KIT | KIT-Bibliothek | Impressum | Datenschutz

Tracking One-in-a-Million: Large-Scale Benchmark for Microbial Single-Cell Tracking with Experiment-Aware Robustness Metrics

Seiffarth, Johannes ; Blöbaum, Luisa; Paul, Richard D.; Friederich, Nils ORCID iD icon 1,2; Sitcheu, Angelo Jovin Yamachui ORCID iD icon 1; Mikut, Ralf ORCID iD icon 1; Scharr, Hanno; Grünberger, Alexander ORCID iD icon 3; Nöh, Katharina
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)
2 Institut für Biologische und Chemische Systeme (IBCS), Karlsruher Institut für Technologie (KIT)
3 Institut für Bio- und Lebensmitteltechnik (BLT), Karlsruher Institut für Technologie (KIT)

Abstract:

Tracking the development of living cells in live-cell time-lapses reveals crucial insights into single-cell behavior and presents tremendous potential for biomedical and biotechnological applications. In microbial live-cell imaging (MLCI), a few to thousands of cells have to be detected and tracked within dozens of growing cell colonies. The challenge of tracking cells is heavily influenced by the experiment parameters, namely the imaging interval and maximal cell number. For now, tracking benchmarks are not widely available in MLCI and the effect of these parameters on the tracking performance are not yet known. Therefore, we present the largest publicly available and annotated dataset for MLCI, containing more than 1.4 million cell instances, 29k cell tracks, and 14k cell divisions. With this dataset at hand, we generalize existing tracking metrics to incorporate relevant imaging and experiment parameters into experiment-aware metrics. These metrics reveal that current cell tracking methods crucially depend on the choice of the experiment parameters, where their performance deteriorates at high imaging intervals and large cell colonies. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000184179
Veröffentlicht am 26.08.2025
Originalveröffentlichung
DOI: 10.1007/978-3-031-91721-9_20
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Institut für Biologische und Chemische Systeme (IBCS)
Institut für Bio- und Lebensmitteltechnik (BLT)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2025
Sprache Englisch
Identifikator ISBN: 978-3-031-91721-9
ISSN: 0302-9743, 1611-3349
KITopen-ID: 1000184179
HGF-Programm 47.14.02 (POF IV, LK 01) Information Storage and Processing in the Cell Nucleus
Erschienen in Computer Vision – ECCV 2024 Workshops – Milan, Italy, September 29–October 4, 2024, Proceedings, Part XVI. Ed.: A. Del Bue
Veranstaltung European Conference on Computer Vision (ECCV 2024), Mailand, Italien, 29.09.2025 – 04.10.2025
Verlag Springer Nature Switzerland
Seiten 318 – 334
Serie Lecture Notes in Computer Science ; 15638
Vorab online veröffentlicht am 12.05.2025
Nachgewiesen in Dimensions
Scopus
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page