KIT | KIT-Bibliothek | Impressum | Datenschutz

Stochastic modelling of elasticity tensor fields

Shivanand, Sharana Kumar ORCID iD icon 1; Rosić, Bojana; Matthies, Hermann G.
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

We present a novel framework for the probabilistic modelling of random fourth-order material tensor fields, with a focus on tensors that are physically symmetric and positive definite (SPD), of which the elasticity tensor is a prime example. Given the critical role that spatial symmetries and invariances play in determining material behaviour, it is essential to incorporate these aspects into the probabilistic description and modelling of material properties. In particular, we focus on spatial point symmetries or invariances under rotations, a classical subject in elasticity. Following this, we formulate a stochastic modelling framework using a Lie algebra representation via a memory-less transformation that respects the requirements of positive definiteness and invariance. With this, it is shown how to generate a random ensemble of elasticity tensors that allows an independent control of strength, eigenstrain, and orientation. The procedure also accommodates the requirement to prescribe specific spatial symmetries and invariances for each member of the whole ensemble, while ensuring that the mean or expected value of the ensemble conforms to a potentially ‘higher’ class of spatial invariance. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000184184
Veröffentlicht am 22.08.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Scientific Computing Center (SCC)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 1081-2865, 1741-3028
KITopen-ID: 1000184184
HGF-Programm 46.21.02 (POF IV, LK 01) Cross-Domain ATMLs and Research Groups
Erschienen in Mathematics and Mechanics of Solids
Verlag SAGE Publications
Vorab online veröffentlicht am 20.08.2025
Schlagwörter Stochastic material modelling, random elasticity, tensor-valued random field, spatial symmetries of ensemble and mean, Fréchet mean, Lie algebra representation, directional and scaling uncertainty, uncertainty quantification
Nachgewiesen in OpenAlex
Web of Science
Scopus
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page