KIT | KIT-Bibliothek | Impressum | Datenschutz

The 2023/24 VIEWS Prediction challenge: Predicting the number of fatalities in armed conflict, with uncertainty

Hegre, Håvard ; Vesco, Paola; Colaresi, Michael; Vestby, Jonas; Timlick, Alexa; Kazmi, Noorain Syed; Lindqvist-McGowan, Angelica; Becker, Friederike 1; Binetti, Marco; Bodentien, Tobias 1; Bohne, Tobias; Brandt, Patrick T.; Chadefaux, Thomas; Drauz, Simon 1; Dworschak, Christoph; D’Orazio, Vito; Frank, Hannah; Fritz, Cornelius; Gleditsch, Kristian Skrede; ... mehr

Abstract:

Governmental and nongovernmental organizations have increasingly relied on early-warning systems of conflict to support their decisionmaking. Predictions of war intensity as probability distributions prove closer to what policymakers need than point estimates, as they encompass useful representations of both the most likely outcome and the lower-probability risk that conflicts escalate catastrophically. Point-estimate predictions, by contrast, fail to represent the inherent uncertainty in the distribution of conflict fatalities. Yet, current early warning systems are preponderantly focused on providing point estimates, while efforts to forecast conflict fatalities as a probability distribution remain sparse. Building on the predecessor VIEWS competition, we organize a prediction challenge to encourage endeavours in this direction. We invite researchers across multiple disciplinary fields, from conflict studies to computer science, to forecast the number of fatalities in state-based armed conflicts, in the form of the UCDP ‘best’ estimates aggregated to two units of analysis (country-months and PRIO-GRID-months), with estimates of uncertainty. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000184072
Veröffentlicht am 20.08.2025
Originalveröffentlichung
DOI: 10.1177/00223433241300862
Scopus
Zitationen: 3
Web of Science
Zitationen: 2
Dimensions
Zitationen: 4
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Statistik (STAT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 0022-3433, 1460-3578
KITopen-ID: 1000184072
Erschienen in Journal of Peace Research
Verlag SAGE Publications
Vorab online veröffentlicht am 06.05.2025
Nachgewiesen in Web of Science
OpenAlex
Dimensions
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 16 – Frieden, Gerechtigkeit und starke Institutionen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page