KIT | KIT-Bibliothek | Impressum | Datenschutz

Machine learning for the prediction of intrinsic magnetic properties and microstructure characterization of sintered FeNdB type permanent magnets

Choudhary, Amit Kumar ORCID iD icon 1
1 Fakultät für Maschinenbau (MACH), Karlsruher Institut für Technologie (KIT)

Abstract:

The properties of material, which are the measurable responses of a material under various conditions, are determined by the properties of its phases and microstructure. Microstructure is the arrangement of phases and defects within a material characterized by various attributes, including type, size, orientation, shape, and amount. While intrinsic properties are studied through experiments and simulations, microstructure characterization typically relies on the microscopy image analysis. These factors collectively influence the overall properties and behavior. The extrinsic properties of a material arise from the intrinsic properties of its individual phases and the microstructure of the material. However, traditional methods for determining these properties can be tedious, expensive, subjective, and error prone due to manual efforts. Therefore, to address these challenges, a data-driven approach has been developed to obtain a better trade-off between accuracy and time-efficiency.

In this thesis, the generalization capabilities of machine learning approaches for intrinsic property prediction tasks and quantitative microstructure characterization using microscopy image data are demonstrated. ... mehr


Volltext §
DOI: 10.5445/IR/1000184154
Veröffentlicht am 21.08.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Hochschulschrift
Publikationsdatum 21.08.2025
Sprache Englisch
Identifikator KITopen-ID: 1000184154
Auflage xviii, 191 S.
Verlag Karlsruher Institut für Technologie (KIT)
Art der Arbeit Dissertation
Fakultät Fakultät für Maschinenbau (MACH)
Institut Fakultät für Maschinenbau (MACH)
Prüfungsdatum 17.07.2025
Schlagwörter Machine learning, Deep learning, Regression models, Image analysis, Sintered FeNdB Permanent magnets, 14:2:1 hard magnetic phase, Intrinsic magnetic properties, Extrinsic magnetic properties, Curie temperature, Saturation magnetization, Kerr microscopy, Electron backscatter diffraction, Microstructure characterization, Grain size analysis, Crystallographic orientation, Magnetic domains
Nachgewiesen in OpenAlex
Globale Ziele für nachhaltige Entwicklung Ziel 8 – Menschenwürdige Arbeit und WirtschaftswachstumZiel 9 – Industrie, Innovation und Infrastruktur
Referent/Betreuer Schneider, Gerhard
Mikut, Ralf
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page