KIT | KIT-Bibliothek | Impressum | Datenschutz

SAMBLE: Shape-Specific Point Cloud Sampling for an Optimal Trade-Off Between Local Detail and Global Uniformity

Wu, Chengzhi 1; Wan, Yuxin 1; Fu, Hao 1; Pfrommer, Julius 2; Zhong, Zeyun ORCID iD icon 1; Zheng, Junwei 1; Zhang, Jiaming 1; Beyerer, Jürgen 1,2
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)
2 Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung (IOSB)

Abstract:

Driven by the increasing demand for accurate and efficient representation of 3D data in various domains, point cloud sampling has emerged as a pivotal research topic in 3D computer vision. Recently, learning-to-sample methods have garnered growing interest from the community, particularly for their ability to be jointly trained with downstream tasks. However, previous learning-based sampling methods either lead to unrecognizable sampling patterns by generating a new point cloud or biased sampled results by focusing excessively on sharp edge details. Moreover, they all overlook the natural variations in point distribution across different shapes, applying a similar sampling strategy to all point clouds. In this paper, we propose a Sparse Attention Map and Bin-based Learning method (termed SAMBLE) to learn shape-specific sampling strategies for point cloud shapes. SAMBLE effectively achieves an improved balance between sampling edge points for local details and preserving uniformity in the global shape, resulting in superior performance across multiple common point cloud downstream tasks, even in scenarios with few-point sampling.


Preprint §
DOI: 10.5445/IR/1000184138
Veröffentlicht am 26.08.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2025
Sprache Englisch
Identifikator ISBN: 979-8-3315-4365-5
KITopen-ID: 1000184138
HGF-Programm 46.24.01 (POF IV, LK 01) Applied TA: Digitalizat. & Automat. Socio-Technical Change
Erschienen in IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2025. Proceedings : Nashville, Tennessee, USA, 11-15 June 2025
Veranstaltung 41nd IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR 2025), Nashville, TN, USA, 11.06.2025 – 15.06.2025
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 1342-1352
Nachgewiesen in Dimensions
OpenAlex
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page