KIT | KIT-Bibliothek | Impressum | Datenschutz

Evaluation of a novel approach to partitioning respiration and photosynthesis using eddy covariance, wavelets and conditional sampling

Coimbra, Pedro Henrique H. ; Loubet, Benjamin; Laurent, Olivier; Mauder, Matthias 1; Heinesch, Bernard; Bitton, Jonathan; Delpierre, Nicolas; Berveiller, Daniel; Depuydt, Jérémie; Buysse, Pauline
1 Institut für Meteorologie und Klimaforschung (IMK), Karlsruher Institut für Technologie (KIT)

Abstract:

The eddy covariance (EC) technique remains a cornerstone for direct, continuous monitoring of greenhouse gases fluxes, particularly for carbon dioxide (CO$_2$). Traditionally, EC-derived net ecosystem exchange (NEE) is partitioned into gross primary productivity (GPP) and ecosystem respiration (R$_{eco}$) using model-based approaches. Here, we present a novel, fully empirical partitioning method that applies conditional sampling to wavelet-decomposed signals, isolating positive and negative contributions of the wavelet co-spectrum of vertical wind velocity and CO₂ dry molar fraction, conditioned by the water vapour flux. This method was evaluated across two French ICOS sites, a mixed forest (FR-Fon) and a cropland (FR-Gri), over multiple years. The approach is grounded in the hypothesis that wavelet decomposition enables separation of oppositely signed turbulent structures across scales, a claim supported by co-spectral analysis. The resulting flux components exhibited distinct frequency signatures under neutral and unstable atmospheric conditions, though not under stable stratification. Daily partitioned fluxes derived from this method aligned well with GPP and Reco estimates from established nighttime- and daytime-based partitioning, with inter-method differences smaller than those observed between the conventional approaches themselves. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000184071
Veröffentlicht am 19.08.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung (IMK)
Institut für Meteorologie und Klimaforschung Atmosphärische Umweltforschung (IMKIFU)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 09.2025
Sprache Englisch
Identifikator ISSN: 0168-1923, 1873-2240
KITopen-ID: 1000184071
Erschienen in Agricultural and Forest Meteorology
Verlag Elsevier
Band 372
Seiten 110684
Nachgewiesen in Scopus
OpenAlex
Web of Science
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 2 – Kein HungerZiel 13 – Maßnahmen zum Klimaschutz
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page