That is, if a
specific call site to KaMPIng does not request automatic computation of, for example, the
send-counts, the compiler will not even generate (always false) branch instructions.

Currently, KaMPIng supports the most commonly used MPI features [Lag+19], namely
blocking and non-blocking point-to-point communication as well as collective communication
(Section 2.6). Moreover, its core architecture is designed with the rest of the MPI standard
in mind, facilitating a straight-forward implementation of it in the future.

We highlight KaMPIng’s flexibility by discussing various application benchmarks, in-
cluding simple examples and complex real-world applications. This includes sorting, text
processing, graph search, and graph partitioning algorithms as well as a real-world phylo-
genetic inference tool. For instance, KaMPIng enables a Prefix Doubling for suffix array
construction [MM93] implementation using less than 200 lines of code (Section 6.5.1) and to
entirely remove the custom MPI abstraction layer from RAXML-NG [Koz+19] (Section 6.5.3).

Contribution

In this chapter, we provide a detailed overview over previous efforts to design C++ MPI
bindings. Learning from their efforts and the MPI community, we propose a novel set of C++
bindings for MPI and make available KaMPIng, a respective open-source implementation. It
enables rapid prototyping, relying on its sensible defaults, as well as fine-tuned distributed
algorithms by allowing the user to freely chose the degree of automation added on top of the
MPI interface. KaMPIng’s novel approach to parameter handling frees application developers
from remembering MPT’s convoluted function signatures with up to 10 parameters [MPI4.1,
ch. 6.12] and allows them to flexibly decide which parameters to provide and which parameters
KaMPIng shall infer. Further, KaMPIng permits highly-engineered distributed applications
to exert fine-grained control over memory allocation, in order to, for instance, re-use or
automatically resize buffers. KaMPIng also helps to reduce common sources of programming
errors by employing compile-time error checking and preventing invalid memory access during
non-blocking communication via an ownership model. KaMPIng’s type system supports
generalization and type safety (Section 6.2) by generating type definitions at compile time
and provides serialization when requested. KaMPIng provides this added functionality at
(near) zero runtime overhead by leveraging template-metaprogramming, causing the compiler
to generate only those code paths that are necessary for a specific call site. Further, we
provide high-level basic toolbox algorithms via KaMPIng’s plugin system, for example, a
bit-reproducible distributed-memory reduction algorithms as well as specialized collectives for
sparse and low-latency irregular all-to-all message exchanges. We demonstrate KaMPIng’s
applicability to real-world problems via a plethora of application benchmarks, including
string and graph algorithms as well as integration into the widely-used phylogenetic inference
tool RAXML-NG [Koz+19].

Overall, KaMPIng substantially reduces the verbosity and error-proneness of MPI code, at
(near) zero runtime cost over plain-MPI. Various scientific C++ codes already use KaMPIng,
and it will further facilitate the rapid development of highly-tuned distributed algorithms. We



strive to establish KaMPIng as a stable core for a whole ecosystem of future general-purpose
distributed algorithms and applications. For this, we are closely collaborating with the MPI
language binding working group towards the development of a novel MPI C++ interface
with KaMPIng as a prototypical reference implementation. Further, we are working on
incorporating further highly-efficient basic toolbox algorithms into KaMPIng, and eventually
covering the entire MPI standard.

Outline of this Chapter

The remainder of this chapter is structured as follows: First, we provide background
information on MPI collectives touched upon in this chapter as well as relevant C++’s
language features (Section 6.2). Next, we discuss existing MPI (C++) language bindings
(Section 6.3) and present KaMPIng’s core features such as parameter handling, type deduction
and serialization, handling of non-blocking communication, and a plugin-system (Section 6.4).
In Section 6.5, we demonstrate KaMPIng’s applicability to several real-world applications.
Finally, we present first examples for general distributed-computing algorithmic building
blocks (Section 6.6) and conclude by discussing avenues of future work (Section 6.7).

6.2 Preliminaries

In this section, we provide background information required for understanding the remainder
of this chapter.

Collective Operations Next to point-to-point messages, MPI also supports abstract collec-
tive operations (Section 2.6), such as reduce and allreduce (Chapter 5). In this chapter,
we also consider variants of the gather and alltoall collective operations. Moreover, while
the gather operation collects data from all involved Processing Elements (PEs) and returns a
concatenation on a single root PE [MPI4.1, ch. 6.5], allgather returns the concatenation of
the collected data on all PEs [MPI4.1, ch.6.7]. The alltoall operation abstracts a message
exchange between all pairs of involved PEs [MPI4.1, ch. 6.8].

Additionally, the allgather and alltoall collectives provide variants which allow the
amount of data sent by PEs to vary. MPI denotes these operations as allgatherv [MPI4.1,
ch.6.5] and alltoallv [MPI4.1, ch.6.8], respectively. Alltoallw further generalizes the
message exchange, allowing each PE to also specify different data types [MPI4.1, ch. 6.8].

Sparse All-to-all The all-to-all communication pattern requires @(pQ) messages to be
exchanged over the network, where p is the number of PEs. As this does not scale well,
algorithms are often designed to avoid such a full all-to-all message pattern, exchanging
only a subset of these messages in each communication round. For example, a common
pattern in HPC is to partition the problem at hand into separate subproblems, which are
subsequently assigned to separate PEs. That is, we distribute the work and data associated
with this work across the PEs. However, a single data point might be accessed by multiple
work packages, and thus, each PEs shares a subset of its data with a small set of other PEs;
we denote this shared data a halo. In a halo exchange, PEs exchange the data located in
those halos. MPI provides support for such communication patterns, called neighborhood
collective communication [MPI4.1, ch.8.6]. For this, the user can, for example, arrange the
PEs in a grid of arbitrary dimension [MPI4.1, ch. 8.5.1], allowing each PE to communicate
with neighboring PE in the respective virtual topology [MPI4.1, ch. 8.5].
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While halo exchanges are useful for regular communication patters often found in numeric
applications, MPI also offers abstractions for arbitrary sparse all-to-all communication —
that is, where O(p) out of the p* messages are non-empty (Section 6.6.1). MPI offers such
message exchanges via the construction of arbitrary virtual topologies — representing arbitrary
communication patters [MPI4.1, ch. 8.5]. However, creating these virtual topologies incurs a
runtime overhead and is thus less suitable for dynamic communication patterns. Further, MPI
requires each PE to specify each recipient of an outgoing message, and sender of an incoming
message during creation of a virtual topology [MPI4.1, ch. 8.5.4]. While this allows MPI to
perform pairwise exchanges, which are faster than separate send and receive operations, it
also requires each PE to know from where it will receive messages. In Section 6.6.1, we add
further algorithms for sparse all-to-all communication, which do not require setting up a
virtual topology — thus incurring no runtime overhead — and no knowledge of where a PE
will receive messages from.

In-Place Message Exchanges MPI offers in-place message exchanges, which do not require
distinct send and receive buffers, but overwrite the send buffer contents with the received
data. For this, the user has to pass the special constant MPI_IN_PLACE as the send buffer,
which causes MPI to send the data from and receive data the “receive buffer. For in-
place operations, the send count, send displacement, and send type parameters are ignored.
In contrast, KaMPIng requires only a single send_recv_buf parameter for in-place calls
(Section 6.4.7).

// Gather a single element from each PE; return the concatenation of these
// elements on all PEs. receive_buffer must be at least numbers of PE large.
MPI_Allgather (MPI_IN_PLACE, 0, MPI_DATATYPE_NULL,

receive_buffer, 1, MPI_INT, comm);

Polymorphism and Type Safety In order to facilitate code re-use, functions in C++ (and
many other languages) can be parameterized to operate on different data types [Str00]. We
denote this as polymorphism. In MPI, many parameters to functions are provided as voids,
that is, a pointer to a type-less memory location. Consider, for instance, the send and receive
buffers in the MPT allreduce call [MPI4.1, ch.6.9], which are both of type void*, with the
data type provided as a special constant in a separate parameter. Thus, the same function
is called, for instance, for integer and floating-point values. However, this interface design
prevents the compiler from enforcing, or checking, that the actual data type matches the
declared data type. Further, the compiler can not check if the same data type is provided to
the same collective operation on all PEs.

In contrast to C, C++ offers so-called parametric polymorphism [Str00] in the form of
templated functions (and classes). This allowing for the compiler to prohibit type errors, a
concept we denote as type safety [Mil78] in this chapter.

Move Semantics C++ 11 introduced move semantics, which allow to semantically transfer
object ownership when invoking a function — including the responsibility to free the underlying
memory. In contrast, passing a parameter by value creates a copy — incurring a runtime cost
— and passing it by pointer or reference creates an alias — leaving ownership management
to the user. We employ move semantics in order to transfer buffer ownership between the
caller and KaMPIng (Section 6.4.3). This simplifies memory management and enables us
to return out-parameters by value in accordance to the C++ core guidelines [SS+24, F.20]



while avoiding an expensive deep copy (Section 6.4.2). Further, it nudges the user away from
invalid access to buffers used in asynchronous communication (Section 6.4.5).

Structured Bindings C++'s structured bindings provide a shorthand for binding the elements
of a structured object to multiple variables [SB25]. This allows for conveniently returning
multiple variables from a single function invocation:

// £() returns a std::tuple with tree elements, which are bound to the

// names a, b, and c.
auto [a, b, c] = £();

6.3 Related Work

Since the deprecation of the official C++ bindings from the MPI standard, there have been
continuous third-party efforts to design novel, improved C++ language bindings. The topic
is also actively discussed in the MPI forum [MPI20]. For example, a C++ binding should
automatically infer the MPI data types from the C++ data types for both, basic data types
such as int as well as complex structs. Further, the bindings should increase type safety
over MPI’s approach of employing void pointers for every buffer. Moreover, C++ bindings
should enforce the MPI requirement of callers not accessing send and receive buffers during
non-blocking communication. Next, the C++ core guidelines strongly suggest that functions
return output data by value [SS+24, F.20], which requires an MPI wrapper library to abstract
over MPTI’s C-style input and output parameters. Further features requested in the MPI
forum [MPI20] are a strong debug mode, including extensive error checking, the ability
to provide reduction operators via C++ lambdas, as well as interaction with modern C++
features such as move semantics and ranges.

Boost.MPI [GT07] Boost.MPI was the first library that was capable of automatically
inferring MPI data types. This facilitates integration with the STL by supporting containers
such as std: :vector for input and output next to raw pointers. Boost.MPI automatically
resizes vectors to fit the received data, which prevents invalid memory accesses, but induces
hidden memory allocations and copy operations. Further, Boost.MPI supports data serializa-
tion next to the construction of MPI data types for transferring non-trivial C++ types. In
order to enable serialization, users must provide a serialization function that is compatible
with Boost.Serialization, specifying all class members explicitly. This requires the user to
explicitly synchronize the data type definitions and their serialization functions. Boost.MPI
manages custom data types via a global type pool, which it has to query before each message
exchange in order to ensure that resources are properly cleaned up, thereby incurring a
runtime overhead.

The adoption of Boost.MPI has been hindered by its tight coupling with other Boost
libraries and by its implicit serialization — and the associated performance pitfall — of data
types that are not directly supported by MPI [Gho+21]. Additionally, Boost.MPI is the only
MPI library considered here that is not header-only. As the MPI standard does not guarantee
that code compiled against one MPI implementation will execute correctly with any other
MPI implementation,? a separate build of Boost.MPI is required for each installed MPI
library. Further, besides KaMPIng, Boost.MPI is the only library that supports mapping

2 This will change in the upcoming MPI 5.0 standard. [MPI5.0, ch. 20]
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STL functors such as std: :plus to the corresponding built-in MPI constant for reduction
operations (which allows optimization by the MPI implementation) and writing custom
reduction operations via C++ lambdas. If an MPI error occurs, Boost.MPI throws an
exception. Boost.MPI does not provide any bindings for MPI_Alltoallv and has not been
actively maintained since 2008 and therefore only supports MPI-1.1 features.

However, boost-mpi8 [Corl8] is a rewrite of Boost.MPI, developed independently of the
Boost project but following its design principles. The project aims to extend Boost.MPI to
the feature set of MPI-3 and C++ 17. While boost-mpi3 includes support for iterators, MPI
one-sided communication, and MPI shared memory, it does not substantially improve upon
Boost.MPT’s design, still closely mirroring MPI’s C interface.

Message Passing Library (MPL) [Baul5] Bauke developed MPL, a library providing MPI
bindings targeting C++17. MPL introduces a type system that allows user to programmati-
cally construct views over contiguous memory chunks, which MPL subsequently converts
into MPI data types. This allows to create and exchange strided data types, for example, a
column in a matrix which is stored row-first in memory. Moreover, this allows the user to
exchange containers of dynamic size, for example, a std: :vector; however, MPL creates
a new type each time the container size changes. MPL does not expose the underlying
native MPI representation of communicators and data types, which complicates an iterative
adaptation of existing MPI code to MPL. MPL offers support for custom data types, which
require defining a matching layout but does not offer serialization support. Further, MPL
currently does not support error handling.

Recently, MPL has been considered as a starting point for new C++ bindings by the
members of the newly formed MPI working group on language bindings [Gho+21]. While
Gosh et al. [Gho+21] highlight the simplified interface, which offers abstraction with default
parameters using function overloads, they also show that MPL incurs runtime overheads for
variable-size collectives. This is because MPL does not perform the communication directly
via the corresponding collective operations using appropriate counts and displacements, but
rather constructs custom derived data types with memory offsets. Therefore, abstractions
over collectives such as gatherv (Section 6.2) internally call MPI_Alltoallw (Section 6.2),
which is costly in some MPI implementations, thereby limiting scalability [Gho+21].

RWTH-MPI [Dem+23] Demiralp et al. recently introduced a modern C++ interface,
which we denote RWTH-MPI (Rheinisch-Westfilische Technische Hochschule (Aachen) MPT)
in the following. RWTH-MPI offers full support for sending and receiving STL containers.
For each communication call, RWTH-MPI provides various function overloads using different
abstraction levels, which often allow omitting send or receive-counts, causing RWTH-MPI to
automatically compute them, inducing (necessary) additional communication. Automatic
resizing of the receive buffer is supported in some cases but can be disabled. For custom
types that support reflection based on the PFR library [Pol16], RWTH-MPI automatically
constructs appropriate MPI data types. A customization point for mapping C++ types to
MPI data types is available, but does not provide automatic de-allocation of MPI data types.
Using types with dynamic run-time sizes is not supported.

While RWTH-MPI covers the complete MPI standard, large parts directly mirror the C
interface without providing additional abstractions, convenience, or safety guarantees.

Beyond C++ MPI bindings for high-level programming languages beside C++ exist. The
Python bindings mpi4py [Dal+08; DF21] have been actively developed for over a decade



and may therefore be considered as the most mature third-party bindings. They enable
the transparent sending of Python objects using serialization. While this incurs additional
runtime overhead, using mpidpy in conjunction with NumPy arrays yields performance that
is on par with native C implementations [Dal+08]. Further, they provide default values for
some parameters, but only if no additional communication is necessary to infer them. Finally,
rsmpi [SGB15] introduces idiomatic Rust bindings for MPI. While rsmpi makes calling MPI
from Rust more ergonomic than via the C interface, the missing default parameters require
writing a considerable amount of boilerplate code.

6.4 KaMPIng Design

Realizing a C++ interface that is both, easy to use, and highly flexible, requires building
a library from scratch and improving upon the design of its precursors. Similar to most
previous bindings, KaMPIng represents MPI objects such as communicators, requests, and
statuses as classes, and operations on them as member functions. We implement automatic
creation and destruction of MPI objects via the Resource Acquisition Is Initialization [Str94]
design pattern, as recommended by the C++ core guidelines [SS424, E.6]. Further, we map

C++ data types to MPI types at compile time, thereby preventing type-matching errors.

KaMPIng directly supports STL containers that allow access to the underlying contiguous
memory, that is, every container that models the std: : contiguous_range concept. Further,
KaMPIng supports raw pointers via std::span as proposed in the C++ core guidelines
[SS+24, page 1.13].

Named Parameters A common source of programming errors in MPI stems from the
interface complexity of many communication calls. For example, the group of variable
collective operations (suffixed with v, see Section 6.2) allows the amount of data transferred
between each PE-pair to vary [MPI4.1, ch. 6]. Thus, variable collectives require a large number
of function parameters, for example, eight for MPI_Gatherv. This makes MPI calls verbose
and requires programmers (at least the authors) to frequently consult the documentation for
writing and reading respective call sites. While all parameters are necessary to provide full
flexibility, many use cases exist in which only a small subset of explicitly provided parameters
is required, and the remaining parameters can be inferred automatically. KaMPIng introduces
named parameters combined with compile-time generation of only the required code-paths,
thus freeing users from remembering complex function signatures while still providing the
flexibility of optional parameters at zero runtime overhead. To the best of our knowledge,
this approach is unique among C++ MPI wrappers. We briefly discuss KaMPIng’s parameter
handling in Section 6.4.1 and explain in more detail in Section 6.4.2.

Memory Management Memory management is challenging. C++ programmers have to
constantly keep track of which part of the code is responsible for de-allocating memory
blocks, while avoiding unnecessary memory allocations and copy operations, which incur a
runtime cost. Thus, we design KaMPIng such that users can flexibly control the degree of
automation KaMPIng exhibits when allocating memory (Section 6.4.3) at compile-time. For
example, users can re-use allocated memory or let KaMPIng automatically re-size buffers in
order to fit all received or computed data. Further, KaMPIng can be instructed to allocate
the required buffers itself, semantically transferring the ownership back to the caller if so
instructed (Sections 6.2 and 6.4.3).
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Type Inference The missing type introspection features of C require MPI users to explicitly
specify the layout of data types they intend to transfer over the network. However, if the
type declaration and actual data layout are not explicitly synchronized, this may induce
hard-to-find errors. In Section 6.4.4 we introduce KaMPIng’s flexible type system which
provides type-safety through compile-time construction of MPI data types from C++ data
types. Additionally, KaMPIng offers support for runtime-sized types and explicit serialization
and deserialization that is transparent to the user (Section 6.4.4).

Safety Guarantees for Non-Blocking Communication Non-blocking communication in
MPI introduces additional sources of programming errors, as the caller has to explicitly wait
for the completion, avoiding invalid memory accesses to buffers that are associated with
a non-blocking operation before it has been completed. To address this issue, we propose
memory-safe abstractions that prevent illegal memory accesses via C++’s ownership model
and move semantics in Section 6.4.5.

Extensibility via Plugins The MPI standard is continuously growing, requiring C++ bindings
to evolve while maintaining compatibility with existing code as well as (new) MPI features
not yet covered by such bindings. We thus decided to keep KaMPIng’s core small, but allow
for easy integration of additional features via a plugin system (Section 6.4.6).

Preventing Common Programming Errors Further, KaMPIng prevents common program-
ming errors by providing a plethora of compile- and runtime assertions, configurable error
handling, and introducing a simplified syntax for in-place operations (Sections 6.2 and 6.4.7).

6.4.1 Inferring Default Parameters

Common usage scenarios allow for inferring a large fraction of the parameters passed to an
MPI call (Section 6.4). Consider, for instance, MPI_Allgatherv (Section 6.2), which collects
data from all PEs and returns a concatenation of this data on all PEs. In case the data to
be sent are stored in a container (e.g., std::vector), the number of elements to be sent
(send count) as well as the underlying data type can be automatically inferred from the
container’s size and value_type respectively (Section 6.4.4). Further, we can automatically
compute the number of elements to be received (receive count) and the offset of each remote
processes’ data in the local receive buffer (receive displacements). For this, KaMPIng issues
an MPI_Allgather in order to collect all send-counts on all PEs. KaMPIng subsequently
computes the exclusive prefix sum over them (Figure 6.2) to obtain the receive displacements.

While this is a common pattern in scientific codes, to the best of our knowledge, none of
the existing C++ bindings includes a respective automatism to yield boilerplate code obsolete.
For example, Boost.MPI offers function overloads that allow the user to omit explicit receive
displacements, however, the user still has to explicitly communicate the send/receive-counts.
Further, RWTH-MPI provides a function overload that gathers the counts internally, but
only works with MPI_IN_PLACE, which requires the data to be sent to already be located at
the correct memory location on each PE. In order to place the outgoing data accordingly,
the user has to manually exchange count information upfront.

In KaMPIng, we chose named parameters to allow the caller to provide any subset of
possible parameters in an arbitrary order (as familiar from languages such as Python). Inter-
nally, we implement these named parameters via factory functions [Gam+95] which construct
lightweight parameter objects encapsulating the parameter type (i.e., send buffer, send-counts,
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..) as well as the corresponding data. This allows us to check if the caller provided a
specific parameter and to compute default values otherwise — while avoiding the combinatorial
explosion that a design employing function overloads would entail. We implement named
parameters with zero run-time overhead by using template-metaprogramming to check for a
parameter’s presence and only generate the code-paths that are required for the parameters
given at each specific call site.

Using named parameters, gathering a vector in KaMPIng thereby becomes a one-liner
(Figure 6.1), while implementations using other bindings are more verbose (Table 6.1).
Moreover, this flexibility provided by named parameters permits users to iteratively adapt
their existing code to KaMPIng (Figure 6.3), thereby considerably lowering the entry barrier.

6.4.2 Input and Output Parameters

KaMPIng extends MPT’s definition of in(put)- and out(put)-parameters. Users can pro-
vide data to library functions via in-parameters, for example, send_buf (data) informs
KaMPIng where to find the data to be sent. In contrast, out-parameters, for instance,
recv_counts_out (), requests the library to return the respective data. Further, KaMPIng
can automatically deduce most of the in-parameters plain-MPI requires the user to explicitly
provide. For example, during an alltoallv operation (Section 6.2), KaMPIng can determine
the send displacements if the number of elements to be sent to each PE is provided. Note
that this sometimes also involves additional communication, for example, in the case of
receive-counts (Section 6.4.1). KaMPIng allows the user to pass these (optional) parameters
either as in- or out-parameters, the latter implying that KaMPIng will compute them. For
example, send_displs(data) creates an in-parameter containing the send displacements as
specified in the data container, whereas send_displs_out () creates an out-parameter sig-
naling KaMPIng to compute the send displacements and return them. Moreover, KaMPIng

std::vector<T> v = ...; // fill with data

// plain-MPI

int size, rank;

MPI_Comm_size (comm, &size);

MPI_Comm_rank (comm, &rank);

std::vector<int> rc(size), rd(size); // receive-counts and displacements

rc[rank] = v.size();

// exchange the send-counts

MPI_Allgather (MPI_IN_PLACE, O, MPI_DATATYPE_NULL, rc.data(), 1,
MPI_INT, comm);

// Compute receive displacements

std::exclusive_scan(rc.begin(), rc.end(), rd.begin(), 0);

int n_glob = rc.back() + rd.back();

// allocate receive buffer

std::vector<T> v_glob(n_glob);

// exchange data

MPI_Allgatherv(v.data(), v.size(), MPI_TYPE, v_glob.data(),
rc.data(), rd.data(), MPI_TYPE, comm);

// KaMPIng
std::vector<T> v_glob = comm.allgatherv(send_buf (v));

Figure 6.2 Using plain-MPI to collect data from all PEs, returning the concatenation of the
collected data on all PEs (allgather). The caller has to write boilerplate code to exchange the
send /receive-counts and compute the receive displacements manually. In contrast, KaMPIng will
exchange and compute the counts and displacements automatically, resulting in a single line of code.
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// Version 1: using KaMPIng’s interface

std::vector<int> rc(comm.size()), rd(comm.size());

rc[comm.rank ()] = v.size();

comm.allgather (send_recv_buf (rc));

std::exclusive_scan(rc.begin(), rc.end(), rd.begin(), 0);

std::vector<T> v_glob(rc.back() + rd.back());

comm.allgatherv(send_buf(v), recv_buf(v_glob),
recv_counts(rc), recv_displs(rd));

// Version 2: displacements are computed implicitly

std::vector<int> rc(comm.size());

rc[comm.rank ()] = v.size();

comm.allgather (send_recv_buf (rc));

std::vector<T> v_glob;

comm.allgatherv(send_buf (v), recv_buf<resize_to_fit>(v_glob),
recv_counts (rc));

// Version 3: counts are automatically exchanged
// and result is returned by value
std::vector<T> v_glob = comm.allgatherv(send_buf(v));

Figure 6.3 Existing plain-MPI code (Figure 6.2) can be incrementally ported to KaMPIng.

permits the user to instruct KaMPIng to re-use already allocated memory for storing the
data of an out-parameter (Section 6.4.3). This allows, for instance, to re-use buffers allocated
once in frequent communication patterns.

As the receive buffer is of interest at most MPI call sites, KaMPIng always implicitly
returns it. The caller has to request all further out-parameters (e.g., receive displacements)
explicitly via the corresponding out-parameter.

Existing MPI wrapper libraries (Section 6.3) mimic MPI’s C interface and return output
data by pointer or by reference. However, this interface design contradicts the C++ core
guidelines, which strongly suggest returning output data by value [SS+24, F.20]. Further,
when reading the code at a call site, it is often unclear, which parameters are in- and which
are out-parameters. This is further complicated by the plethora of function overloads used
by existing MPI wrappers to provide the flexibility of optional parameters. In contrast,
KaMPIng call sites clearly document which parameters are in- and which out-parameters.
Consider, for instance, the following call to allgatherv (Section 6.2):

auto result = comm.allgatherv(send_buf(v), recv_counts_out());
auto recv_buf = result.extract_recv_buf ();
auto counts = result.extract_recv_counts ();

Here, allgatherv returns a result object containing the implicitly requested receive buffer
and the explicitly requested receive-counts. The caller can then extract both from the
result object using C++’s move semantics (Section 6.2), thus obtaining them by value and
taking ownership. This includes the responsibility for freeing their respective memory, which
is automatically provided by the respective destructors. Moreover, the result object is
decomposable via C++’s structured bindings (Section 6.2), which simplifies the call to:

auto [recv_buf, counts] = comm.allgatherv(send_buf(v), recv_counts_out());

If the caller has already allocated memory for certain buffers, KaMPIng offers two mechanisms
for re-using it: C++’s move semantics or pass-by-reference. The ownership of user-allocated
containers that support C++ move semantics can be transferred to KaMPIng by moving
the data into the respective call. After performing the communication, KaMPIng moves the
respective buffer’s ownership back to the result object and thus, the caller.
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std::vector<T> tmp = ...;

// Ownership of tmp is moved to .allgatherv(), allowing the buffer to be
// re-used. The container is subsequently moved into the recv_buffer.

auto recv_buffer = comm.allgatherv(send_buf(v), recv_buf(std::move(tmp)));

In case a user-allocated container does not efficiently support move semantics, KaMPIng
also allows the caller to pass a buffer by reference. Subsequently, KaMPIng writes the data
computed /transferred for the requested parameter directly to the specified memory location.
std::vector<T> recv_buffer = ...;

// The received data is directly written into recv_buffer.
comm.allgatherv (send_buf (v), recv_buf (recv_buffer));

6.4.3 Controlling Memory Allocation

Existing MPI wrappers (Section 6.3) have no unified way of controlling memory allocation.
They either always resize user-provided containers to fit the received data, or force the user
to pass raw pointers in order to prevent resizing. Further, they do not provide mechanisms
to re-use buffers for automatically computed parameters. In contrast, KaMPIng allows the
caller to exert fine-grained control over memory management. Each (out-)parameter that
accepts a container, takes an optional template parameter, which indicates its resize policy.
This resize policy controls, whether the respective container is always resized to fit, resized if
it is too small to store the result, or that KaMPIng shall perform no checks and assume that
the capacity of the container suffices. As the latter does not induce any runtime overhead, it
is the default setting.

std::vector<T> recv_buffer; // too small, has to be resized

std::vector<int> counts(comm.size()); // sufficiently large

comm.allgatherv(send_buf (v), recv_buf<resize_to_fit>(recv_buffer),
recv_counts_out (counts));

In case KaMPIng has to create auxiliary data structures to compute missing parameters, the
caller may either specify a pre-allocated container or provide the type to be allocated. This
allows, for example, to instruct KaMPIng to create a container using a memory allocator
optimized for multi-thread applications. Recall, that additional allocation is entirely omitted
when parameters are provided by the user.

We implement all of this via template-metaprogramming. Thus, there is no additional
overhead compared to a implementation using plain-MPI. KaMPIng’s design of optional
parameters allows for rapid prototyping and full-grained control over memory allocation, for
example to avoid superfluous re-allocation of memory.

6.4.4 Custom Data Types

HPC applications communicate a plethora of data types, ranging from basic data types
such as int or float — which directly map to MPI types — to complex structs with align-
ment gaps and strided data types (Section 6.3). MPI allows for communicating such
complex derived data types using type constructors, such as MPI_Type_create_struct and
MPI_Type_create_contiguous. However, C’s lack of type introspection forces users to ex-
plicitly provide type information, which is both, tedious and error-prone, as type definitions
need to be explicitly synchronized with the actual data layout.

C++ types are known at compile-time and can thus be mapped one-to-one to MPI
types during compilation using template-metaprogramming. We denote such types as static
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struct MyType {
int aj;
double b;
char c;
std::array<int, 3> d;
};

// KaMPIng’s built-in struct serializer can be used to construct a
// MPI_Datatype matching a given struct.

template <>

struct mpi_type_traits<MyType> : struct_type<MyType> {};

// The user can also explicitly construct a MPI type.
template <>
struct mpi_type_traits<MyType> {
static constexpr bool has_to_be_committed = true;
static MPI_Datatype data_type() {
MPI_Datatype type;
MPI_Type_create_x*(..., &type);
return type;

Figure 6.4 Defining custom static types using automatic type reflection or a custom type definition.

types. However, MPI’s derived data types form a superset of C++ data types, as MPI
is able to construct arbitrary type signatures with sizes that are known at run-time only.
Concretely, MPI defines a derived data type as an arbitrary number of basic data types
with at arbitrary displacements [MPI4.1, ch.5.1]. Further, these displacements are neither
required to be positive, distinct, or provided in increasing order. We denote these as dynamic
types. KaMPIng supports static and dynamic types and is able to construct static MPI
types from C++ types transparently to the user, with predictably low runtime overhead.?
Sometimes, applications need to communicate unstructured and complex data types off the
critical code path. In order to support this with minimal code overhead, KaMPIng supports
transparent data serialization, which we discuss in Section 6.4.4.

Deriving Static Data Types at Compile Time KaMPIng maps basic Ct++ data types to
their MPI counterparts and supports more complex data types on homogeneous systems if
they are trivially copyable, that is, the C++ standard guarantees that they can be copied into
a char array. For this, KaMPIng creates a contiguous type using MPI_Type_contiguous
with the appropriate number of bytes. We decided on using MPI_Type_contiguous over
MPI_Type_struct as it exhibited a lower performance overhead in preliminary experiments —
as predicted in the MPI standard [MPI4.1, ch.5.1]. For types that are not trivially copyable,
the user can describe how to construct a matching MPI_Datatype via an explicit instantiation
of the mpi_type_traits template for the desired type. However, maintaining code that
ensures the correct construction of a MPI type for a given C++ struct is error-prone, as the
programmer has to keep the type-construction calls in sync with the data type. Thus, we
provide integration with the PFR type reflection library [Pol16] in order to automatically
generate MPI type definitions for user-provided structs at compile-time (Figure 6.4).

3 The runtime overhead is unavoidable, as MPI allows creating types only at run-time.
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MPI requires the user to initialize and de-allocate non-built-in types. KaMPIng imple-
ments both transparently to the user via the Resource Acquisition Is Initialization [Als+04]
and the Construct-On-First-Use* idioms. Boost.MPI manages types via a global type pool.
However, each operation incurs a type lookup at runtime. MPL and RWTH-MPI use the
Construct-On-First-Use idiom to commit types before first use, and MPL also provides
automatic type definitions via reflection. However, as opposed to KaMPIng, types are not
properly freed, which may result in resource leakage. RWTH-MPI allows for custom static
type definitions, but the user is responsible for committing and freeing types.

Dynamic Types As mentioned above, dynamic types are created at run-time, not at
compile-time. For this, MPL provides a run-time type interface, which mirrors MPI’s type
constructors via the builder pattern. In contrast, RWTH-MPI does not support dynamic
types. Currently, KaMPIng does not offer an abstraction over run-time creation of types.
However, it supports passing arbitrary, dynamically created MPI types — that were created
via MPT’s respective functionality — to KaMPIng functions via optional type parameters.
While MPL’s type construction system results in verbose code for many use cases, it also
constitutes a powerful feature, which we plan to integrate into KaMPIng in future work.

Communicating arbitrary data using serialization Some applications require communicat-
ing non-contiguous data which is (partially) located on the heap, for instance, std: :string
or std: :unordered_map, and can thus not be represented using MPI data types. KaMPIng
facilitates the necessary re-arrangement of this data into a contiguous buffer before com-
munication by providing a tuneable serialization functionality that is transparent to the
user (Figure 6.5). For this, we employ the C++ serialization library Cereal [GV17], which
supports STL data types and provides serialization routines for custom types. While users
never see serialized data, they have to explicitly enable serialization, as it incurs a hidden
cost for allocating memory and performing (de-)serialization. Through Cereal’s flexible
design, serialization in KaMPIng is also highly configurable; allowing users to specify custom
serialization functions and archives, for instance, binary formats, JSON, or XML.

using dict = std::unordered_map<std::string, std::string>;

dict data = ;

comm.send (send_buf (as_serialized(data)), ...);

dict recv_dict = comm.recv(recv_buf (as_deserializable<dict>()));

Figure 6.5 KaMPIng can transparently serialize and deserialize data. As this incurs overhead for
allocating memory and performing (de-)serialization, the user has to explicitly enable this feature.

Boost.MPI is the only MPI wrapper library besides KaMPIng that offers data serialization.

However, Boost.MPI tightly couples serialization with other Boost libraries and implicitly
performs serialization if a type is not marked as an MPI data type. This design yields the
inherent cost of serialization opaque to the user. As we designed KaMPIng as a zero-overhead
library, we chose to require the user to explicitly enable serialization, facilitating a conscious
choice regarding the associated runtime and memory overhead.

4 https://isocpp.org/wiki/faq/ctors#static-init-order-on-first-use
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Type Creation for Types with Alignment Gaps For structs with alignment gaps between
members, MPI does not include the gap in the communicated data. However, this implies
non-contiguous memory accesses, which may be slower than copying entire memory blocks to
the communication hardware [MPI4.1, ch.5.1.6]. As a solution, the MPI standard suggests
introducing dummy struct members to fill alignment gaps. However, this requires the user
to modify their non-MPI code. In contrast, KaMPIng maps trivially copyable C++ types to
a MPI type interpreted as a contiguous sequence of bytes, thereby including the alignment
gaps. This enables contiguous copying of the data to the communication hardware at the
cost of exchanging additional data. We choose this design as preliminary experiments showed
this to be faster in practice (data not shown).

6.4.5 Safety for Non-blocking Communication

Non-blocking communication in MPI allows to overlap communication with computation. In
MPI, the user can initiate a communication operation, obtaining a request handle. The user
subsequently has to complete the request, by either (non-blockingly) testing for completion
via MPI_Test or by calling MPI_Wait, which blocks until the request is completed. MPTI’s
semantics prohibit writing to the send buffers and reading from the receive buffers associated
with this communication operation while it is initiated but not yet completed. However,
MPI can not actively hinder users from accessing the respective memory locations regardless
of completion status, thus introducing an additional source of programming errors.

The C++ STL provides std: :future for such asynchronous (I/O) operations, which
allows for querying or waiting for the result of an asynchronous operation. It only returns
a value once the operation has been completed. However, std: : future cannot be used to
provide a safe interface for non-blocking communication, as it assumes that asynchronous
progress is made in the background, which the MPI standard does not guarantee for.

Thus, we introduce a concept similar to std: : future, denoted non-blocking MPI result,
which encapsulates an MPI_Request and the data returned by value from the operation
(Section 6.4.2). This ensures, that result.wait() returns the data to the user only after
completing the request — thereby yielding access to the data valid again. Analogously,
calling result.test () returns an std: :optional, which only contains the returned data
if the request has been completed, and std: :nullopt, otherwise. This further prevents
semantically invalid access to send buffers during non-blocking operations as the user can
move the respective buffer into the communication call, thereby explicitly yielding ownership.
KaMPIng subsequently ensures that the respective memory is not freed and returns it to the
user upon completion. Thereby, we enforce MPI’s semantics for buffer validity in non-blocking
communication in C++ (Figure 6.6). Note that this happens without any data copying by
solely relying on C++’s move semantics (Section 6.2).

To the best of our knowledge, KaMPIng is the first C++ MPI wrapper library which
provides such safety guarantees for non-blocking communication. In contrast, other MPI
bindings do not offer enhanced safety features for the data involved in non-blocking calls,
but only return request handles — thereby the responsibility to avoid invalid data accesses
while the operation has not been completed remains with the user. Only the rsmpi Rust
library provides analogous guarantees, which are implemented via Rust’s ownership model.

Further, KaMPIng provides request pools, which allow for convenient management of
multiple requests. For this, the user first needs to submit all requests associated with a call
to a request pool. The user can subsequently test for the completion of any or all requests.
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std::vector<int> v = ...;

// Perform a non-blocking send operation. This will return immediately.
// The caller transfers v’s ownership to KaMPIng.

auto rl = comm.isend(send_buf_out(std::move(v)), destination(1l));

// Once the send operation completed, KaMPIng moves v’s ownership back
// to the caller.
v = rl.wait ();

// Perform a non-blocking receive operation.

auto r2 = comm.irecv<int>(recv_count (42));

// ... perform other computations

// The data is only returned once the receive finished.
std::vector<int> data = r2.wait();

Figure 6.6 Example of non-blocking safety in KaMPIng.

6.4.6 Extensibility

While the main goal of KaMPIng is to design C++ bindings for MPI that are usable in
any MPI application, designing a one-size-fits-all library is impossible. We thus designed
KaMPIng to permit developers to gradually move their existing code base to KaMPIng.
This is possible, because KaMPIng is fully compatible with native MPI objects, such as
request or type handles, allowing users to pass them to and extract them from KaMPIng.
Further, KaMPIng’s plugin interface allows for overriding communicator object member
functions (e.g., collectives) and adding additional functionality without changing existing
application code. For example, this allows for replacing the MPI implementations pipelining
broadcast algorithm with the more efficient 2-3-broadcast [SST09], which is currently not part
of any major MPI implementation. Moreover, KaMPIng allows plugins to define new named-
parameters to enable the full named parameter flexibility for these library extensions. We
chose this plugin architecture in order to keep KaMPIng’s core library small and maintainable,
while still offering third-party general-purpose functionality. In Section 6.6, we demonstrate
the power of KaMPIng’s plugin interface by developing and making available multiple plugins
that extend the functionality of the current MPI standard.

6.4.7 Additional Safety Features for MPI

KaMPIng offers additional features that aim to prevent common errors when developing
MPI programs. Examples include error handling via C++ exceptions, additional compile
time checks, and a simplified in-place operation syntax (Section 6.2).

Error handling MPI notifies users of errors by returning an error code. However, MPI does
not distinguish between recoverable errors, such as insufficient buffer space, irrecoverable
errors, such as hardware failures, and usage errors, such as providing invalid parameters.
KaMPIng improves upon this via three major techniques, following the C++ core guide-
lines: Throwing exceptions for recoverable errors [SS+24, E.2], catching usage errors at
compile time whenever possible [SS+24, P.5], and making heavy use of run-time assertions.
While C++’s template-metaprogramming is notorious for complex and hard-to-read compiler
errors, we employ static_assert to ensure that compile-time assertions fail early and provide
helpful human-readable error messages, for instance, for missing parameters or incompatible
types. For example, when the user does not provide a required parameter to a collective
operation, the compile-time error message indicates which parameter is missing. KaMPIng
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further verifies a plethora of MPI invariants during run-time. We group assertions by cost of
checking, ranging from lightweight checks to substantial additional communication. Thus,
the user can decide which assertions to enable based on the expected overhead. Further, the
user can fully disable exceptions and override the error handling strategy using KaMPIng’s
plugin system (Section 6.4.6). For example, our abstraction over MPI’s failure-mitigation
mechanisms (Sections 2.9 and 6.6.2) overrides the error handling strategy in order to throw
appropriate exceptions when detecting a hardware failure. In contrast, other MPI bindings
either always convert MPI errors to exceptions or do not provide any error handling at all.

Simplified MPI_IN_PLACE KaMPIng prevents programming errors in the context of in-place
MPI operations. When performing an in-place communication in plain-MPI, the user has to
explicitly pass MPI_IN_PLACE on all PEs as send buffer, causing MPI to ignore the send count
and type parameters. KaMPIng’s in-out parameters simplify the call semantics of in-place
calls by allowing the user to pass data in a send_recv_buf instead of a send_buf, thus
reducing four function parameters to a single one. This causes KaMPIng to automatically
pass the correct arguments to the underlying in-place MPI call. Further, this prevents the
user from passing MPI_IN_PLACE as the receive buffer and issues a compilation error if the
user does provide an argument which would be ignored by the in-place call. Further, this is
compatible with move semantics, allowing for concise call sites.
std::vector<int> data(comm.size());

datal[comm.rank ()] = ...;
data = comm.allgather(send_recv_buf (std::move(data)));

6.4.8 Implementation Details

KaMPIng makes extensive use of C++’s template-metaprogramming capabilities. For exam-
ple, we often eliminate run-time control flow constructs — preventing costly branch mispre-
dictions — via constexpr if and Substitution Failure is Not an Error (SFINAE) [VJGIS,
ch. 8.4]. Further, we employ template parameter packs in order to permit the user to pass
named parameters in an arbitrary order. This also allows us to perform compile-time checks
for the absence of each parameter, and facilitates us to conditionally enable the compilation
of logic for computing default values via constexpr if.

Containers that the user passes as arguments to KaMPIng are wrapped in a templated
DataBuffer object, which handles ownership and modifiability transparently at compile
time.® Subsequently, KaMPIng moves these data buffers to a templated result object, which
is returned to the user and can be deconstructed using structured bindings (Section 6.4.2).
As we do not copy but move the data, this imposes nearly zero overhead.

We extensively test KaMPIng for robustness. For this, we employ a test suite spanning
over 4700 checks, distributed over 250 test case collections and 24 000 lines of test code —
compared to 10000 lines of code for the actual implementation. We compile and execute all
unit and compilation failure tests four times: Using two C++ compilers (clang and GCC), as
well as in debug and release mode. We use OpenMPI as our MPI implementation (Section 2.6).
We ensure that KaMPIng only performs the expected MPI calls by instrumenting MPI’s
profiling interface, including cases in which KaMPIng invokes additional MPI calls in order

5 Because this works with any STL-compliant container, KaMPIng also supports accelerator-aware MPI
implementations directly. Pointers or containers (like thrust: :device_vector) to device memory can
be passed just like normal containers.



to automatically compute missing parameters. Further, we test our benchmark applications
using OpenMPT and InteIMPI on the SuperMUC-NG and HoreKa HPC systems, as detailed
in the following section.

6.5 Integrating KaMPIng into Real-World Applications

To highlight the usability of our library, we integrate KaMPIng into multiple (scientific)
applications, ranging from sorting (sample sort and suffix sorting) over graph algorithms
(Breadth First Search (BFS) and label propagation) to the phylogenetic interference tool
RAXML-NG (Section 2.3). We run experiments to back our (near) zero overhead claim on
up to 256 compute nodes of SuperMUC-NG®, where each node is equipped with an Intel
Skylake Xeon Platinum 8174 processor with 48 physical cores. The internal interconnect is
an OmniPath network with 100 Gbits™! (Section 2.5). We compile with GCC 12.2.0 and
Intel MPI 2021 using optimization level -03.

Table 6.1 Lines of code for examples using KaMPIng vs. other MPI wrapper libraries.”

MPI  Boost.MPI RWTH-MPI MPL KaMPIng

vector allgather 14 5 5 12 1
sample sort 32 30 21 37 16
BFS 46 42 32 49 22

6.5.1 Distributed Sample Sort and Suffix Sort

We implement a textbook distributed sample sort [San+19] with KaMPIng (Figure 6.7) and
all other previously discussed C++ MPI bindings (Section 6.3). We extract code that is
common to all implementations into shared functions and format each source code with
clang-format using the Google style template. We find, that the implementation using
KaMPIng is 16 lines of code (LOC) long. In contrast, a plain-MPI implementation requires
32 LOC (Table 6.1). Further, we measure the runtimes of all implementations by sorting a
distributed array with 10° 64 bit integers per PE. We draw the values of the array uniformly
at random and show that the KaMPIng implementation has no measurable runtime overhead
over other bindings or plain-MPI (Figure 6.8). We experimentally verify that all variants
arrive at the same (unique) suffix array and that the output of all variants is sorted.

Suffix Array Construction We also consider the more complex example of Suffix Array
Construction from the field of text processing: Here, we sort all suffixes of a text lexico-
graphically, that is, we compute the suffix array [MM93]. We implement two algorithms:
DCX [KSBO06] and Prefix Doubling [MM93]. Our KaMPIng-based DCX implementation
requires 1264 LOC, whereas the plain-MPI implementation [Bin18a] requires 1396 LOC. The
additional 9.5 % of code are accounted for by MPI boilerplate code, for instance, distributing
send-counts for MPI_Alltoallv or the tedious construction of MPI types. Likewise, our

5 We also conducted some experiments on the smaller HoreKa supercomputer. As the results obtained
there are similar to our findings from SuperMUC-NG, we omit them here.

5 The source codes for all three examples are available at https://github.com/kamping-site/
kamping-examples/.
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template<typename T>
void sort(std::vector<T>& data, MPI_Comm comm_) {
using namespace std;
Communicator comm(comm_);
const size_t num_samples = 16 * log2(comm.size()) + 1;
vector<T> lsamples (num_samples);
sample (data.begin(), data.end(), lsamples.begin(),
num_samples, mt19937{random_device{}()});
auto gsamples = comm.allgather (send_buf (lsamples));
sort (gsamples.begin(), gsamples.end());
for (size_t i = 0; i < comm.size() - 1; i++) {
gsamples [i] gsamples [num_samples * (i + 1)];

}

gsamples.resize(comm.size() - 1);

vector<vector<T>> buckets = build_buckets(data, gsamples);

data.clear ();

vector<int> scounts;

for (auto &bucket : buckets) {
data.insert(data.end(), bucket.begin(), bucket.end());
scounts.push_back (bucket.size ());

}
data = comm.alltoallv(
send_buf (data), send_counts (scounts)
)
sort (data.begin(), data.end());
}

Figure 6.7 Distributed sample sort using KaMPIng.

KaMPIng-based Prefix Doubling implementation requires 163 LOC. An existing plain-MPI
implementation of the same algorithm [FK19] requires 426 LOC (not counting the 1442 LOC
for wrapped MPI functionality used by the plain-MPI implementation). Even when using
the high-level distributed programming framework Thrill, implementing the Prefix Doubling
algorithm still requires 266 LOC [BGK18].

6.5.2 Graph Algorithms

Currently, most state-of-the-art HPC platforms are primarily designed to perform well on
numerical applications with regular data access and communication patterns. However,
data-intensive irregular workloads occur, for example, in data mining [KF13], or brain
analysis [Rin+16]. In these applications, operations on graphs are common and necessitate
efficient distributed graph algorithms — either for network analysis or as building blocks for
more complex applications [Dav+85; Hot+14; SRM16].

Breadth First Search To demonstrate the applicability of KaMPIng in this setting, we
provide a simple distributed implementation of a Breadth First Search (BFS). We assume
the input graph to be distributed among the PEs with each PE holding a subset of the
vertices including their incident edges. This subgraph is represented as an adjacency array.
For each vertex v, the BFS returns the distance (number of hops) between the source vertex
s and v. Here, we use KaMPIng’s utility function with_flattened(...), which flattens a
container of nested destination-message pairs by transforming it into a contiguous range,
while also providing send-counts.

We implement the distributed BFS algorithm using all C++ MPI bindings discussed in
Section 6.3. These implementations only differ with respect to the logic used for message
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Figure 6.8 Running time of sample sort using different MPI bindings.

exchanges and completion checking. We implement this logic using KaMPIng in only 22
lines of code, whereas plain-MPI requires 46 LOC, and the second most concise binding,
RWTH-MPI, requires 32 LOC (Table 6.1).8

We evaluate the implementations’ running times for different simulated graph families
(Figure 6.9). We find, that KaMPIng introduces no additional runtime overhead compared
to plain-MPI. Further, KaMPIng provides optimized collective operations, which scale better
than MPI_Alltoallv on some graph families and are easy to use. We discuss the obtained
speedups in Section 6.6.1. When not using these optimized collectives for comparability,
the runtime of our KaMPIng implementation is on par with those of the plain-MPI im-
plementation. This also holds for the RWTH-MPI and Boost.MPI (omitted in the plot)
implementations. MPL (also omitted in the plot) internally uses MPI_Alltoallw for all-
to-all exchanges [Gho+21] and is thus (considerably) slower than MPI on all inputs. We
experimentally verify that all variants arrive at the same BF'S level for all graph nodes.

Graph Partitioning As a more complex showcase, we integrated KaMPIng into the state-of-
the-art distributed multilevel graph partitioner dKaMinPar [SS23], comprising approximately
30000 LOC and including its own MPI abstraction layer, which features specialized graph-
specific communication primitives. The partitioner iteratively clusters and contracts the
input graph via size-constrained label propagation, shrinking the graph until a certain
threshold. Next, dKaMinPar approximates the clustering on this contracted graph and
subsequently re-expands it to refine the solution via further heuristics. Due to the size of
the dKaMinPar project, we only consider the graph-shrinking step here. Again, we compare
an implementation based on dKaMinPar’s application-specific MPI abstraction layer, a
plain-MPI based implementation, and a KaMPIng-based implementation. We extract the
shared code of all implementations (202 LOC) to shared functions and only consider the
MPI-heavy part of the algorithm’s implementation. We find, that the plain-MPI based
implementation (154 LOC) is roughly 17.5 % larger than the KaMPIng-based implementation
(127 LOC), which in turn is 16.5 % larger than the implementation based on dKaMinPar’s
specialized abstraction layer (106 LOC). We observe the same running times for all these
variants. We experimentally verify that all variants arrive at the same cut and balance — and
thus most likely the same partitioning.

8 https://github.com/kamping-site/kamping-examples/tree/main/include/bfs
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Figure 6.9 Running time of Breadth First Search (BFS) implementations using plain-MPI or
KaMPIng on graphs from the Erdés-Rényi (GNM), Random Geometric Graph (RGG), and Random
Hyperbolic Graph (RHG) families. The sparse and grid all-to-all implementations are optimized
for irregular sparse all-to-all message exchanges and described in Section 6.6.1. The MPI neighbor
variant employs MPI’s virtual topology based neighbor communication (Section 6.2).

6.5.3 Integrating KaMPIng into RAXML-NG

We consider the phylogenetic inference tool RAXML-NG [Koz+19] (Section 2.3) as our
largest real-world application benchmark. RAXxML-NG is written in C++ and uses a custom
non-trivial abstraction layer over pthreads + MPI parallelism with over 700 LOC. We use
KaMPIng to substantially simplify the MPI part of this abstraction layer; demonstrating
that KaMPIng can easily be integrated even in large and well-established scientific codes
that use hybrid parallelization (for an example, see Figure 6.10). If KaMPIng had been
available at the time, the RAXML-NG developers would have never needed to write, unit-test,
maintain, and document over a hundred lines of complex code.’

We empirically verified that replacing the abstraction layer with KaMPIng does not
incur a measurable performance overhead even though RAXxML-NG issues 700 MPT calls per
second.'® The binary’s size does not increase substantially (only by 2.5 %), while compilation
time increases from 1:15 min to 1:30 min. We experimentally verify that all variants arrive at
the same tree topology an yield identical Log-Likelihood scores (Section 2.3).

6.6 Towards A Basic Toolbox for Distributed Computing

A standard library of efficient distributed (communication) algorithms and data structures
would substantially ease the development of distributed-memory codes. However, incorporat-
ing this functionality in KaMPIng’s core would make it overly complex. Thus, we decided to

9 In RAXML-NG, MPI and application code are heavily intertwined, yielding a fair and exact LOC
comparison infeasible.
0The mean runtimes times are less than one standard deviations apart.



6.6.1 Sparse and Low-Latency All-To-All communication

// Before. The self-written mpi_broadcast(...) wrapper and
// serialization/deserialization of data are not shown.
template<typename T>
static void mpi_broadcast(T& obj) {
if (_num_ranks > 1) {
size_t size = master () 7
BinaryStream::serialize(
_parallel_buf.data(),
_parallel_buf.capacity (),
obj)
: 05
mpi_broadcast ((void *) &size, sizeof (size_t));
mpi_broadcast ((void #*) _parallel_buf.data(), size);
if (!master()) {
BinaryStream bs(_parallel_buf.data(), size);
bs >> obj;
}
}
}

// After. KaMPIng provides all required functionality.
template <typename T>
static void mpi_broadcast (T &obj) {
if (_num_ranks > 1) {
_comm->bcast (send_recv_buf (as_serialized(obj)));
}
}

Figure 6.10 Example of a function in the RAXML-NG parallelization abstraction layer simplified
substantially using KaMPIng. We are able to replace custom serialization logic entirely.

develop and make available multiple library extensions as KaMPIng plugins (Section 6.4.6).

This includes an STL-like distributed sorter (Section 6.5.1), all-to-all operations that are
optimized for sparse and irregular communication patterns, and an abstraction over MPI’s
failure-tolerance mechanism, as well as reproducible reduction operations.

6.6.1 Sparse and Low-Latency All-To-All communication

All-to-all exchanges are a common communication pattern in distributed computing. However,
there is a large algorithmic design space for all-to-all communication, ranging from algorithms
with near-optimal communication volume but latency at least linear in the number of PEs
to algorithms following a hypercube communication scheme with logarithmic latency but a
communication volume that increases by a logarithmic factor [San+19].
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In KaMPIng’s GridCommunicator plugin, we implement communication in a two-dimensional

grid [KKVO03], thereby reducing latency at the cost of communication volume. To this end,
we organize the PEs in a virtual two-dimensional grid and route messages along the rows
and columns of this grid in two hops to their destination. This yields a message start-up
latency (Section 2.5) in O(y/p), where p denotes the number of PEs in the communicator.
This enables hardware-agnostic latency reduction with asymptotic guarantees, in contrast to
the variants provided by most MPI implementations.

MPT’s standard collectives have not been designed for sparse communication patterns.
That is, an all-to-all communication patterns where only O(p) out of the p? messages are
non-empty. MPI_Alltoallv, for instance, requires a send-counts parameter consisting of an
array with one entry for each PE of the communicator, yielding a time complexity that is
linear in the communicator size. To mitigate this problem for static communication patterns,

Softw. Complexity
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MPI-3.0 adds neighborhood collectives, which allow the user to perform MPI_Alltoall(v) and
MPI_Allgather(v) on a previously defined (sparse) graph topology. However, for applications
and algorithms with rapidly changing communication partners, for instance, (dynamic) graph
algorithms, the overhead of defining a new communication graph topology every few all-to-all
exchanges may impose a substantial overhead. KaMPIng’s SparseAlltoall plugin offers
a lightweight alternative for these scenarios and accepts a set of destination-message pairs
as argument. For the actual data exchange, the plugin uses the NBX algorithm for sparse
all-to-all communication by Hoefler et al. [HSL10].

Both techniques for improving irregular sparse exchanges specifically improve the scala-
bility of distributed graph algorithms [SS23; SU23|. Figure 6.9 shows an evaluation of our
different all-to-all strategies using the weak-scaling BF'S benchmark introduced earlier on
three different graph families [Fun+19], where each PE holds 212 vertices and 2'° edges.
Erdds-Rényi graphs exhibit almost no locality (most edges cross PE-boundaries) but a small
diameter, whereas Random Geometric Graphs (RGGs) are highly local but exhibit a high
diameter. Regarding locality, Random Hyperbolic Graphs (RHGs) range somewhere in
between and also exhibit a small diameter. In contrast to Erdés-Rényi graphs and Random
Geometric Graphs (RGGs), they contain high-degree vertices.

In Figure 6.9, we compare different algorithms for the actual frontier exchange in each BF'S
step: MPI_Alltoallv (MPI, KaMPIng), KaMPIng’s sparse all-to-all plugin, KaMPIng’s grid
all-to-all plugin, and MPI_Neighbor_alltoallv (MPI neighbor). For Random Hyperbolic
Graphs (RHGs), and — less pronounced — for Erdés-Rényi graphs, our grid all-to-all algorithm
scales best. Grid all-to-all also outperforms the built-in MPI_Alltoallv on RGGs. Due to
their high diameter and locality, a competitive performance on RGGs can only be achieved
via sparse communication. KaMPIng’s sparse all-to-all approach is only slightly slower than
MPI_Neighbor_alltoallv. Note that when rebuilding MPI’s communication graph before
each frontier exchange, which simulates dynamic communication patterns to some extent,
Neighbor_alltoallv does not scale.

6.6.2 User-Level Failure Mitigation

With the increasing number of processors in HPC systems, hardware failures represent one
of the major challenges for upcoming exascale systems [SDM10] (Section 2.7). The upcoming
MPI 5.0 standard enables development of software that can recover from such failures [Bla+13]
(Section 2.9). We implement an abstraction layer over the failure-mitigating mechanisms
discussed in Section 2.9. First, we add a custom error handling hook, which notifies the user
of a PE-failure via an idiomatic C++ exception instead of using return codes (Figure 6.11).
Next, the user can notify all PEs of a failure — which might be known only to a subset of PEs
— by revoking the communicator using comm.revoke (). The application can subsequently
obtain a list of failed PEs via comm.get_failed() or create a new communicator excluding
the failed PEs using comm.shrink (). Note that we also implement the other functions of
the User Level Failure Mitigation (ULFM) standard proposal [ULFM] that we omitted here.

6.6.3 Bit-Reproducible Distributed Reduction Under Varying Core-Counts

Computational reproducibility is considered a cornerstone for validating scientific claims [IT18]
(Section 2.10). Thus, one major challenge in distributed computing is to ensure that the
results of a computation are bit-reproducible across different runs using varying PE-counts.
However, IEEE 754 [IEEE754] floating-point math is not associative because of rounding
errors. Thus, the order of operations, which often depends on the PE-count, can influence



try {
comm.allreduce(/* ... */);
} catch ([[maybe_unused]] MPIFailureDetected const& _) {
// Notify all other PEs in the communicator of the failure.
if (!'comm.is_revoked()) {
comm.revoke () ;

¥
// Create a new communicator containing only the surviving PEs.
comm = comm.shrink();

Figure 6.11 Handling a PE failure using KaMPIng’s failure-mitigation plugin.

the result (Section 2.10). To this end, we provide a KaMPIng plugin that implements a
bit-reproducible distributed reduction algorithm (Chapter 5). Analogous to the “normal”
KaMPIng reduce, this plugin supports plain-MPI constants, function pointers, and lambda
functions as operations, assuming only associativity, a necessary requirement for parallelism.
We believe that the availability of this convenient, off-the-shelf library method will encourage
more authors to ensure that their applications yield bit-reproducible results.

6.7 Conclusion and Future Work

We introduce a novel set of C++ MPI bindings and our open-source'!, (near) zero-overhead
implementation, KaMPIng. Through configurable inference of parameter defaults, fine-
grained memory allocation control, enhanced safety guarantees, and a flexible plugin system,
KaMPIng enables both, rapid prototyping, and careful fine-tuning of distributed algorithms.
We demonstrate this claim via a variety of benchmarks from different application domains,
including, for example, distributed sorting and graph algorithms, as well as the phylogenetic
inference tool RAXML-NG (Section 6.5.3).

KaMPIng is extensively tested and currently used in multiple research projects, for
example, suffix array construction [Haa+24], distributed string sorting [Kur+24], maximum
weighted independent set kernelization [Bor25], as well as distributed list-ranking and tree-
routing [Wei24]. Further, KaMPIng covers MPI’s collectives, blocking, and non-blocking
point-to-point operations (Section 2.6) — the most commonly used MPI features [Lag+19]. In
the future, we plan to extend KaMPIng to cover most of the MPI standard, while also building
a basic algorithmic toolbox on top of KaMPIng. We hope that this will facilitate rapid
prototyping with short feedback loops and iterative improvements of distributed algorithms
with a strong focus on runtime performance. To this end, we will also further elicit the needs
of the MPI community and are currently involved in the MPI language binding working group
in order to develop novel, standardized C++ bindings for MPI and establish KaMPIng as a
prototypical reference implementation. Further, we are currently generalizing the indirection
patterns employed in all-to-all primitives to higher dimensions, while also incorporating
message aggregation. These improvements are applicable in request-replay patterns when
reading from globally distributed data, and algorithms with highly-irregular communication
without hard synchronization. We are implementing these building blocks on top of KaMPIng
and will integrate them into future library releases.

We are currently developing distributed containers, with the aim of enabling lightweight

11https://github.com/kamping-site/kamping;LGPL
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bulk parallel computation as in MapReduce [DG04] or Thrill [Bin+16], while not locking the
programmer into the walled garden of a particular framework.

In summary, we strive to establish KaMPIng as a stable core for an entire ecosystem of
future general-purpose distributed algorithms and applications.



7 Conclusion and Future Work

Attribution: I am the sole author of the text in this chapter. Attributions of the
work referenced herein can be found in the respective chapters.

In this thesis, we address four major challenges posed by the exponential growth of available
genomic data to the scalability of evolutionary bioinformatics applications (Section 1.1). In
order to handle this exponential growth, we require highly parallel and scalable codes as well
as work-efficient algorithms. As increased parallelism causes programs to more frequently
experience hardware faults, we require our algorithms to support rapid recovery after such a
fault. Further, to strengthen scientific claims, we require algorithms that yield bit-identical
results across different hardware environments, for instance, using a distinct number of CPU
cores or architectures. Finally, software libraries that encapsulate the abstractions we utilize
to manage the growing complexity of scientific codes facilitate the rapid development of these
applications.

7.1 The Algorithmic Challenge

In Chapter 3, we introduce a novel data structure for storing sets of genealogical trees and

their associated genomic sequences that enables the memoization of intermediate results.

The current state-of-the-art data structure compresses these trees via edit operations when
moving from one tree to the next along the genome. In contrast, our data structure, gfkit,
compresses these trees into a Directed Acyclic Graph, where each node represents a unique
subtree of the input. This allows us to memoize intermediate results and yields speedups
over the state-of-the-art tool ranging between 2.1 and 11.2 (median 4.0) when computing
important population genetics statistics such as the Allele Frequency Spectrum, Patterson’s
f, the Fixation Index, Tajima’s D, the pairwise Lowest Common Ancestor (LCA), and others
on empirical as well as simulated datasets. On LCA queries with more than two samples as
input, gfkit scales asymptotically better than the state-of-the-art implementation, and is
thus up to two orders of magnitude faster in our experiments. Further, as more genomes are
being sequenced, future datasets will contain a multiple of today’s samples. On a simulated
human dataset with 640000 samples, we observe speedups (and running times) that are
comparable to the largest existing empirical datasets.

Our advancements will boost the development of novel analyses and models in the field
of population genetics, and improve scalability to accommodate the exponentially-growing
genomic datasets. For instance, gfkit might be used for developing appropriate optimization
criteria and techniques for automatically determining subpopulations.

7.2 The Hardware-Failure Mitigation Challenge

In Chapter 4, we improve the mitigation of hardware failures in High Performance Computing
(HPC). Since it is impractical to either, request replacement for failed CPU cores or to
maintain spares, applications must continue execution with the remaining cores (shrinking
recovery). Thus, during failure-recovery, applications must re-distribute their workload and
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reload the respective input data to the remaining cores. We propose a novel algorithmic
framework and C++ implementation, ReStore, which is, to the best of our knowledge, the
first framework that supports shrinking recovery from memory to mitigate hardware failures
in Message Passing Interface (MPI) programs. This allows the applications to utilize all
CPU cores for computation rather than reserving some as spares to replace failed cores.

By storing data in memory with an appropriate data distribution and replication scheme,
recovery is substantially faster compared to checkpointing approaches that rely on the parallel
file system. We evaluate ReStore both, in an isolated environment, and with real applications.
Our experiments show loading times for lost data in the range of milliseconds on up to 24 576
cores. Our data distribution ensures a low data loss probability and allows for rapid data
recovery by balancing the bottleneck communication volume and the bottleneck number of
messages. Additionally, we analyze the probability of irrecoverable data loss and propose a
data distribution strategy to easily restore lost replicas after a failure.

ReStore is compatible with any HPC application using MPI 5.0 — which introduces
fault-tolerance mechanisms. For example, by employing ReStore, we improve the recovery
performance of FT-RAXML-NG [Hiib+21b; Koz+19] by up to two orders of magnitude.
In summary, ReStore enables scientific applications to recover from hardware failures in
milliseconds, necessitating neither replacement nor spare cores.

7.3 Reproducibility Challenge

Maximum-likelihood phylogenetic inference tools such as RAXML-NG use heuristics to
search for the phylogenetic tree that best explains the shared evolutionary history of the
input genomic sequences (Sections 2.1 and 2.3). However, due to differing rounding errors
induced by the re-association of the IEEE 754 floating-point computations performed during
a distributed all-reduce operation, these algorithms yield different results under varying
CPU core counts. Concretely, and supporting the findings by Shen et al. [She+20a], we
observe that the level of parallelism contributes to diverging phylogenetic tree searches in
31 % of 10130 empirical datasets (Chapter 5). Moreover, 8 % of these datasets yield trees
that are significantly worse than the best found tree (AU-test, p < 0.05) depending on
the parallelization level. To alleviate this issue, we implement a variant of the widely-used
phylogenetic inference tool RAXxML-NG that yields bit-reproducible results under varying
core counts. This variant is merely 0 to 6.7 % (median 0.93 %) slower than non-reproducible
RAXML-NG on up to 768 cores.

We also introduce ReproRed, a bit-reproducible parallel reduction algorithm, which
specifies the order of reduction operations independent of the communication patterns. Thus,
ReproRed is applicable to arbitrary associative reduction operators — in contrast to its
competitors, which are confined to summation. This allows us to integrate ReproRed into a
open-source MPI wrapper library that enables users to pass arbitrary reduction operators,
such as C++ lambdas or function pointers. Furthermore, ReproRed only exchanges the
theoretical minimum number of messages, overlaps communication with computation, and
utilizes a fast base-case for conducting local reductions.

We find that ReproRed is able to all-reduce (via a subsequent broadcast) 4.1 x 108
operands on 48 to 768 cores in 19.7 to 48.61 pns. Thus, ReproRed induces a slowdown of
only 13 to 93 % over an non-reproducible all-reduce algorithm and of only 8 to 25 % over
an non-reproducible Reduce-Bceast algorithm. ReproRed outperforms the state-of-the-art
reproducible all-reduce algorithm ReproBLAS when reducing over more than 10000 elements
per core.



In conclusion, we re-asses the issue of non-reproducibility in phylogenetic inference and
present the, to the best of our knowledge, first bit-wise reproducible parallel phylogenetic
inference tool. Additionally, we introduce and evaluate a bit-reproducible distributed-memory
reduction algorithm, ReproRed. In contrast to competitors, ReproRed supports arbitrary
associative reduction operations. This allows us to integrate ReproRed into an open-source
MPI-wrapper library, which facilitates the transition to bit-reproducible code.

7.4 Software Complexity Challenge

In Chapter 6, we propose novel C++ MPI language bindings and the accompanying imple-
mentation, KaMPIng, that is designed to cover all abstraction levels from low-level MPI calls
to convenient Standard Template Library style bindings with automatic inference of missing
parameters, where feasible. Through this automatic computation of missing parameters,
fine-grained memory allocation control, enhanced safety guarantees, and a flexible plugin
system, KaMPIng enables both, rapid prototyping and careful fine-tuning of distributed
algorithms. We utilize template-metaprogramming to ensure that the compiler only generates
code paths that are necessary to compute the missing parameters for a specific function
invocation, resulting in (near) zero-overhead bindings. Moreover, KaMPIng supports MPI’s
collectives, and both, blocking and non-blocking point-to-point operations (Section 2.6) —
which are among the most commonly used MPI features [Lag+19].

KaMPIng is extensively tested and currently used in multiple research projects, for
example, suffix array construction [Haa-+24], distributed string sorting [Kur+24], maximum
weighted independent set kernelization [Bor25], as well as distributed list-ranking and
tree-routing [Wei24]. Using multiple application benchmarks, from sorting algorithms to
phylogenetic interference with RAxML-NG, we demonstrate that KaMPIng provides a
foundation for a future distributed standard library. Additionally, we implement a bit-
reproducible distributed-memory reduction algorithm and integrate MPI’s failure-mitigation
bindings into KaMPIng.

7.5 Future Work

We now outline several high-level directions of future work. Note that each chapter includes
more specific directions of future work.

As outlined in Chapter 6, we are currently extending KaMPIng with distributed containers
to facilitate lightweight bulk parallel computation as in MapReduce [DG04] or Thrill [Bin+16].
Many of these functions, for instance, the map and reduce of MapReduce are pure [Hua+12;
SRO5], that is, they are side effect free and consistently return identical result when invoked
with identical arguments. Pure functions allow for automatic parallelization [SS16; Stii+20],
load-balancing [Bin+16; Bin18b], fault-tolerance [Hes23; Mem+16], and possibly avoiding
some floating-point reproducibility issues. Consequently, future work could involve designing
KaMPIng’s bulk parallel operations to incorporate automatic fault-tolerance using ReStore
and enhance reproducibility using ReproRed.

To obtain bit-reproducible results across distinct implementations, scientific communities
could establish a standardized sequence for common calculations, for instance, the statistics
in population genetics discussed in Chapter 3. For example, bit-reproducibility in computing
sequence diversity,! could be achieved by employing sufficiently large integer variables to

! The probability that two random sequences differ at a random site (both chosen uniformly at random).
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accommodate an intermediate result and by specifying the used floating point data-types, for
instance, as 64 bit IEEE 754. Additionally, the average value across the genome should be
calculated utilizing a pair-wise summation over the per-locus values. This fixes the operation
order while enabling parallel computation (Chapter 5).

A further substantial challenge to the scalability of evolutionary bioinformatics algorithms
not discussed in this thesis is the need to incrementally update existing data structures with
new data. For instance, when new genomes are sequenced and shall be integrated into a
genealogical forest or tree sequence, one must avoid re-building the entire data structure
in order to ensure scalability. Therefore, it is essential to expand tree sequence inference
algorithms as well as other bioinformatics data structures to support incremental updates.

7.6 Conclusion

In conclusion, in this thesis, we design, implement, and evaluate a work-efficient data
structure for statistical queries on population genetics datasets and a novel scalable in-memory
replicated storage for failure-tolerant applications. Further, we present a distributed-memory
reduction algorithm that guarantees reproducible results, irrespective of the core-count, and
that is applicable to arbitrary associative reduction operators. Moreover, we implement the
first bit-reproducible parallel phylogenetic tree inference tool. We also develop high-level
C++ bindings for MPI, thereby enabling a faster, less error-prone development of distributed
applications, including access to MPI’s failure-mitigation mechanisms and our reproducible
parallel reduce implementation. While motivated by challenges in evolutionary bioinformatics,
most of our results are also applicable to other HPC domains. Our work allows researchers to
analyze the exponentially growing phylogenetic and population genetic datasets, to perform
novel, work-intensive analyses, and to publish reproducible results. It also facilitates the
development of complex distributed-memory algorithms through abstractions.
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ABFT Algorithm-Based Failure-Tolerance. 17
AFS Allele Frequency Spectrum. 4, 14, 109
AU Approximately Unbiased. v, x, 5, 63, 65, 68, 74, 110

BFS Breadth First Search. 101
BLAS Basic Linear Algebra Subprograms. 68
BLCR Berkeley Lab Checkpoint/Restart. 18

DAG Directed Acyclic Graph. v, vi, ix, 4, 23, 109
DNA deoxyribonucleic acid. 10, 12

FLOPS floating-point operations per second. 71
FMA Fused Multiply-and-Add. 20

GRG Gene Recombination Graph. 27
HPC High Performance Computing. vii, 3, 9, 41, 42, 66, 84, 109
IDL Irrecoverable Data Loss. 49

LCA Lowest Common Ancestor. vi, x, 4, 10, 23-26, 71, 109
LCG Linear Congruential Generator. 51

LLH Log-Likelihood. 13, 67, 104

LOC lines of code. 101

ML Maximum-Likelihood. 14
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MPL Message Passing Library. 90

MRCA Most Recent Common Ancestor. 15

MSA Multiple Sequence Alignment. 13, 74, 80

PE Processing Element. 15, 42, 64, 87
PFS parallel file system. vi, 3, 19, 41, 42, 110
PGAS Partitioned Global Address Space. 45

RAIl Resource Acquisition Is Initialization. 84, 91, 97
RGG Random Geometric Graph. 104, 106

RHG Random Hyperbolic Graph. 104, 106

RMA Remote Memory Access. 45

RNA ribonucleic acid. 10, 14

SFINAE Substitution Failure is Not an Error. 100
SGDP Simons Genome Diversity Project. 32
SIMD Single Instruction Multiple Data Stream. 20, 65
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SRA Sequence Read Archive. 2
STL Standard Template Library. vi, xi, 6, 84, 85, 111

TGP Thousand Genomes Project. 6, 25

ULFM User Level Failure Mitigation. 19, 43, 106
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Usage of Generative Models

In accordance with the statement of the Deutsche Forschungsgemeinschaft® on the 21%¢ of
September 2023 regarding the usage of generative models for text and image generation,
we want to indicate that generative models were used for the following purposes: Part of
the code accompanying this thesis was developed using GitHub Copilot (based on GPT-3.5,
that is, pre-ChatGPT) for (a) assisting writing a small subset of unit tests for software
artifacts, (b) assisting writing a small subset of inline code documentation (Doxygen), and
(c) auto-completion at sub-line and line level. All generated unit tests, documentation, and
auto-completion have been verified manually by the authors. Further, no code generation or
other generative model has been used for interface, data structure, or algorithm design.

In the publication on which Chapter 6 is based, the grammatical correctness of a small
number of sentences were verified via ChatGPT-3. Moreover, we utilized GPT-40 when

writing Chapters 3, 5, and 7 to propose linkage words, stronger verbs, and shorter formulations.

All proposed edits have been manually evaluated and accepted by the authors. No image in
this thesis was generated using generative models.

! https://wuw.dfg.de/de/aktuelles/neuigkeiten-themen/info-wissenschaft/2023/
info-wissenschaft-23-72
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