KIT | KIT-Bibliothek | Impressum | Datenschutz

Beat-Based Rhythm Quantization of MIDI Performances

Maximilian Wachter 1; Murgul, Sebastian ORCID iD icon 1; Heizmann, Michael 1
1 Institut für Industrielle Informationstechnik (IIIT), Karlsruher Institut für Technologie (KIT)

Abstract:

We propose a transformer-based rhythm quantization model that incorporates beat and downbeat information
to quantize MIDI performances into metrically-aligned, human-readable scores. We propose a beat-based preprocessing
method that transfers score and performance data into a unified token representation. We optimize
our model architecture and data representation and train on piano and guitar performances. Our model exceeds
state-of-the-art performance based on the MUSTER metric.


Postprint §
DOI: 10.5445/IR/1000184109
Veröffentlicht am 11.09.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Industrielle Informationstechnik (IIIT)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 08.09.2025
Sprache Englisch
Identifikator KITopen-ID: 1000184109
Erschienen in Late Breaking Demo Papers of the 1st AES International Conference on Artificial Intelligence and Machine Learning for Audio (AIMLA LBDP)
Veranstaltung 1st AES International Conference on Artificial Intelligence and Machine Learning for Audio (AIMLA 2025), London, Vereinigtes Königreich, 08.09.2025 – 10.09.2025
Bemerkung zur Veröffentlichung in press
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page