KIT | KIT-Bibliothek | Impressum | Datenschutz

High quality superconducting tantalum resonators with beta phase defects

Dhundhwal, Ritika; Duan, Haoran; Brauch, Lucas; Arabi, Soroush; Fuchs, Dirk; Haghighirad, Amir-Abbas 1; Welle, Alexander ORCID iD icon 2,3; Scharwaechter, Florentine; Pal, Sudip; Scheffler, Marc; Palomo, José; Leghtas, Zaki; Murani, Anil; Hahn, Horst 4; Aghassi-Hagmann, Jasmin ORCID iD icon 4; Kübel, Christian ORCID iD icon 4; Wulfhekel, Wulf 5; Pop, Ioan M.; Reisinger, Thomas 1
1 Institut für QuantenMaterialien und Technologien (IQMT), Karlsruher Institut für Technologie (KIT)
2 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)
3 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)
4 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
5 Physikalisches Institut (PHI), Karlsruher Institut für Technologie (KIT)

Abstract:

For practical superconducting quantum processors, orders of magnitude improvement in coherence is required, motivating efforts to optimize hardware design and explore new materials. Among the latter, the coherence of superconducting transmon qubits has been shown to improve by forming the qubit capacitor pads from $α$-tantalum, avoiding the meta-stable $β$-phase that forms when depositing tantalum at room temperature, and has been previously identified to be a source of microwave losses. In this work, we show lumped element resonators containing $β$-phase tantalum in the form of inclusions near the metal-substrate interface with internal quality factors ($Q_\text{i}$) up to $(5.0 \pm 2.5) \times 10^6$ in the single photon regime. They outperform resonators with no sign of the $β$-phase in x-ray diffraction and thermal quasi-particle loss. Our results indicate that small concentrations of $β$-phase can be beneficial, enhancing critical magnetic fields and potentially, for improving coherence in tantalum based superconducting circuits.


Volltext §
DOI: 10.5445/IR/1000184126
Veröffentlicht am 21.08.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Funktionelle Grenzflächen (IFG)
Institut für Nanotechnologie (INT)
Institut für QuantenMaterialien und Technologien (IQMT)
Karlsruhe Nano Micro Facility (KNMF)
Physikalisches Institut (PHI)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 24.02.2025
Sprache Englisch
Identifikator KITopen-ID: 1000184126
HGF-Programm 47.11.02 (POF IV, LK 01) Emergent Quantum Phenomena
Verlag arxiv
Serie Quantum Physics
Schlagwörter Quantum Physics (quant-ph), Materials Science (cond-mat.mtrl-sci), 2022-029-031428 ToF-SIMS, Superconductivity (cond-mat.supr-con)
Nachgewiesen in arXiv
OpenAlex
Dimensions
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page