KIT | KIT-Bibliothek | Impressum | Datenschutz

Polymer derived tribofilm on silicon-doped diamond-like carbon coatings

Omiya, Takeru ; Welle, Alexander ORCID iD icon 1,2; Evaristo, Manuel; Sharma, Pooja; Cavaleiro, Albano; Serra, Arménio C.; Coelho, Jorge F. J.; Righi, Maria Clelia ; Ferreira, Fabio
1 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)
2 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)

Abstract:

Metal-free polymer additives used in conjunction with diamond-like carbon (DLC) coatings offer an environmentally sustainable approach for reducing friction and wear under boundary lubrication. In this study, a functionalized block copolymer, poly(lauryl methacrylate)-block-poly(2-dimethylaminoethyl methacrylate) (PLMA-b-PDMAEMA), is investigated as a friction modifier for silicon-doped DLC (Si-DLC) coatings. Tribological tests reveal that this copolymer significantly lowers friction compared to both a PLMA homopolymer and the base oil alone. ToF-SIMS, synchrotron-based XPS, and cross-sectional FIB-TEM analyses confirm the in-situ formation of a robust tribofilm, with a thickness of approximately 5–12 nm. Depth-resolved chemical analysis reveals a stratified structure in which the PDMAEMA segment chemisorbs onto reactive silicon sites via N–Si bonds, while the PLMA alkyl chains form a low-shear, oleophilic outer interface. The tribofilm remains intact after sliding under a Hertzian contact pressure of approximately 1 gigapascal, indicating excellent mechanical resilience. These findings demonstrate that molecular-level design of copolymers enables strong substrate anchoring and friction reduction without the use of metals, phosphorus, or sulfur. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000184119
Veröffentlicht am 20.08.2025
Originalveröffentlichung
DOI: 10.1016/j.apsusc.2025.164200
Scopus
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Funktionelle Grenzflächen (IFG)
Karlsruhe Nano Micro Facility (KNMF)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2025
Sprache Englisch
Identifikator ISSN: 0169-4332
KITopen-ID: 1000184119
HGF-Programm 43.33.11 (POF IV, LK 01) Adaptive and Bioinstructive Materials Systems
Erschienen in Applied Surface Science
Verlag Elsevier
Band 712
Seiten 164200
Schlagwörter ToF-SIMS, 2023-031-031928
Nachgewiesen in Web of Science
OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page