KIT | KIT-Bibliothek | Impressum | Datenschutz

ExTea: An Evolutionary Algorithm-Based Approach for Enhancing Explainability in Time-Series Models

Huang, Yiran ORCID iD icon 1; Zhou, Yexu 1; Zhao, Haibin ORCID iD icon 1; Fang, Likun ORCID iD icon 1; Riedel, Till ORCID iD icon 1; Beigl, Michael ORCID iD icon 1
1 Institut für Telematik (TM), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

In the expanding realm of sensor-based applications, the reliance on time-series data has surged, posing challenges in explaining the decisions of complex black-box time-series models. Existing Explainable Artificial Intelligence (XAI) approaches such as SBXAI, MCXAI and TS-MULE offer insights into these models but face limitations in generating multiple explanations, exploring time-series-specific characteristics, optimizing found cognitive blocks, and setting appropriate hyperparameters. Addressing these challenges, we introduce an EXplainable artificial intelligence method targeting Time-series model based on Evolutionary Algorithm (ExTea). ExTea conceptualizes explanations as evolving individuals and employs an innovative pyramidal structure for optimizing potential explanations, categorized into newborn, tested, and elite stages. This approach incorporates time-series characteristics into the fitness function of individual evaluation, thereby enhancing the overall explanatory power. Extensive experiments on six benchmark datasets with four target models demonstrate that the performance of ExTea significantly exceeds the state-of-the-art time-series XAI algorithms, SBXAI and MCXAI.


Originalveröffentlichung
DOI: 10.1007/978-3-031-70381-2_27
Scopus
Zitationen: 1
Dimensions
Zitationen: 1
Zugehörige Institution(en) am KIT Institut für Telematik (TM)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2024
Sprache Englisch
Identifikator ISBN: 978-3-031-70381-2
ISSN: 0302-9743
KITopen-ID: 1000184157
Erschienen in Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track – European Conference, ECML PKDD 2024, Vilnius, Lithuania, September 9–13, 2024, Proceedings, Part X. Ed.: A. Bifet
Veranstaltung ECML PKDD (2024), Vilnius, Litauen, 09.09.2024 – 13.09.2024
Verlag Springer Nature Switzerland
Seiten 429–446
Serie Lecture Notes in Computer Science ; 14950
Vorab online veröffentlicht am 22.08.2024
Schlagwörter explainable artificial intelligence, time-series, evolutionary algorithm, Baldwin effect
Nachgewiesen in OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page